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Abstract

Virtual machine monitors, especially when used for
server consolidation, need to enforce a predefined shar-
ing of resources among the running virtual machines.
We propose a new mechanism for doing so that pro-
vides improved pacing in the face of heterogeneous
allocations and priorities. This mechanism lends from
token-bucket metering and from virtual-time schedul-
ing, and prioritizes the different clients based on the di-
vergence between their desired allocations and the ac-
tual consumptions. The ideas are demonstrated by im-
plementations for the CPU and networking subsystems
of the Linux kernel. Notably, both use exactly the same
basic module; future plans include using it for disk I/O
as well.

Categories and Subject Descriptors C.2.3 [COMPUTER-
COMMUNICATION NETWORKS]: Network Operations—
Network management; D.4.1 [OPERATING SYSTEMS]:
Process Management—Scheduling; K.6.2 [MANAGE-
MENT OF COMPUTING AND INFORMATION SYS-
TEMS]: Installation Management—Pricing and re-
source allocation

General Terms Design, management, performance

Keywords Virtual machine, fair share, resource allo-
cation
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1. Introduction

A hypervisor or virtual machine monitor (VMM) may
seem to have similar responsibilities to an operating
system: it abstracts the hardware and performs resource
management, including scheduling the different virtual
machines. However, the context is actually quite differ-
ent. Operating systems’ schedulers typically try to op-
timize performance objectives, such as response time,
based on knowledge about each process’s behavior. A
hypervisor, on the other hand, is concerned with virtual
machines that may each run a mixture of diverse pro-
cesses that are unknown to the hypervisor. And its goal,
especially in server consolidation scenarios, is more
typically to enforce a pre-defined allocation of the re-
sources.

Controlling the relative allocation of resources to
contending processes (or virtual machines) is not new.
Such “fair share” scheduling of the CPU is typically
done based on variants ofvirtual time. Allocations of
network bandwidth are typically done using variants
of leaky bucket or token bucket approaches (all these
are explained in detail below). Our approach combines
these techniques into “resource sharing virtual time”
scheduling (abbreviated RSVT). It includes metering
of the allocation to each process on one hand, and
scheduling so as to better pace the utilization of the
allocated resources on the other.

The next section motivates the work by explaining
the need for supporting predefined allocations, espe-
cially in virtualization scenarios. Section 3 then de-
scribes previous work and leads up to our extensions,
which are delineated in Section 4. This is followed by
a description of the implementation in the Linux ker-
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nel in Section 5, and by an experimental evaluation in
Section 6. Section 7 presents the conclusions.

2. Motivation and Context

We are now witnessing the second wave of virtualiza-
tion. The first wave occurred about forty years ago and
led to the widespread use of virtualization as a means
to share large scale mainframe platforms [12]. The sec-
ond wave, started about ten years ago, concerns data-
center servers and desktop PCs, which are now pow-
erful enough to support multiple virtual machines on a
single physical host. It is driven by the utility of virtu-
alization for server consolidation, flexible provisioning
of resources, and support for testing and development
of new facilities.

Server consolidation is the practice of migrating
legacy servers from distinct physical machines that
possibly use different operating systems to virtual ma-
chines on a single more powerful platform. This re-
duces operational expenses by saving the need to main-
tain and support all those legacy systems, reducing the
floor footprint, and reducing cooling requirements. It
is especially beneficial when it increases server utiliza-
tion, e.g. if the legacy servers are not highly utilized,
but when consolidated they lead to a reasonably high
utilization of the new server.

Another important benefit of consolidation is that it
promotes flexible provisioning of resources. With con-
solidation, the resources provided to each server are
not fixed. Rather, the different servers compete for re-
sources, which are provided by the underlying virtual-
ization infrastructure. It is then possible to control the
resources provided to each one, and assign them ac-
cording to need or the relative importance of the differ-
ent servers. Moreover, this partitioning of the resources
can be changed easily to reflect changing conditions.

The virtualization infrastructure is therefore found
to assume many of the basic responsibilities of an op-
erating system. However, the situation is actually some-
what different. One difference is that hypervisors typ-
ically operate with far less information than an oper-
ating system. An operating system mediates all inter-
actions with hardware devices for all processes, where
the processes themselves are rather simple in structure.
Therefore the operating system can use a pretty simple
model of operation, e.g. blocking a process that has re-
quested an I/O operation. But a hypervisor is one level
lower down, and supports a virtual machine that in turn

runs a full operating system which may support many
processes. When some process in the virtual machine
requests an I/O operation, this does not reflect the ac-
tivity of the virtual machine as a whole — only the ac-
tivity of that process, which is not even directly known
by the hypervisor.

Another difference is that the goals are typically dif-
ferent. Operating systems attempt to optimize metrics
such as response time of interactive processes, while at
the same time providing equitable service to all the pro-
cesses. With hypervisors, it is more typical to try and
control the resource allocation, and ascertain that each
virtual machine only gets the resources that it deserves.
To complicate matters, this has to be done in multiple
dimensions, reflecting the different devices in the sys-
tem: the CPU, the disks, and the network connectivity.
The question is then what does it mean to provide a
certain share of multiple resources, when the processes
running on each virtual machine actually require differ-
ent combinations of resources.

We are working on a global scheduling framework
that is designed to answer this question. It is based on
the combination of two basic ideas: the use of fair share
scheduling to control relative resource allocation, and
the identification of the system bottleneck device as the
locus where such control should be exercised [9]. The
present paper reports our progress in the first compo-
nent of this work, namely the RSVT scheduler. Impor-
tantly, we wish to use the same scheduler to control
all the relevant resources, as different resources may
become the system bottleneck at different times. We
therefore designed and implemented a generic schedul-
ing module, which can be used as the policy component
of different resource management frameworks. At this
stage, the implementation in the Linux kernel supports
CPU and network scheduling. In future work we in-
tend to migrate it to a virtualization environment such
as KVM, and add disk scheduling.

