
Utilization, Preditability, Workloads, andUser Runtime Estimates in Sheduling theIBM SP2 with Bak�llingAhuva W. Mu'alem Dror G. FeitelsonShool of Computer Siene and EngineeringThe Hebrew University, 91904 Jerusalem, Israelfeit�s.huji.a.ilAbstratSheduling jobs on the IBM SP2 system and many other distributed-memory MPPsis usually done by giving eah job a partition of the mahine for its exlusive use. Al-loating suh partitions in the order that the jobs arrive (FCFS sheduling) is fair andpreditable, but su�ers from severe fragmentation, leading to low utilization. This sit-uation led to the development of the EASY sheduler whih uses aggressive bak�lling:small jobs are moved ahead to �ll in holes in the shedule, provided they do not delaythe �rst job in the queue. We ompare this approah with a more onservative ap-proah, in whih small jobs move ahead only if they do not delay any job in the queue,and show that the relative performane of the two shemes depends on the workload:for workloads typial on SP2 systems, the aggressive approah is indeed better, but forother workloads both algorithms are similar. In addition we study the sensitivity ofbak�lling to the auray of the runtime estimates provided by the users, and �nd avery surprising result: bak�lling atually works better when users over-estimate theruntime by a substantial fator.Keywords: parallel job sheduling, bak�lling, runtime estimates, workload modeling,performane metris.1 IntrodutionThe sheduling sheme used on most distributed-memory parallel superomputers is vari-able partitioning, meaning that eah job reeives a partition of the mahine with its desirednumber of proessors [5℄. Suh partitions are alloated in a �rst-ome �rst-serve (FCFS)This paper superedes the preliminary version published in IPPS/SPDP'98 [7℄.2001 IEEE. Personal use of this material is permitted. However, permission to reprint/republishthis material for advertising or promotional purposes or for reating new olletive works for resale orredistribution to servers or lists, or to reuse any opyrighted omponent of this work in other works must beobtained from the IEEE. 1



manner to submitted jobs. But this approah su�ers from fragmentation, where free proes-sors annot meet the requirements of the next job, and therefore remain idle until additionalones beome available. As a result system utilization is typially in the range of 50{80%[21, 16, 8, 11, 15℄.It is well known that the best solutions for this problem are to use dynami partition-ing [20℄ or gang sheduling [6℄. However, these shemes have pratial limitations. Theonly eÆient and widely used implementation of gang sheduling was the one on the CM-5 Connetion Mahine; other ommerial implementations are too oarse-grained for realinterative support, and do not enjoy muh use. To the best of our knowledge, dynamipartitioning has not been implemented on prodution mahines at all.A simpler approah is to re-order the jobs in the queue, that is, to use non-FCFS poliies[9℄. Consider a senario where a number of jobs are running side by side, and the next queuedjob requires all the proessors in the system. An FCFS sheduler would then reserve all theproessors that are freed for this queued job, and leave them idle. A non-FCFS shedulerwould shedule some other smaller jobs, that are behind the big job in the queue, ratherthan letting the proessors idle [12, 1℄. Of ourse, this runs the danger of starving the largejob, as small jobs ontinue to pass it by. The typial solution to this problem is to allowonly a limited number of jobs to leapfrog a job that annot be servied, and then start toreserve (and idle) the proessors anyway. The point at whih the poliies are swithed anbe hosen so as to amortize the idleness over more useful omputation, by ausing jobs thatreate signi�ant idleness to wait more before making a reservation.A somewhat more sophistiated poliy is to require users to estimate the runtime of theirjobs. Using this information, only short jobs | that are expeted to terminate in time |are allowed to leapfrog a waiting large job. This approah, whih is alled bak�lling, wasdeveloped for the IBM SP1 parallel superomputer installed at Argonne National Laboratoryas part of EASY (the Extensible Argonne Sheduling sYstem) [17℄, whih has sine beenintegrated with the LoadLeveler sheduler from IBM for the SP2 [23℄. Users are expeted toprovide aurate runtime estimates, as a low estimation may lead to killing the job before itterminates, while a high estimation may lead to a long wait time and possibly to exessiveCPU quota loss.The EASY bak�lling algorithm only heks that jobs that move ahead in the queuedo not delay the �rst queued job. We show that this aggressive approah an lead tounbounded queueing delays for other queued jobs, and therefore prevents the system frommaking de�nite preditions as to when eah job will run. We therefore ompare it with analternative onservative approah, in whih short jobs are moved ahead only if they do notdelay any job in the queue. It turns out that for the workloads measured on SP2 systems,the original EASY algorithm provides better performane, so the added preditability of theonservative approah would ome at a ost. However, using workloads from other systems,we �nd that both algorithms have about the same performane. In this ase the onservativealgorithm is preferable to the EASY algorithm, due to its improved preditability.The main problem with bak�lling is that it requires estimates of job runtimes to beavailable. In order to hek the sensitivity to the auray of estimates, we investigate theauray of real estimates and their e�et on performane. The surprising results are one,that user estimates are extremely unreliable, and two, that exaggerated estimates atually2



lead to better performane than tight estimates! We onlude the paper by onsidering waysin whih these new insights an be put to use in order to improve the sheduling of parallelsuperomputers.2 Bak�lling AlgorithmsBak�lling is an optimization in the framework of variable partitioning. In variable parti-tioning, users de�ne the number of proessors required for eah job, and this number doesnot hange during the exeution; thus jobs an be desribed as requiring a retangle in pro-essor/time spae (we will always draw time on the horizontal axis, and proessors on thevertial axis). The jobs then run on dediated partitions of the requested size. The name\variable partitioning" reets the fat that the partitions are reated in di�erent sizes asneeded.With bak�lling, users also provide an estimate of the runtime. This enables the shedulerto predit when jobs will terminate, and thus when the next queued jobs will be able to run.In partiular, it is possible to identify \holes" in the shedule, and small jobs that an �tinto these holes. This is the essene of bak�lling.It is desirable that a sheduler with bak�lling will support two oniting goals: to moveas many short jobs forward as possible, in order to improve utilization and responsiveness,and to avoid starvation for large jobs, and in partiular, to be able to predit when eah jobwill run. Di�erent versions of bak�lling balane these goals in di�erent ways.2.1 Conservative Bak�llingConservative bak�lling is the vanilla version usually assumed in the literature (e.g. [10, 6℄),although it seems not to be used. In this version, bak�lling is done subjet to hekingthat it does not delay any previous job in the queue. We all this version \onservative"bak�lling to distinguish it from the more aggressive version used by EASY, as desribedbelow. Its advantage is that it allows sheduling deisions to be made upon job submittal,and thus has the apability of prediting when eah job will run and giving users exeutionguarantees. Users an then plan ahead based on these guaranteed response times. Obviouslythere is no danger of starvation, as a reservation is made for eah job when it is submitted.In order to perform alloations, onservative bak�lling maintains two data strutures.One is the list of queued jobs and the times at whih they are expeted to start exeution.The other is a pro�le of the expeted proessor usage at future times. When a new jobarrives, the following alloation proedure is exeuted:Algorithm onservative bak�ll:1. Find anhor point:(a) San the pro�le and �nd the �rst point where enough proessors areavailable to run this job. This is alled the anhor point(b) Starting from this point, ontinue sanning the pro�le to asertain thatthe proessors remain available until the job's expeted termination3
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Figure 1: Example of onservative bak�lling.() If not, return to (a) and ontinue the san to �nd the next possibleanhor point2. Update the pro�le to reet the alloation of proessors to this job, startingfrom its anhor point3. If the job's anhor is the urrent time, start it immediatelyAn example is given in Fig. 1. The �rst job in the queue does not have enough proessorsto run, so a reservation for it is made after the �rst two running jobs terminate. The seond4
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Figure 2: Repeated bak�lling after a running job terminates earlier than expeted mayause a job that was expeted to bak�ll to atually run later than the original predition.It is therefore better to just ompress the original shedule.queued job has a potential anhor point after only one job terminates, but that would delaythe �rst job; therefore the seond anhor point is preferred. Thus adding job reservationsto the pro�le is the mehanism that guarantees that future arrivals do not delay previouslyqueued jobs. The third job an be sheduled immediately, so it is used for bak�lling.It is most onvenient to maintain the pro�le in a linked list, as it may be neessary tosplit items into two when a newly sheduled job is expeted to terminate in the middle of agiven period. In addition, an item may have to be added at the end of the pro�le whenevera job extends beyond the urrent end of the pro�le. The length of the pro�le is thereforeproportional to the number of jobs in the system (both queued and running), beause eahjob adds at most one item to the pro�le. As the pro�le is sanned one for eah new job,the omplexity of the algorithm is linear in the number of jobs.The above algorithm leaves one question unanswered. Jobs are assigned a start time whenthey are submitted, based on the urrent usage pro�le, and the system guarantees that theywill start by this time at the latest. But they may atually be able to run sooner beauseprevious jobs terminated earlier than expeted, leaving a gap in the planned shedule.Given suh a gap, one may deide to re-shedule all the jobs. However, this may violatethe system's exeution guarantees. In some ases, this guaranteed time will be the resultof bak�lling with this job. If a new round of bak�lling is done later, with di�erent dataabout job runtimes due to an early termination, the same job may not be bak�lled and willtherefore run muh later than the guaranteed time. An example is given in Fig. 2: aording5