3. Related Work

The requirement for control over the allocation of re-
sources given to different users or groups of users
has been addressed in several contexts. It is usually
called “fair-share scheduling” in the scheduling litera-
ture, where “fair” should be understood as according
to each user’s due rather than as equitable. Early im-
plementations were based on accounting, and simply
gave priority to users who had not yet received their
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due share at the expense of those that had exceeded
their share [16, 17]. In Unix systems it has also been
suggested to manipulate each process’s nice value to
achieve the desired effect [8, 15]. Simpler and more di-
rect approaches include lottery scheduling [27] or using
an economic model [26], where each process’s priority
(and hence relative share of the resource) is expressed
by its share of lottery tickets or capital.

Another approach that has been used in several im-
plementations is based on virtual time [2, 7, 22]. The
idea is that time is simply counted at a different rate
for different processes, based on their relative alloca-
tions. Our RSVT scheduler falls in this category; it
bases scheduling decisions on the difference between
the resources a process has actually received and what
it would have received if the ideal resource sharing dis-
cipline had been used [11]. A similar approach was
used in [4].

Focusing on virtual machine monitors, Xen uses
Borrowed Virtual Time (BVT). VMware ESX server
uses weighted fair queueing or lottery scheduling. The
Virtuoso system uses a scheduler called VSched that
treats virtual machines as real-time tasks that require a
certain slice of CPU time per each period of real time
[18, 19]. Controlling the slices and periods allows for
adequate performance even when mixing interactive
and batch jobs.

Control over allocations of network bandwidth is
usually combined with traffic shaping, i.e. the reduction
of variability in bandwidth usage. One way to achieve
this is the leaky bucket algorithm. The bucket figura-
tively represents a buffer where packets are stored when
the source creates them too quickly and they cannot
be transmitted immediately. Thus data flows into the
bucket at a variable rate, but flows out at a steady rate.
Each sender has its own bucket, where the size of the
hole in the bucket represents its bandwidth allocation.
Additional packets that arrive when the bucket is al-
ready full are called “nonconforming”, and are typi-
cally discarded.

An alternative is to use a token bucket, which works
the other way around: it stores tokens that allow pack-
ets to be sent (similar to the economic framework men-
tioned above). When a packet arrives, it will be sent if a
token is available; otherwise it is nonconforming (and
thus needs to be queued in a buffer). Tokens are added
to the bucket at a steady rate, and removed whenever
packets are sent. Thus a source may accumulate tokens

when it is idle, and use them at a high rate (higher than
their arrival rate) when it needs to transmit. As a result
the momentary bandwidth of a source may surpass its
average allocation, but only for a limited time.

Leaky and token buckets limit the rate of individual
sources, but do not specify how they are multiplexed.
Using FCFS with these algorithms may still lead to
overload and is subject to manipulations. This was im-
proved by Nagle’s “fair queueing” [21], in which the re-
quests of each source are kept in a separate queue, and
these queues are served in round robin manner. How-
ever, given that packets may have different sizes, this
may lead to deviations from the intended bandwidth al-
location. Demers et al. therefore suggested an approx-
imation of round-robin at thebyte level [6]. Concep-
tually this uses a counter of how many byte-by-byte
rounds have elapsed, which serves as a timepiece (it is
actually identical to the idea of virtual time mentioned
above). Using this, one can find the round at which a
packet will finish transmission: it is the sum of its start
time and length, where the start time is the max of its
arrival time and the end of the previous packet from
the same source. As the counter is monotonically in-
creasing, the order of finish times as counted in rounds
corresponds to their order in real time. The algorithm
then is to calculate these finish times for all sources,
and select to transmit the packet with the earliest finish
time. It is also possible to provide variable allocations
by modifying the count of rounds needed to transmit,
leading to “weighted fair queueing”.

The main drawback of all the above approaches is
that they focus on one resource — either the CPU
or the network. Similarly, there has been interesting
work on scheduling bottleneck devices other than the
CPU, but this is then done to optimize performance of
the said device and not to enforce a desired allocation
[1, 14, 25]. This raises the question of the interaction
between devices, e.g. the effect of CPU scheduling on
I/O [23], or the prioritization of VMs that do I/O so as
not to cause delays and latency problems [13]. But such
interactions may naturally interfere with the desired
allocations. The work presented here is part of a larger
project to achieve a global scheduling scheme based
on identifying the bottleneck device at each instant and
using it to dictate the allocations [9].
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4. The RSVT Scheduler

In general, scheduling combines resource allocation
and sequencing. RSVT, introduced in [11]1, tackles
this combination. Like other virtual time scheduling
schemes it controls allocations by making time pass at
a different rate for different clients2, such that the rate
reflects the allocation. The sequencing is done by se-
lecting the client that is most “behind its time” to run
next (e.g. [22]). RSVT is especially useful for combin-
ing fair shares with pacing. The idea is that rather than
just selecting the client with the biggest lag in virtual
time, we select the one with the biggest difference from
where it was supposed to be if it was advancing contin-
uously. This helps spread out multiple clients with the
same profile [11].

Unlike some other virtual time schemes, RSVT has
a concept of allocations. This raises the question of
what to do when a client becomes inactive: should its
allocation continue to grow? We handle this as follows.
First, allocations continue to grow for a certain “grace
period” that reflects expected continuity of operation.
Then they are frozen. Finally, the relative allocation is
reset to zero after a long time that reflects the system’s
memory bound. This means that clients that have been
inactive for a long time are simply treated as if they
were new, and their previous history is forgotten.