to the original shedule, the seond queued job an bak�ll and start at time T1, but afterthe bottom running job terminates muh earlier than expeted, the �rst queued job an startearlier too, leaving no spae for bak�lling. The seond queued job therefore has to start atthe later time T3.The preferred hoie is therefore to ompress the existing shedule. To do so, eah job isremoved from the pro�le, and then re-inserted at the earliest possible time. Jobs provablydo not get delayed, beause at worse eah job will be re-inserted in the same position it heldpreviously. The jobs an be onsidered in the order of arrival, so jobs that are waiting longerget a better hane to move forward. The omplexity of ompression is quadrati, beausethe pro�le is sanned again for eah job.2.2 EASY Bak�llingConservative bak�lling moves jobs forward only if they do not delay any previously queuedjob. EASY bak�lling takes a more aggressive approah, and allows short jobs to skip aheadprovided they do not delay the job at the head of the queue [17℄. Interation with otherjobs is not heked, and they may be delayed, as shown below. The objetive is to improvethe urrent utilization as muh as possible, subjet to some onsideration of queue order.The prie is that exeution guarantees annot be made, beause it is impossible to predithow muh eah job will be delayed in the queue. Thus the algorithm is atually not asdeterministi as stated in its doumentation.The algorithm is as follows:Algorithm EASY bak�ll:1. Find the shadow time and extra nodes(a) Sort the list of running jobs aording to their expeted terminationtime(b) Loop over the list and ollet nodes until the number of available nodesis suÆient for the �rst job in the queue() The time at whih this happens is the shadow time(d) If at this time more nodes are available than needed by the �rst queuedjob, the ones left over are the extra nodes2. Find a bak�ll job(a) Loop on the list of queued jobs in order of arrival(b) For eah one, hek whether either of the following onditions hold:i. It requires no more than the urrently free nodes, and will terminateby the shadow time, orii. It requires no more than the minimum of the urrently free nodesand the extra nodes() The �rst suh job an be used for bak�llingThis is exeuted repeatedly whenever a new job arrives or a running job terminates, if the�rst job in the queue annot start. In eah iteration, the algorithm identi�es a job that anbak�ll if one exists. 6
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Figure 3: In EASY, bak�lling may delay queued jobs.This algorithm has two properties that together reate an interesting ombination.Property 1 Queued jobs may su�er an unbounded delay.Proof sketh: The reason for this is that if a job is not the �rst in the queue, new jobsthat arrive later may skip it in the queue. While suh jobs are guaranteed not to delay the�rst job in the queue, they may indeed delay all other jobs. This is the reason that thesystem annot predit when a queued job will eventually run. An example is shown in Fig.3: the bak�ll job does not delay the �rst job in the queue, but it does delay the seondjob. The length of the delay depends on the length of the bak�ll job, whih in priniple isunbounded.In pratie, though, the job at the head of the queue only waits for urrently runningjobs, so if there is a limit on job runtimes then the bound on the queueing time is the produtof this limit and the rank in the queue. But even without suh a bound, we still have:Property 2 There is no starvation.Proof sketh: The queueing delay for the job at the head of the queue depends only onjobs that are already running, beause bak�lled jobs will not delay it. Thus it is guaranteedto eventually run (beause the running jobs will either terminate or be killed when theyexeed their delared runtime). Then the next job beomes �rst. This next job may havesu�ered various delays due to jobs bak�lled earlier, but suh delays stop aumulating oneit beomes �rst. Thus it too is guaranteed to eventually run. The same arguments showthat every job in the queue will eventually run.7



As noted, EASY sari�es preditability for potentially improved utilization, by usingmore aggressive bak�lling. However, it is not lear that inreasing themomentary utilizationat a given instant also ontributes to the overall utilization over a long time, and ounterexamples an be onstruted. Therefore detailed simulations are required to evaluate thereal ontribution of this approah. The results of suh simulations are presented next.3 Experimental Results3.1 MethodologyThe experiments are based on an event-based simulation, where events are job arrival andtermination. Upon arrival, the sheduler is informed of the number of proessors the jobneeds, and its estimated runtime. It an then either start the job's simulated exeution,or plae it in a queue. Upon a job termination, the sheduler is noti�ed and an sheduleother queued jobs on the freed proessors. The runtime of jobs is part of the input to thesimulation, but is not given to the sheduler. It is assumed that the runtime does not dependin any way on sheduling deisions.The workloads used to drive the simulations were the following:� Traes of the jobs submitted to the following superomputers:CTC : The Cornell theory Center 512-node IBM SP2 (79296 jobs from July 1996 toMay 1997)KTH : The Swedish Royal Institute of Tehnology 100-node IBM SP2 (28490 jobsfrom Otober 1996 to August 1997)SDSC : The San-Diego Superomputer Center 128-node IBM SP2 (67665 jobs fromApril 1998 to April 2000)Par : The San-Diego Superomputer Center 416-node Intel Paragon (115595 jobsfrom January 1995 to Deember 1996)CM5 : The Los Alamos National Lab 1024-node Connetion Mahine CM-5 (201387jobs from Otober 1994 to September 1996)� Workload models developed based on these and other traes:Feitelson : a general model based on data from 6 di�erent traes, inluding CTC andPar above [4℄ (350000 jobs)Jann : a model developed spei�ally for the CTC trae [14℄ (100000 jobs)All these workloads are available on-line from the Parallel Workloads Arhive [22℄. Only the�rst three logs ontain atual user estimates of runtime. In other ases, aurate estimatesare assumed (that is, the atual runtime is used for the estimate).Traes are simulated using the exat data provided, with possible modi�ations as noted(e.g. to hek the impat of di�erent estimates of runtime). For models, the load on thesimulated system is modi�ed by multiplying the interarrival times by a ertain fator. For8



example, if by default the model produes a load of 0.688, we an reate a higher load of0.8 by multiplying all interarrival times by a fator of 0:6880:8 = 0:86. Using di�erent fatorsenables the funtional relationship of performane on load to be measured.The performane metris used are the average response time and the average boundedslowdown. Slowdown is response time normalized by running time. Bounded slowdowneliminates the emphasis on very short jobs due to having the running time in the denominator[9℄; a threshold of 10 seonds was used. For the reord, the equation isb sld = 8>>>>><>>>>>: Tw + TrTr if Tr > 10Tw + Tr10 otherwisewhere b sld is the bounded slowdown, Tr is the job's runtime on a dediated system, andTw is the job's waiting time. We also olleted data on the waiting time; the results weresimilar.When using models, 90% on�dene intervals for the response time were alulated usingthe bath means method [13℄. Eah bath size was 3333 job terminations, with the �rstbath disarded to aount for warmup e�ets (for the Jann model, bathes were just under1000 jobs). The simulation ontinued until any of the following three onditions was met:100 bathes were ompleted, or the on�dene interval was smaller than 5% of the mean,or the mean response time exeeded a ertain high threshold (30000 seonds, determinedexperimentally to be where it starts to shoot up). In pratie, it turned out that most ofthe simulations took 100 bathes and ahieved an auray of about 6{9%.3.2 The ResultsThe results of simulations using the two models are presented in Fig. 4. They indiate thatthe relative performane of EASY and onservative bak�lling depends on the workloadused and on the performane metri! Spei�ally, aording to the Feitelson model (F), bothshemes are pratially idential. Aording to the Jann model (J), EASY has better (lower)average response times under high loads, but slightly worse (higher) bounded slowdown.The results for the atual workload traes are reported for eah month individually, soas to reate multiple data points for somewhat di�erent load onditions. They are shown inTable 1. Again, there is a di�erene between the di�erent workloads and metris. In general,the SP2 workloads favor the EASY bak�lling over onservative bak�lling. The only asein whih onservative is a possible ontender is when using the bounded slowdown metriand the KTH trae.The non-SP2 traes seem to also favor EASY bak�lling when measured by the response-time metri, but not for the bounded slowdown metri. Using the Par trae leads to inon-lusive results for this metri. With the CM-5 trae, there seems to be a lear preferene foronservative bak�lling.
9
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Figure 4: Comparison of onservative bak�lling and EASY bak�lling using two workloadmodels.3.3 DisussionTo summarize, the simulation results are somewhat inonlusive, and depend on the workloadand metri being used. For most of the ombinations heked, the performane of the EASYbak�lling algorithm was better than that of onservative bak�lling. However, in some asesthe two algorithms seemed to provide similar performane, and in one ase onservative wasbetter than EASY1.To understand the di�erenes in performane, it is instrutive to study the amount ofbak�lling performed (Fig. 5). Aording to the Feitelson model, both do the same amountof bak�lling, whih mathes the predition of equal performane aording to this model.Using the Jann model, we �nd that EASY bak�lls a slightly larger perentage of the jobs1By hane, the preliminary version of this paper used the ombinations that predit equal performane[7℄. 10