4.1 Expressing Relative Priorities

There are two ways to express the desired allocations
to competing clients: absolute and relative. Using the
allocation of network bandwidth as a concrete example,
an absolute allocation would be something like “this
client should transmit at 20MB/s”. Such an allocation
is natural when using leaky bucket, token bucket, or
economic models. A relative allocation, on the other
hand, is more like “this client should transmit at double
the rate of that client”. This approach is natural with
lottery scheduling.

RSVT uses the relative approach. Each client is
given a priority, which is expressed as a rate. How-
ever, this is not an absolute rate, but rather a relative
one. Thus if two clients exist and both have a rate of

1 It was originally called PSVT, as it was envisioned in the context
of a single resource: the processor.
2 At the logical level, we will consistently call the entities handled
by the RSVT scheduler “clients”. These clients can actually be
processes, jobs, or virtual machines, depending on context. In the
Linux implementation, they are Linux tasks.

1, they will each get half of the bandwidth. If a third
client is added also with a rate of 1, each of the three
will now get a third of the bandwidth. But if the third
client has a rate of 2, it will get half of the bandwidth,
and the original two clients will each get a quarter.

The reason for preferring the relative approach is
that it facilitates better utilization. With absolute rates,
if the total rates of active clients exceed the capacity
then they cannot be satisfied, and if they fall bellow
the capacity then resources are wasted. Using relative
rates solves these problems [5]. Other solutions, such
as using a large token bucket and allowing a client to
send at a higher rate when there is no competition,
lead to reduced control over the allocations and to the
danger of extended monopolization of the resource by
a single client. Relative rates are also more portable, in
the sense that they remain equally relevant if a different
network is used.

4.2 Interpretation of Virtual Time

As noted above, accounting for resource usage using
virtual time is simpler than using real time [2]. Denote
the consumption by clienti by ci, and its allocation rate
by ri (these and other notations are summarized below
in Table 1). Then by definition

dci

dv
= ri (1)

wherev denotes the virtual time. The relationship be-
tween virtual time and real time is based on the avail-
able physical rateR that is available (e.g. the band-
width of the network), and the allocation rates to the
set of active clientsA:

dv

dt
=

R
∑

j∈A rj
(2)

Putting this together, we find that the rate of consump-
tion by a specific client is proportional to its relative
allocation:

dci

dt
=

ri · R
∑

j∈A rj
(3)

Thus virtual time is indeed a weighted version of real
time, where the weight reflects the relative allocation.
In other words, different clients are accounted for their
resource usage at different rates.

This interpretation of virtual time leads to a very
simple scheduling algorithm [7]: dispatch the client
with the lowest accounted resource consumption. For
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Figure 1. Virtual time scheduling.

example, consider two competing clients, one with an
allocation r1 = 1 and the other with an allocation
r2 = 2. When client 1 runs, it is accounted at full
rate. But when client 2 runs, it is accounted at half rate,
because its allocation is double. Therefore it will get to
run twice as much. This is illustrated in Fig. 1.

The resource rateR is relevant for resources such as
networks or disks, where it reflects the amount of data
transferred per unit time (that is, the bandwidth). In the
case of a CPU it can be taken as 1, since the CPU pro-
vides one second of processing for each second of real
time. For simplicity, we will consider this situation in
the sequel and dropR from the equations. In fact, this
can also be done for any resource — it just means we
schedule and account for “seconds of resource activity”
rather than for “units of resource work done”.

4.3 Concept of RSVT

RSVT is a variation of the virtual time approach. Vir-
tual time scheduling algorithms can be viewed as bas-
ing the relative priority of each client on the difference
between the global real time and its personal virtual
time, which reflects an accounting of its consumption.
However, given that all clients share the same real time,
it is enough to compare their consumptions and select
the lowest one.

RSVT likewise compares two values, but they are
slightly different: we compare each client’s actual con-
sumption with itsideal consumption. The actual con-
sumption grows at a steady rate (equal to real time)
when the client is running, and stays flat when it is not.
The ideal consumption grows steadily at a rate that re-
flects the client’s relative allocation. If the consumption
is ahead of the allocation, the client has a low priority
and other clients should run. But if a client’s consump-
tion lags its allocation, it has a higher priority. In par-
ticular, the client for which the consumption lags the
allocation by the most is the client with the highest pri-
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ideal rate = 2/3
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ideal rate = 1/3
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Figure 2. RSVT scheduling.

ority, and will be selected to run next, as illustrated in
Fig. 2.

An examination of Figs. 1 and 2 shows that in this
case the produced schedule is identical. The differ-
ence between the two approaches is only evident when
several clients have similar profiles and compete with
other clients that have a different one. Let’s consider
a concrete example where two clients have an alloca-
tion r1 = r2 = 1, and a third hasr3 = 2. Virtual
time scheduling will settle into a pattern where the two
low-allocation clients are always executed one after the
other, thus excluding the high-allocation client for 2
time units in a row (top of Fig. 3). This happens be-
cause when the two low-allocation clients have a lower
virtual time than the high-allocation client, scheduling
one of them leaves the other with its low virtual time, so
it will be scheduled next (arrows). RSVT, in contradis-
tinction to the above, will spread them out and give the
high-allocation client better-paced access to the CPU
[11] (bottom of Fig. 3). The reason is that when one
low-allocation client is scheduled to run (arrows from
below), the ideal allocation of the high-allocation client
continues to rise. Therefore by the next scheduling
point the high-allocation client has gained an advan-
tage over the second low-allocation client (arrows from
above).