response time bounded slowdowntrae mon load jobs EASY ons di�erene EASY ons di�ereneCTC jul 0.539 7950 11394 11605 +1.9% 4.9 5.5 +12.2%aug 0.584 7273 11558 11728 +1.5% 3.3 4.6 +39.4%sep 0.566 6167 14950 15360 +2.7% 5.8 5.9 +1.7%ot 0.547 7257 9963 10298 +3.4% 3.0 3.6 +20.0%nov 0.531 7917 10621 10684 +0.6% 2.0 2.2 +10.0%de 0.514 7896 9173 9445 +3.0% 2.5 4.5 +80.0%jan 0.588 7519 10921 11214 +2.7% 3.3 4.1 +24.2%feb 0.580 8189 12669 12911 +1.9% 3.5 4.4 +25.7%mar 0.591 6915 15646 16766 +7.2% 4.5 6.6 +46.7%apr 0.577 6124 12642 13632 +7.8% 5.3 6.1 +15.1%may 0.555 6082 14512 15506 +6.8% 5.0 8.8 +76.0%KTH ot 0.669 2377 13375 12243 -8.5% 103.4 77.6 -25.0%nov 0.689 2006 18854 18978 +0.7% 152.9 151.6 -0.9%de 0.689 2313 16694 19209 +15.1% 87.1 125.9 +44.5%jan 0.758 2917 15924 17436 +9.5% 95.4 95.7 +0.3%feb 0.798 2942 16959 18534 +9.3% 119.9 115.5 -3.7%mar 0.724 2074 18333 17934 -2.2% 110.7 131.2 +18.5%apr 0.720 2853 14825 17260 +16.4% 60.7 105.4 +73.6%may 0.678 4066 11055 11179 +1.1% 77.3 69.0 -10.7%jun 0.743 2715 14789 14782 -0.0% 33.6 31.4 -6.5%jul 0.620 2180 17996 18226 +1.3% 35.9 36.1 +0.6%SDSC may 0.621 2755 12711 13189 +3.8% 23.1 21.8 -5.6%jun 0.733 2478 12713 13243 +4.2% 13.9 14.2 +2.2%jul 0.749 2813 13851 14683 +6.0% 23.0 43.5 +89.1%aug 0.858 3540 23243 26087 +12.2% 34.3 36.4 +6.1%sep 0.712 12646 7197 7738 +7.5% 20.4 21.1 +3.4%ot 0.870 4534 23146 22077 -4.6% 82.3 79.1 -3.9%nov 0.678 3103 10927 12309 +12.6% 33.9 48.0 +41.6%de 0.765 2896 17884 19080 +6.7% 45.2 45.5 +0.7%jan 0.829 2791 22374 23553 +5.3% 75.1 78.8 +4.9%feb 0.878 2703 26671 34586 +29.7% 119.9 181.6 +51.5%mar 0.830 2946 27144 32519 +19.8% 117.5 115.0 -2.1%apr 0.861 3684 20486 22027 +7.5% 94.9 78.7 -17.1%may 0.875 2535 33708 42438 +25.9% 121.5 151.3 +24.5%jun 0.854 2469 45360 57052 +25.8% 137.4 152.8 +11.2%jul 0.912 1265 55977 86264 +54.1% 206.0 259.4 +25.9%aug 0.909 1902 46507 64178 +38.0% 238.5 295.5 +23.9%sep 0.890 2162 38132 52325 +37.2% 98.6 111.1 +12.7%ot 0.872 1950 36544 42882 +17.3% 137.2 158.3 +15.4%nov 0.926 1988 48851 64493 +32.0% 271.2 339.8 +25.3%de 0.855 1733 35331 46306 +31.1% 215.7 237.4 +10.1%jan 0.907 1499 38679 48489 +25.4% 103.8 134.0 +29.1%feb 0.920 1128 59197 75950 +28.3% 81.2 116.1 +43.0%mar 0.854 1199 44866 47946 +6.9% 139.7 98.8 -29.3%apr 0.858 946 48279 54548 +13.0% 131.6 156.5 +18.9%Table 1: (a)Simulation results for the three IBM SP2 trae �les. Di�erenes denote thehange when swithing from EASY to onservative.than onservative bak�lling. However, the simulations based on the traes suggest thatthe amount of bak�lling performed is similar, and in one ase (SDSC), onservative evenperforms more bak�lling but ahieves worse results. Thus it is not a question of how muhbak�lling is done, but more of whih jobs are bak�lled.We are therefore left with a unique situation in whih the workloads ditate the results(the only previous study to systematially hek the inuene of the workload onluded that11



response time bounded slowdowntrae mon load jobs EASY ons di�erene EASY ons di�erenePar jan 0.547 5289 6844 7115 +4.0% 78.8 88.9 +12.8%feb 0.563 4809 8113 8353 +3.0% 60.4 63.9 +5.8%mar 0.686 5084 8361 9075 +8.5% 92.9 103.4 +11.3%apr 0.604 10685 4120 3910 -5.1% 64.7 43.1 -33.4%may 0.736 7251 9637 9322 -3.3% 146.3 105.5 -27.9%jun 0.573 6043 6752 6720 -0.5% 72.4 75.3 +3.9%jul 0.626 4875 6338 6785 +7.1% 38.5 52.9 +37.6%aug 0.602 3072 7349 7578 +3.1% 20.6 24.8 +20.7%sep 0.676 3300 7169 7210 +0.6% 28.0 28.0 +0.1%ot 0.590 6038 3054 3167 +3.7% 26.5 32.6 +22.9%nov 0.720 12116 3328 3359 +0.9% 95.7 101.1 +5.6%de 0.595 7495 3244 3207 -1.1% 56.5 53.6 -5.0%jan 0.679 2856 8848 8940 +1.0% 43.2 39.5 -8.6%feb 0.678 5312 7382 7586 +2.8% 154.9 170.4 +10.0%mar 0.634 3781 10255 10964 +6.9% 35.0 44.8 +28.1%apr 0.764 4115 13059 10890 -16.6% 326.7 145.2 -55.6%may 0.742 3255 9328 9489 +1.7% 7.9 8.7 +10.3%jun 0.701 3824 14580 14045 -3.7% 126.2 56.5 -55.2%jul 0.658 2562 12558 12478 -0.6% 23.2 20.7 -10.7%aug 0.578 2542 7698 7908 +2.7% 8.7 17.5 +102.7%sep 0.570 2050 10568 10693 +1.2% 41.0 36.2 -11.7%ot 0.537 2670 10051 10030 -0.2% 19.7 15.2 -22.7%nov 0.429 2831 7978 7964 -0.2% 1.9 1.5 -19.9%de 0.430 2123 13078 13108 +0.2% 1.5 1.8 +21.1%CM5 ot 0.686 5746 5564 5543 -0.4% 30.7 27.2 -11.2%nov 0.884 6069 20270 20519 +1.2% 102.6 84.3 -17.8%de 0.700 4702 7856 8011 +2.0% 32.9 31.5 -4.3%jan 0.647 3323 7433 7811 +5.1% 24.2 25.9 +7.2%feb 0.711 4413 8211 8295 +1.0% 28.8 27.3 -5.1%mar 0.673 4754 5643 5577 -1.2% 24.7 20.3 -17.9%apr 0.782 4747 7894 8023 +1.6% 34.6 26.8 -22.7%may 0.779 4717 23954 22673 -5.3% 148.2 125.5 -15.3%jun 0.886 5608 18093 18735 +3.5% 124.5 107.3 -13.8%jul 0.902 6457 17679 21747 +23.0% 135.8 112.4 -17.2%aug 0.730 6181 6284 6160 -2.0% 101.6 44.3 -56.4%sep 0.802 5678 17678 17467 -1.2% 110.0 89.9 -18.2%ot 0.788 5087 6109 6136 +0.4% 39.2 31.1 -20.6%nov 0.818 3706 8411 8919 +6.0% 28.2 26.9 -4.9%de 0.703 4003 6274 6457 +2.9% 22.5 25.0 +11.4%jan 0.601 4110 4169 4217 +1.2% 16.1 14.2 -12.0%feb 0.461 3842 3358 3406 +1.4% 9.6 8.5 -10.9%mar 0.715 4111 5763 5758 -0.1% 20.1 18.9 -6.3%apr 0.788 4300 5616 6184 +10.1% 28.9 36.0 +24.7%may 0.807 4832 9030 10038 +11.2% 54.7 67.3 +22.9%Table 1: (b)Simulation results for the non-SP2 trae �les.workloads a�et the quantitative results, but not the qualitative results [18℄). The problemis that these workloads are rather omplex, and it is not lear exatly what features arethe deisive ones. We therefore turn to Talby et al. [26℄, who made a detailed statistialomparison of workloads and models. That work indiates that the CTC and KTH traesand the Jann model are indeed similar to eah other, and distint from other workloads suhas the CM5 and Par traes and the Feitelson model (the SDSC trae was not inluded in theTalby paper). Spei�ally, the SP2 workloads seem to have higher than average runtimesand lower than average degrees of parallelism. This also mathes the ontraditory �ndings12