4.4 RSVT for a Given Set of Clients

More formally, RSVT works as follows. Assume for
the moment that the set of active clientsA is fixed —
all clients arrived some timet0 in the past, they do not
terminate, and they are constantly active in using the
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Figure 3. The advantage of RSVT scheduling in
spreading low priority clients that compete with a high-
priority client.

resource. Each clienti is characterized by its ideal rela-
tive rateri. Assuming constant activity, its ideal alloca-
tion by timet (where obviously we are only interested
in t ≥ t0) is then

ai(t) =
ri

∑
j∈A rj

· (t − t0) (4)

which reflects its relative share of the capacity of the
resource.

At time t, the client’s actual consumption so far will
be denoted byci(t). Its priority is then simply

prii(t) = ai(t) − ci(t) (5)

The scheduler will select the client with the highest
priority. Note that priority may be negative, if a client
happens to consume more than its fair share at some
point in time.

To implement this, we need to be able to calculate
ai(t) andci(t) for all active clients. In principle, these
values need to be updated upon each scheduling event,
to reflect the changes since the last scheduling event.
Note that there are two types of scheduling events:

• A client is selected to use the resource

A set of active clients
ri relative rate of clienti
ai cumulative allocation of clienti
ci cumulative consumption of clienti
T tick period for allocations and timer events
g grace period during which allocations con-

tinue when a client becomes inactive
m rebirth period during which allocations are

retained after a client becomes inactive
b maximal allowed difference between alloca-

tion and consumption

Table 1. Parameters used in RSVT.

• A client stops using the resource, either because it
does not need it anymore at this time or because
another is selected as having higher priority

If the resource is constantly busy, pairs of such events
coincide as one client stops and another is selected. In
such a situation the stop events are redundant and can
be ignored. But if the resource becomes idle, the stop
event is important to note.

Assume that the time now ist, and that the time
of the previous event wastp. If the resource was busy
during this period, assume that clienti has just finished
using it. As all the usage was consumed by clienti, we
update

ci(t) = ci(tp) + (t − tp) (6)

All the other c values remain unchanged, as other
clients did not consume any of the resource in this in-
terval. All cs remain unchanged also if the resource
has been idle in this period; in this case the resources
capacity during the period fromt to tp was wasted.

However, the ideal allocations ofall the clients have
grown by their respective shares. Therefore we should
compute

aℓ(t) = aℓ(tp) +
rℓ

∑
j∈A rj

(t − tp) (7)

for all ℓ ∈ A (including clienti).
Note that in both the above equations the total in-

crement is identical, and stands att − tp. This seems
to imply a nice invariant:

∑
ai =

∑
ci. However, this

is hard to maintain when clients have more dynamic
behavior instead of being able to use the full available
resources all the time.
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4.5 Handling a Changing Set of Clients

Note that the above equations assume that the set of
active clientsA does not change with time. In a real
system, of course, new clients may arrive while oth-
ers depart. In addition, clients may become inactive for
extended periods, i.e. they may refrain from using the
resource which we are scheduling (for example, when
a client is blocked doing I/O it is not contending for the
CPU). This affects the above equations because the rel-
ative allocations depend on

∑
j∈A rj . Another question

is whether to retain the client’s historical consumption
data for when it will become active again.

One possible approach to handling this issue is to
divide the timeline into segments with persistent active
sets. Thus a new segment starts whenever any of the
following events occurs:

• A new client arrives

• A client terminates

• An active client becomes inactive

• An inactive client becomes active again

We could then do the calculations in each such segment
individually, in a way that reflects the changing condi-
tions.

The problem with this approach is that changes may
be very frequent, and it is not clear that trying to follow
all their details is beneficial. In particular, a thorny is-
sue is how to handle clients that temporarily become
inactive. One option is to freeze their allocations, to
avoid situations where a client gains a huge credit by
virtue of not using the resource, and then starves all
other clients once it starts to use it again. But this vi-
olates the notion of an ideal allocation in those cases
where start/stop activity is natural, e.g. when sending
network packets or performing disk I/O. For example,
if a client should get an allocation of 1/3 of the band-
width, we don’t want this to be reduced due to process-
ing that occurs between send operations.

The suggested solution is to define a grace period
g which defines a time frame that reflects the natural
continuity in using the resource — typically on sub-
second time scales (with a 2 GHz CPU, even a mere
1 ms corresponds to 2 million cycles; with a 100 Mb/s
network, it corresponds to sending 100 Kb). When a
client becomes inactive, its ideal allocation will con-
tinue to grow during this grace period. After the grace

period it will be frozen, to avoid over-allocations as de-
scribed above.

The grace period is measured in ticks of lengthT

from a timer. These ticks are also used to “smooth” the
fluctuations in the active set in general. This is achieved
by performing periodic allocations once everyT time
units, instead of piecemeal allocations as described by
Eq. (7) above. Client arrivals and departures are also
synchronized with these ticks.

To summarize, allocations are handled by a periodic
timer that ticks everyT time units. Handling this timer
tick involves the following actions:

1. Clean up after clients who have terminated since the
last tick.

2. Note clients that have become active or inactive.

3. Make new allocations for all the active clients.

Allocations are made in advance: the allocation per-
formed on a tick reflects expected usage from this time
till the next tick. However, it may happen that not all the
allocated time will be used. In order to prevent the al-
locations from outgrowing the consumptions, it is nec-
essary to bound their growth. Thus after calculating the
allocation according to Eq. 4, we perform

ai(t) = min( ai(t), ci(t) + b ) (8)

New allocations are only given to active clients, or
those in their grace period. Inactive clients retain their
ai andci values for a certain time (the “rebirth” period,
m), but then we setai = ci. This is done for both
positive and negative relative usage. On the positive
side, it avoids situations where a client may monopolize
the resource based on a credit gained long ago. On the
negative side, it avoids situations where a client stays
at a disadvantage after using more than its fair share
of the resource when no other clients wanted to use it.
Thus a client returning to activity after a long period of
not being active will be effectively treated like a new
client. In the future we plan to decayai exponentially
towardsci, rather than using an abrupt change.

Clients may also be added to the active set. New
clients are initialized withai(ti) = ci(ti) = 0. Note
that this is before the new allocation, which they will
receive together with all other active clients. Clients
that have become active again since the last tick after
a period of inactivity are also added to the active set.
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5. Implementation in the Linux Kernel

RSVT is a generic proportional share scheduler. Thus
a system may have many instances of RSVT control-
ling different resources. This is managed by the global
RSVT manager.

The implementation of RSVT was started in the
context of the QoS facility of the Linux networking
subsystem. This facility provides a hook that can be
used to select the next packet that will be sent from the
queue of waiting packets. We use RSVT as the policy to
guide this selection, and select the first queued packet
belonging to the socket whose transmissions so far are
the farthest behind what they should have been.

Rather than create a policy function that is specif-
ically tied to the networking QoS facility, we build on
the fact that the interface separates the mechanism from
the policy to create a generic implementation that can
be used as the policy guide for other subsystems as
well. This boils down to the definition of an interface
whereby the policy receives the information it requires
in order to render its decisions. We then indeed used
this policy module for CPU scheduling as well, and us-
age for I/O scheduling is planned as future work.

5.1 The RSVT Module

The RSVT module is a Linux kernel module that can
provide RSVT scheduling of resources such as the
CPU, disks, and networks. The scheduling algorithm
is intended to provide predetermined shares of the re-
sources to the different tasks (the Linux term for pro-
cesses), which potentially embody different virtual ma-
chines.

A kernel running RSVT has one global RSVT man-
ager and one or more instances of RSVT schedulers —
one for each device. The global manager is responsi-
ble for two main functions. First, it maintains a repos-
itory of active RSVT instances; new RSVT schedulers
are created (typically upon startup) using thersvt create

function, and should be removed before shutdown us-
ing thersvt destroy function. Second, it activates the pe-
riodic resource allocation on all such instances, as will
be described below. This is done by calling theallocate

function of each instance.
Tasks are regarded as the clients of a resource.

Therefore, a task is allocated a proxy client object for
each resource it uses. Tasks are also the basic entities
whose priority can be set, and the clients representing
a task operate with the task’s priority. The relationship

of tasks to resources is many to many. There are many
tasks in the system, several independent resources, and
each task may use all the resources.

The semantics of resource operation depend on the
nature of the resource, with some resources operat-
ing on a request basis (network, disk), but some on
a time basis (CPU). The design of the RSVT module
can account for both. It is based on a core that main-
tains a queue of pending clients, and two wrappers:
one for direct access, and the other for request-based
access (called RRSVT). The difference is that RRSVT
is based on requests. Therefore when thedispatch func-
tion selects a client, it returns an abstract handle to a
struct list head, which contains all that client’s requests.
In addition to that, clients can enqueue and requeue
requests, as demonstrated in our network implementa-
tion.

In either case, the queue of pending clients contains
only the clients that are actively waiting for the re-
source at a given time. For example, if the RSVT mod-
ule is managing a network device, those clients that
have network packets waiting to be sent will be placed
on the queue of pending clients. When all the pending
packets of a client are sent, it is automatically removed
from the queue. In case the resource is not request-
based, such as a CPU, the queue of pending clients
acts as the runnable tasks queue, and the module’s user
(the kernel) has to explicitly mark clients as pending,
thereby inserting them to the queue, or not, thereby re-
moving them from the queue. This is done by the func-
tionsclient set pending andclient unset pending.

When the resource is free for processing, thedispatch

function is called to select the most deserving client
from the pending queue (using the RSVT algorithm,
based on past resource usage relative to each client’s al-
location). A resource that is not request-based can then
start operating on the selected client. A request-based
resource will simply pull the selected client’s requests
one by one. After processing a client, the resource
should update the resource usage of the client, based on
the amount of processing performed. This provides the
RSVT module with the information needed to make fu-
ture scheduling decisions. As noted above, this is sim-
ply done using the time that the resource was used. The
function used to note resource usage is calledcheckin.
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5.2 Data Structures

The RSVT module completely separates the object rep-
resentation of a task from that representing a client.
Rather than storing each client’s information as part
of the corresponding task’stask struct object, it is
stored as a client object that is part of the correspond-
ing resource’s RSVT management module. Client ob-
jects are created withclient create, and destroyed with
client destroy.

The reason for this design, other than its generality,
is that a task’s use of a resource may outlive the task —
for example, a task may have network packets waiting
to be sent when it is killed. Therefore, a task’s proxy
clients for resources must be regarded as different en-
tities than the task itself. Moreover, this design enables
future work on exchanging information among inde-
pendent instances of RSVT, and support for flexibility
regarding placement of virtual machines based on us-
age ofall resources.

To access the client objects, a task’stask struct will
contain an array of handles to the client objects for
different resources. The array size limits the number
of resources that can be accommodated. In the other
direction, each client object contains a pointer to the
correspondingtask struct. If the task has been killed
this pointer is set to NULL, and when all requests have
been serviced the client object is deleted.