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Figure 5: The amount of bak�lling done by the two shemes.aording to the Jann model, whih indiate that EASY is seletive with respet to job size.We have veri�ed the observations regarding the di�erenes among the workloads by plot-ting the umulative distributions of runtimes for di�erent job sizes for all the di�erent traesand models. Fig. 6 shows a subset, inluding the omparison of the Feitelson and Jannmodels with the CTC trae. We next tried to verify whether these harateristis of theworkloads are indeed responsible for the distint behavior of the bak�lling algorithms. Todo so, we modi�ed the Feitelson model so that the distributions of runtimes will mimi thoseof the CTC trae. This inluded two distint modi�ations: hanging the distribution ofjob sizes to emphasize small jobs (denoted by Fs), and hanging the distribution of run-times to emphasize longer jobs (Fl). The ombination of these modi�ations (Fsl) leads todistributions that are very lose to both the CTC trae and the Jann model (Fig. 6).The simulation results were that indeed both the modi�ations are needed (see the Fs,Fl, and Fsl graphs in Fig. 7). The modi�ations to the runtime distribution alone made asmall di�erene to the response time measurements. Adding the modi�ations to the sizedistribution enlarged the di�erene onsiderably. The modi�ations to the size distributionalone were enough to make a di�erene to the bounded slowdown measurements. However,the di�erenes between the EASY and onservative shedulers on the modi�ed Feitelsonmodel were still smaller than on the Jann model. It therefore seems that there are someother workload di�erenes at play as well. We heked and refuted two additional andidates:the distribution of interarrival times, whih turned out to be very similar for the two models,and the feature of repetitive exeution of jobs that is present only in the Feitelson model.4 User Estimates of RuntimeThe onept of bak�lling is based on estimates of job runtimes. It has been assumed thatusers would be motivated to provide aurate estimates, beause jobs would run faster if13
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Figure 6: Comparisons of umulative runtime distributions of jobs with di�erent sizes in theFeitelson, Jann, and CTC workloads.the estimates are tight, but would be killed if the estimates are too low. However, thisassumption needs to be heked.In order to study user runtime estimates we used workload data from the three IBM SP2installations mentioned above. The workload data omes in the form of a log of all jobsexeuted on the mahine during a ertain period. The information on eah job inludes theestimated runtime provided by the user upon submittal, and the time the job atually ran.14
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CTC KTH SDSCparameter number % number % number % ommenttotal jobs 79296 28490 67665killed jobs 16671 21.0 7948 27.9 11175 16.5 % of total100% peak 4806 6.1 3601 12.6 3006 4.4 % of totalkilled 4547 94.6 3590 99.7 2855 95.0 % of 100% peak0% peak 9027 11.4 2333 8.2 9553 14.1 % of totalzero jobs 6374 22.4 % of total<90se jobs 18589 23.4 9361 32.9 19719 29.1 % of total<2hr jobs 35541 44.8 16128 56.6 43515 64.3 % of totalTable 2: Parameters of the workloads and numerial values for omponents of the histogramsin Fig. 8.The rest of the distribution is quite at, but with somewhat higher values at low perent-ages, and another peak at zero, whih is obviously bad. The CTC and SDSC data indiatesthat many of the jobs in the zero peak were killed, and the rest of the exess jobs at lowperentages were very short (less than 90 seonds). The KTH data ontains additional in-formation: it shows that all the extra jobs at low perentages, inluding the zero peak, arewhat we all zero-length jobs. These are jobs in whih the �rst node was dealloated beforethe last node was alloated, so there was no time at whih all the nodes were being usedsimultaneously. This situation most probably indiates that the job failed immediately uponloading. We onjeture that the situation on the other two systems is similar. Thus theextra jobs at low perentages and the zero peak provide testimony about the diÆulty ofgetting jobs to run, but do not say muh about user estimates. On a related vein, about 8%of the jobs in the SDSC data were removed before they even started to run; these were notinluded in the analysis reported here.Conentrating on the jobs that ran for 90 seonds or more and terminated normally,we �nd that the histogram is quite at. The onlusion is that user estimates are atuallyrather poor. However, it should be noted that they do provide a good upper-bound on therunning time (only a relatively small fration of the jobs were killed beause they exeededtheir estimated time). The onlusion is that users �nd the motivation to overestimate sothat jobs will not be killed muh stronger than the motivation to provide aurate estimatesto enable the sheduler to perform better paking.The same data is shown again in the satter plot on the right of the �gure, whih showspairs of estimated runtime and the orresponding atual runtime (only jobs requesting upto 2 hours are shown, whih is about half of the jobs | see \<2hr" line in Table 2). Thisshows that users often, but not always, round their estimates to a \nie" number (typiallymultiples of 5 minutes, or, for longer jobs, multiples of 10 or 30 minutes). However, despitethe relatively wide repertoire of estimates that are used, all of them are equally inaurate:for every popular estimate, there is a nearly ontinuous line of dots representing jobs withruntimes ranging uniformly from zero up to the estimate. The system typially kills jobsis atually done. Indiret data from KTH is that 793 of the jobs killed by the system had requested 4 hours,whih is the limit imposed during the daytime. As the peak at 100% ontains 3215 jobs, this leads to amaximal estimate of about one job in four. 17