To simplify the implementation (and especially the
search for the next client to serve) only a discrete set
of different rates (representing priorities) is supported.
When the RSVT module is initialized, the number of
distinct rates and their specific values should be spec-
ified (these are arguments torsvt create). These are
stored in an array that maps each priority level to its
associated rate.

The lowest priority is by convention set to 1. The
highest priority should be set according to the desired
maximal ratio of rates: should be highest rate by dou-
ble the lowest rate? or 5 times higher? or 10 times? Ad-
ditional intermediate levels should be set according to
the desired ratios that should be supported. This would
typically imply a logarithmic scale, as in 1, 2, 4, 8. As
priorities should be integral numbers, it is possible to
deviate from the convention of starting at 1 to accom-
modate smaller ratios. For example, to achieve an ap-
proximate ratio of

√
2 between adjacent priorities one

can use 10, 14, 20, 28, 40, 57, 80.

Clients may be linked to each other in two ways.
First, there is a linked list ofall clients. This is used
when all clients must be traversed, e.g. when making
new allocations. In addition, active clients are linked
according to their priority. This creates a multi-queue
structure, with a separate queue for each discrete prior-
ity level.

5.3 Operation

In principle each resource has its own units: CPU usage
is measured in cycles, network transmission is mea-
sured in bytes, and disk I/O is measured in blocks.
Using these units requires us to calibrate the RSVT
module so that it knows how many units to allocate
or charge for a period of time. However, this is re-
dundant if all allocations and consumptions are simply
measured in time. We therefore use time as our basic
unit for all resources, regardless of their nature. Specif-
ically, our basic unit in the initial implementation is one
microsecond. With 32 bits this limits us to usage of just
over one hour. In a “real” implementation one would
therefore need to use 64 bits.

Note that in some resources, notably disk and net-
work, it may be impossible to measure the time needed
to serve a specific request. The problem is that the
lower-level devices may handle multiple requests con-
currently and transparently. The solution is to map the
request size to time using the known nominal resource
rate (e.g. effective bandwidth; for example, in a net-
work setting this would account for overhead due to
physical layer headers). This is done by the “glue code”
and is external to RSVT itself. In the network imple-
mentation the resource rate is obtained from the con-
figuration information. The implication of this decision
is that the rate of resource usage is constant at all times.
In modern systems this is not necessarily the case, es-
pecially with regards to the CPU clock rate which may
be adjusted based on power and heating considerations.
We currently ignore such difficulties.

The RSVT module does not generally manageall
of a resource’s users, but only a subset — for example
those tasks executing a virtual machine. Other tasks —
for example system daemons — should be managed by
another scheduling algorithm (probably a FIFO queue).
Such tasks should have priority over the RSVT clients.
For example, in our implementation for networking,
traffic generated by NFS clients falls in this category.
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In CPU scheduling, this may refer to some real-time
tasks.

However, we do need to track the times when the
resource is being used by these other tasks that are
outside our control, and reduce the allocations to our
clients accordingly. In general, a resource’s time can be
divided into three types of use:

• It is being used by RSVT’s clients based on its
scheduling decisions.

• It is idle.

• It is being used by some other tasks we don’t know
about (so called “dead time”).

The RSVT scheduler should be cognizant of the first
two, and use them for the purpose of calculating allo-
cations. It should ignore the third, as if it were a gap in
the timeline that does not exist. To do so, it must know
when other tasks take over the resource and when they
release it again.

5.3.1 Ticks and Allocations

The original concept of RSVT is based on resource
sharing, as if all clients consume their allowance of
the resource continuously. In reality, of course, they are
multiplexed using time slicing. Allocations are likewise
done at discrete instances. That is why the experimental
results below show stepwise progress rather than slopes
(Fig. 4 as opposed to Fig. 2).

Allocations are done periodically based on the sys-
tem’s clock interrupt (the same one that increments
jiffies3). At each tick, an allocation reflecting the time
since the previous allocation is made, after subtracting
known dead time (that is, time when the resource was
used by entities outside our control). As part of this, the
time in jiffies is translated into microseconds. The total
allocation is divided among allactive clients according
to their relative priorities. To make this easier, an accu-
mulator with the total rates of all active clients is main-
tained at all times; it is updated when clients arrive,
terminate, or change state (become active/inactive).

The total allocation reflects the total capacity avail-
able to our clients after deducting dead time. But clients
may not use their whole allocation, e.g. because they
pace their activity based on wallclock time. To avoid
waste of resources, RSVT allows negative priorities, as
may happen if a client’s consumption is ahead of its
allocation. In fact, it may happen that one client’s allo-

3 On a 250Hz system this isT = 4ms.

cation grows significantly more than its consumption,
while another’s is significantly behind its consumption.
This is undesirable as it may have detrimental effects
on future usage. Specifically, if the allocation is way
ahead the client has a high priority and may monopo-
lize the resource for an extended time. If it is behind the
client may be blocked out for an extended time.

Our implementation solves this problem by bound-
ing the divergence between the allocation and the con-
sumption. This is always done by manipulating allo-
cations, as the consumption reflects real usage by the
client. Thus if a client does not use its full allocation,
future allocations are bounded and will not grow too
much beyond the client’s consumption. Conversely, if
a client’s consumption grows more than its allocation,
the missing allocation is made up so as to prevent too
much lag. In both cases, the bound is set equal to the
grace period in the initial implementation (b = g).

5.3.2 Dispatch and Check-in

Dispatch decisions require finding the client with the
largest difference between its allocation and consump-
tion. The problem is that allocations change at differ-
ent rates for different clients. To reduce overhead we
do not want to scan all the active clients each time.
Therefore clients are kept in separate queues accord-
ing to their priorities (rates). Each queue is sorted such
that the client with the largest difference is first; as all
the clients in the queue have the same rate, they cannot
overtake each other [9]. Thus we just need to compare
the first client in each queue.

After a client is selected its resource usage must be
noted. In the networking implementation this can be
done in advance. When a packet is sent, the length
of the packet is translated into a time based on the
network’s bandwidth. This is then accounted to the
clients consumption. In the CPU implementation the
accounting is done when the client is de-scheduled,
based on reading the processor’s cycle counter, because
the length of time it will run cannot be known in ad-
vance [10].

5.3.3 Handling Grace and Rebirth

Allocations should in principle be made at the finest
granularity possible, and as a compromise we do them
at tick granularity. But we also need two coarser timers,
in order to implement the grace period and rebirth. Both
of these also piggyback on the ticks used for allocation.
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To implement the grace period, each client has a
timestamp of when it was last active. As part of han-
dling a tick we first scan all clients to check the differ-
ence between their timestamps and the current time. A
client that has been inactive for longer than the grace
period then becomes inactive. The grace period in the
current implementation is set tog = 20 ms for the
network andg = 600 ms for the CPU. This reflects
the fact that the network operates at a much finer reso-
lution — sending of individual packets vs. scheduling
time quanta.

In addition, the ticks are also used for rebirth. Re-
birth works using a second chance approach. It is ac-
tivated periodically, with a period that is 60 times the
grace period. Each client has an activity flag, which
is set whenever it performs some activity. Upon in-
vocation of a rebirth process, all clients are checked.
Those whose flag is set are retained, but the flag is re-
set. Those whose flags are unset have not been active
since the previous check, so they have been inactive for
at least a full rebirth period. Their allocation is then
set to equal their consumption. When they become ac-
tive again they will then be treated as if they were new
clients (thus the name “rebirth”).

5.4 Networking Glue Code

The generic RSVT module is responsible for the schedul-
ing policy only. It exists in parallel to the mechanisms
used to actually manage the resource itself. The glue
code connects the policy and the mechanism.

The Linux kernel has long had a network Quality of
Service (QoS) module in it, located innet/sched [24].
It consists of a main control and various alternative
policies (called “queueing disciplines”). It is relatively
easy to add new policies to the QoS module, simply
by adding a file and implementing the basic functions
(enqueue packet, dequeue packet, and so forth).

Our “glue-code” constitutes such a QoS policy.
It implements queueing packets as client requests to
RSVT. It implements de-queueing by using the RSVT
dispatch function to find the client with the highest pri-
ority, then obtaining this client’s next request, and fi-
nally checking-in with the approximate packet sending
time in microseconds. Note that this is done on a packet
basis. Given that the QoS module is very low level, be-
low the TCP/IP implementation, packets do not neces-
sarily correspond to transmissions. Long transmissions
may be fragmented into multiple packets due to MTU

considerations, and all these packets have to be handled
consistently.

Importantly, the glue code also needs to distinguish
between packets belonging to RSVT clients and pack-
ets coming from other sources. The above procedure is
applied only for RSVT packets. Other packets are sent
immediately, thus implementing FIFO scheduling and
a higher priority for them. This includes NFS traffic.
The glue code keeps track of such packets, in order to
account for the dead time that should not be reflected
in allocations to RSVT clients.

5.5 CPU Glue Code

A modular scheduling policy manager already exists
in the Linux kernel (the Modular Scheduler Core [3]),
containing different time-sharing techniques for tasks.
For example, the Completely Fair Scheduling (CFS)
policy implements fair-sharing of the CPU among all
tasks [20, Sect. 2.6]. One useful feature of the modular
core is custom run “queues” for each scheduling policy.

For our implementation, we created our own schedul-
ing policy, which is essentially a wrapper for the
non-request based RSVT module. The run queue in
the policy is actually the RSVT object, and queue-
ing/dequeueing tasks to the run queue causes their cor-
responding clients to be set as pending or not pend-
ing accordingly. “Taking out” the next task by the
scheduler is implemented as dispatching a client, and
“putting” the task back to the run queue is equivalent
to checking in the RSVT client.

The RSVT policy is lower than the CFS policy
(which is the default) in the scheduler class hierarchy,
in order to allow hypervisor tasks to act as soon as
possible, if necessary. It is higher than the idle class,
which includes the system idle loop. By hooking into
the dispatch loop, which searches for the highest prior-
ity runnable task, we keep track of time used by real-
time and CFS tasks. From RSVT’s perspective this is
dead time that should not be allocated.

The initial implementation of RSVT CPU schedul-
ing assumes a single processor, and is therefore unsuit-
able for SMP machines. This is a relatively minor tech-
nical issue concerned with keeping track of the cur-
rently scheduled client. To support SMP machines all
that is needed is to allow multiple “current” clients.
Also, care must be taken when calculating allocations.
If there are less clients than processors, they should
each get an allocation that is equivalent to 100% of one
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Figure 4. relative allocations and consumption of
competing netperf clients.

processor (possibly minus dead time as appropriate). If
there are more, the sum of the capacities of the pro-
cessors should be divided among the clients, based on
the assumption that capacity can be allocated flexibly
in this case. This has the drawback of losing processor
affinity characteristics; we leave the possible integra-
tion of affinity to future work.

6. Experimental Results

Using our implementation, we ran a number of ex-
periments to demonstrate the capabilities and proper-
ties of RSVT. For network allocations, the main ap-
plication we use is netperf (www.netperf.org), which is
a benchmarking tool that continuously sends packets.
For the CPU we use synthetic CPU-bound processes
and applications like MPlayer which interleave bursts
of CPU activity with periods of inaction. This allows
us to demonstrate the effect of applications that do not
use their full allocations.