runtime estimatesoriginal uniform in [r; f � r℄metri trae f = 1 f = 2 f = 4 f = 11 f = 31 f = 101 f = 301using EASY bak�llingbounded CTC 3.82 4.10 3.12 3.04 3.02 3.06 3.03 3.01slowdown KTH 84.0 67.6 67.0 62.7 63.7 64.7 64.9 65.8SDSC 84.2 70.1 72.7 76.3 76.3 78.9 82.0 83.9response CTC 12053 12234 11976 11923 11896 11895 11889 11890time KTH 15568 15001 14717 14645 14880 15028 15110 15127SDSC 24519 21976 21801 22451 23148 23977 24739 24978using onservative bak�llingbounded CTC 5.00 3.71 2.62 2.39 2.38 2.37 2.40 2.37slowdown KTH 89.7 68.7 50.0 49.3 47.5 47.4 49.4 49.8SDSC 96.0 68.3 56.0 58.9 63.9 63.3 67.8 67.3response CTC 12495 12639 12201 12062 11983 11965 11964 11964time KTH 16288 16098 14940 14878 15095 15391 15538 15651SDSC 29422 23239 21550 22800 25220 29284 32999 32862Table 3: The e�et of user estimate quality on performane.that do not terminate by the estimated time, leading to the triangular shape of the satterplot.4.2 Are Good Estimates Really Needed?In order to hek the sensitivity of the bak�lling algorithms to suh poor estimates, wetested them with estimates of various qualities. Using the three workload �les, we generatednew user estimates that (for eah job) are hosen at random from a uniform distribution inthe range [r; f �r℄, where r is the job's atual runtime, and f is a \badness" fator: the largerf , the less aurate the estimates. f = 1 indiates ompletely aurate estimates. For eahvalue of f , 10 measurements were made with di�erent random number generator seeds. Thesame set of 10 seeds was used for the di�erent traes and di�erent fs.The results are shown in Table 3, together with the results of using the original userestimates from the traes. Two onlusions an be reahed:� Aurate estimates are not neessarily the best. It seems that if the estimates aresomewhat inaurate, this gives the algorithms some exibility that leads to bettershedules. This result has sine been orroborated by Zotkin and Keleher [27℄.� Our model of inauray does not apture the full badness of real user estimates. Theresults for the original estimates are typially worse than those with our randomizedestimates.4.3 Modeling User Estimates of RuntimeThe seond onlusion motivated a searh for a better model of the relationship betweenthe atual runtime of jobs and the estimates produed by users. Suh a model is neededfor two reasons. First, it is useful as part of a general workload model that an be usedto study di�erent job sheduling shemes. For example, this would allow the simulations18



reported in Setion 3 to be repeated with realisti user estimates, rather than having to as-sume ompletely aurate estimates (whih we now know probably lead to overly pessimistiperformane results). Seond, an aurate model is required in order to study whether andhow the inauray of user estimates an be exploited by the sheduler.The proposed model is quite simple. The at histogram of Fig. 8 implies thatTr=Te = ui.e. that the ratio of the atual runtime to the estimate an be modeled as a uniformlydistributed random variable. By hanging sides we getTe = Tr=uso given a runtime Tr we an generate an estimate Te that, while unrelated to the atual userestimate for this partiular job, is expeted to lead to the same general statistis of all theestimates taken together. To omplete the model we just need to note that in about 10% ofthe jobs the estimate is atually too small, and for short jobs the estimates are too large bya fator of about 10. The �nal model is therefore1. With probability of 10% return 0:99� Tr2. Otherwise reate an estimate of Tr=u, where u is uniform in the range [0; 1℄.3. If Tr < 90, multiply the estimate by 10.4. If the estimate is outrageous, trunate it to some upper bound (e.g. 24 hours).4.4 The Alternative: Estimates Based on Historial InformationIt is well known that the workload on parallel superomputers is highly repetitive. Thismeans that the same users tend to run the same programs over and over again, sometimes upto hundreds of exeutions in a row [8, 3℄. It stands to reason that suh repeated exeutions ofthe same appliation would have highly orrelated runtimes, and indeed several studies haveshown that it is possible to derive rude estimates of runtimes using suh information [10, 2,24℄. However, these studies were done in a ontext that does not penalize underestimation,as is the ase with bak�lling (where jobs that overrun their estimated time are killed). Inthis ontext, an estimation method that tends to overestimate is preferred, even if it is lessaurate in absolute terms.To estimate runtimes based on historial information one must �rst be able to identifyrepeated exeutions. For this purpose, we use the ombination of appliation (that is, ex-eutable �lename), user, and number of nodes used as an identi�er [8, 10℄. The estimateis then alulated as the average of previous runs, plus 112 times their standard deviation.Note that this an be done based on storing only three numbers: the number of previousexeutions, the sum of their runtimes, and the sum of their runtimes squared. If no spei�previous information is available, data for the whole workload is used as a onservative upperbound. Finally, in order to avoid stale data, we disard historial information if it is morethan a week old and start from srath. 19