6.1 Basic Allocations

Fig. 4 shows the results for a simple case of relative
allocations with three competing netperf clients with
relative priorities of 1, 2, and 3. In this and subsequent
graphs the X axis is real time, and the lines show the
growth of both allocations and consumptions with time

for all the clients. Hence the slope of a line reflects
the rate (and priority) of the corresponding client. The
lines showing consumption are on top of those show-
ing the allocation, because in this simple scenario the
consumption closely tracks the allocation. The smaller
graph shows a zoom into one of these lines. At this fine
detail one can see the periodic allocations (big steps of
allocation line) and the sending of individual packets
(smaller steps of consumption line).

The actual bandwidths achieved by the competing
clients are shown in the table. These are based on 10
repeated runs of 10 seconds each. The results obviously
closely reflect the desired relative allocations, with ex-
tremely small variability. During our measurements we
saw only a small number of results that deviated from
the specified allocations. These were found to be due to
variation in startup time. When one client starts before
the other, it gets the full bandwidth during this time,
leading to a higher average. Likewise, the lagging client
gets the full bandwidth after the first one terminates,
also leading to a higher average. This happens because
they each run for 10 seconds.

6.2 Dynamic Scenarios

Fig. 5 shows more complicated scenarios, in which the
set of clients changes with time. In the first there are
initially two netperf clients, with relative priorities 1
and 3. After some time (about 2.3 million Kcycles) a
third client is added, with relative priority 2. As a re-
sult the allocations of the first two clients are reduced
in a way that all three receive their appropriate shares.
Then, at about 4.7 million Kcycles, the first client ter-
minates. The allocations of the remaining two are then
increased, but the change is very small because the ter-
minated client was the one with the smallest allocation.
The second graph shows two competing MPlayers with
relative allocations of 1 and 4 of the CPU. They start to-
gether, and when the high-priority one terminates, the
other picks up the slack.

Fig. 6 shows the effect of the grace period. The sce-
nario is two competing netperf clients, with relative pri-
orities of 1 and 2. At two points the client with the
higher priority sleeps for some time, simulating a situ-
ation that a client interleaves sending of network traffic
with other non-networking activities. The first occurs
at about 1.4 million Kcycles. This sleep is shorter than
the grace period4 so the allocation continues to grow.

4 For this experiment we used an extended grace period of 60 ms.
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Figure 5. Allocations change dynamically as clients
are added and removed.
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Figure 6. Effect of the grace period.

Thus, when this client resumes its activity, it has a rel-
atively high priority and blocks out the other client for
a short time. The second sleep occurs at about 2.1 mil-
lion Kcycles. This one is much longer, so after the grace
period ends the client is recognized as inactive, and it
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Figure 7. Effect of the rebirth mechanism.
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Figure 8. Effect of self-throttling by MPlayer.

receives no more allocations. Therefore the full band-
width allocation is given to the other client, which uses
it to increase its transmission rate. Then, when the high-
priority client wakes up and resumes sending, its allo-
cations are renewed, and the other client drops down
again to its reduced allocation.

If a client refrains from action for a longer time,
the rebirth mechanism kicks in. This is demonstrated
in Fig. 7 The scenario is the same as in the previous
case, except that when the high priority client remains
inactive for too long, its extra allocation is removed (at
around 2.2 million Kcycles).

Another interesting effect, using MPlayer and CPU
RSVT scheduling, is shown in Fig. 8. Two MPlayer
clients are decoding videos, with relative priorities of
1 and 4 controlled by RSVT. In addition an X server is
displaying the resulting frames, running under CFS and
thus with higher priority than the MPlayers (this saves
the need to propagate usage information as in [11]). Ini-
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tially (bottom left corner of the graph) the allocations
indeed reflect the relative priorities. But the consump-
tions are similar, because it turns out that MPlayer does
not really need so much CPU power in order to decode
such a video. After a short time RSVT therefore starts
to curb the extra allocation for the high-priority client,
and it just follows the consumption. The low-priority
client gets its fair allocation of CPU capacity, which is
somewhat less than it needs, and indeed it also prints
out a warning that the system is to slow to show the
requested video at its full rate.

7. Conclusions

RSVT is a flexible proportional share scheduler. It pro-
vides adjustable allocations among competing clients,
and improved pacing of allocations to high-priority
clients. The basic implementation is generic, and can
be used as the policy module for any schedulable re-
source. This is done using “glue” code that interfaces
RSVT to the desired subsystem. We presented our ini-
tial implementation, which includes glue code for the
networking QoS mechanism to controls network trans-
missions, and glue code for the modular scheduler core
to control CPU scheduling. In future work we plan to
also implement control of disk I/O by integrating with
the Linux I/O scheduling framework.

The current implementation, while providing a proof
of concept, is not complete. In particular, it is lacking
support for groups of processes and for the inheritance
or partitioning of both allocations and consumptions
across process forks. Implementing this will obviously
increase the usefulness of the system, but does not
contribute much at the conceptual level.

Another interesting avenue for future research is to
extend RSVT by combining relative allocations with
absolute allocations. For example, it might be the case
that one client should receive half the allocation of
another, but not less than 20Mb/s. This can be im-
plemented by verifying that the allocations satisfy the
specification, but requires the addition of admission
controls to ensure that the specified rates do not surpass
the available capacity.

Finally, the whole RSVT development is part of a vi-
sion of a global scheduling framework that controls rel-
ative allocations of different resources in a coordinated
manner [9]. This is to be integrated with the KVM ker-
nel virtualization module. Realizing this vision is a ma-
jor part of our future work in the coming years.
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