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requested timeFigure 9: Quality of system-generated estimates of runtime.To evaluate the e�etiveness of this approah we used it to estimate the runtimes of allthe jobs that were not killed in the CTC workload, and ompared the estimates to the atualruntimes as we did for the atual user estimates in Fig. 8. Of the 62630 jobs, there were45159 (72.1%) for whih data was available. The resulting histogram and satter plot areshown in Fig. 9, and indiate that the estimates have a better pro�le than those generatedby users. However, 12001 jobs (19.2%) su�ered from an underestimate, and would have beenkilled by the sheduler. About half of these (6240, or 10.0%) were jobs for whih previousinformation was available.It is easy to redue the number of jobs that reeive underestimates by using a moreonservative approah, e.g. the average plus 3 standard deviations. However, this reduesthe quality of the estimates and leads to a relatively at histogram. Thus it seems thatthere is a tradeo� between auray and the danger of having jobs killed. In any ase, giventhe large fration of jobs that are underestimated, it seems that using system-generatedestimates for bak�lling is not a feasible approah.4.5 Does it Help to Know that Estimates are Inaurate?Based on a repeated exeution of experiments suh as those desribed in Setion 4.2, Zotkinand Keleher have proposed that the performane of bak�lling shedulers an be improvedby simply multiplying user estimates by a fator of 2 or more, thus reating looser estimatesthat give the sheduler more exibility. However, as we noted above, real user estimatesprodue worse results than the results produed by aurate runtimes multiplied by a fator.Therefore it is not obvious that this sheme will work with real user estimates.To evaluate how well this idea works, we simulated the exeution of the three SP2 work-loads under EASY bak�lling and onservative bak�lling, with both the original user esti-mates and these estimates multiplied by a fator of two. The results for average responsetime and average bounded slowdown are shown in Table 4. They indiate that in generalmultiplying the user estimates by two does indeed improve the performane. In the ase of20



EASY onservativemetri trae orig �2 di� orig �2 di�bounded KTH 84.0 80.0 -4.8% 89.7 69.1 -23.0%slowdown CTC 3.8 3.5 -7.9% 5.0 4.1 -18.0%SDSC 84.2 88.1 +4.6% 96.0 82.4 -14.2%response KTH 15568 15060 -3.3% 16288 15147 -7.0%time CTC 12053 11944 -0.9% 12495 12291 -1.6%SDSC 24519 24134 -1.6% 29422 26222 -10.9%Table 4: E�et of multiplying user estimates by two.onservative bak�lling as measured by the bounded slowdown metri, the improvement isquite signi�ant.5 ConlusionsBak�lling is advantageous beause it provides improved responsiveness for short jobs om-bined with no starvation for long ones. This is done by making proessor reservations for thelarge jobs, and then allowing short jobs to leapfrog them if they are expeted to terminatein time. The expeted termination time is based on user input.SP2 installations using EASY, whih introdued bak�lling, report muh improved sup-port for large jobs relative to early versions of LoadLeveler [19, 15℄. However, EASY su�ersfrom some unertainty regarding the time at whih a job will run, beause of its aggressivebak�lling algorithm. We showed that it is possible to add preditability by using a moreonservative form of bak�lling, in whih short jobs an start running provided they do notdelay any previously queued job.The most interesting aspet of the performane evaluation of this idea is that the resultsdepend on the workload and metri. Spei�ally, we found that when using workloadsharateristi of SP2 sites, the use of onservative bak�lling typially omes at the ostof degraded performane; this was not so pervasive for other workloads. This leads tothe onjeture that the workload at the SP2 sites may have evolved to math the EASYbak�lling algorithm used at these sites. A more detailed study of the workload attributesis now being onduted to try and verify this onjeture.In addition, we showed that user estimates of runtime are quite bad, but that in fatthis has the potential to be bene�ial, beause bak�lling works better if it is allowed someexibility. Even a simple approah of just multiplying user estimates by a onstant leads toimprovements. More sophistiated approahes, suh as that reently proposed by Talby etal. [25℄, may be even better.AknowledgementsThis researh was supported by the Ministry of Siene and Tehnology and by the Is-rael Siene Foundation founded by the Israel Aademy of Sienes and Humanities. Theworkload log from the CTC SP2 was graiously provided by the Cornell Theory Center,a high-performane omputing enter at Cornell University, Ithaa, New York, USA. The21
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