Stop Polling! The Case Against OS Ticks

Dan Tsafrir Yoav Etsion Dror G. Feitelson
The Hebrew University of Jerusalem, Israel

1 The Problem

All general-purpose operating systems (GPOSs) use peri R o
clock interrupts called “ticks” to regain control and measthe Desktop applications suffer from slowdown due to indirect
passage of time. On each tick the kernel performs admitiistra®Verheads of useless kernel-user context switching thtaigis
tasks like accounting the CPU time used by the current pepc&€red by ticks. We show that this penalty can be as high as 8%
designating it for preemption if needed, waking processiis w/°r various commodity Pentium-1V machines [4].

pending signals, etc. This mechanism has been in use siace®ft realtime and multimedia tasks suffer from limited clock

late 1960s. However, due to the rapidly growing applicabof resolution. For example, we show that a movie player display-
GPOSs (ranging from as little as mobile phones and PDAs td3@ & clip can lose up to a third of its frames because the reso-
large as supercomputers), drawbacks of periodic timingrace lution of alarm-timers is limited by the tick rate. We alsamsh

late into a critical mass, suggesting it's time for a charigéeed, that alarm latency can be greatly reduced when increasiag th
we have identified quite a few mainstream system domains thf rate, but that this incurs severe overhead penalties [5
inherently conflict with the polling nature of ticks: Hard realtime systems experience difficulties in predictig

Mobile and embedded devices waste poweon unnecessarydeterministictiming behavior, as ticks may occur whil&ktaare
ticks that happen even if the machine is otherwise idle; pagve 'unning. We show the duration of periodic work is susceptibl
also wasted even if the machine is busy, as tasks run longer 9 Significant variance [4], which e.g. may even be dependent
necessary due to the indirect overhead of ticks (see belig). te number of processes presentin the system [6]. _
show an idle “crippled” laptop (disconnected from its scraed Mlcro ker_nels complexity is |nc.reased if .tlck-related code.|s
hard disk) consumes 4W due to ticks, and more, for incread@gluded in the kernel. Reducing the size of the kernel is es-
tick rates. This is the result of ticks continuously prewegthe Sential for obtaining more dependable systems. Micro Kermne
processor from maintaining a power save mode [1]. code base could be further reduced if the timing mechanisms

Virtual machine settings suffer from excessive overheadlhe are pushed away from the kernel, but this is not done due to

base overhead of ticks is intensified when a VMM/hypervisor verhegd con5|der§\t|ons as t'CkS. are too frequent (e-g.X‘?"m
positioned between the ticking OS and the hardware. Fuyrthe 00-lines kernel mcludgs the timing subsystem). Elatig
VM servers can be overwhelmed by ticking guest OSs. One Eﬁl—(s can largely solve this problem.

ample is an S/390 mainframe for which servicing clock inte~ The Solution

rupts of multiple idle VMs (running Linux) led to 100% utibz
tion of the physical processor [2].

noise is a major source of degraded performance in supercom-
Juter settings [4].

The source of the above problems is periodic ticks that, as me

) _ _ _ tioned earlier, turn the OS into a polling-based system. dlhe
Ticks enable denial-of-service attacksCPU consumption ac- tarpative is to go event-based by leveraging the fast “drag-s
counting is done in tick resolution. We show that any unpriimers” mechanisms (timers that are set only for specificiape
leged “cheater” process can take advantage of this to mdizepanade available by commodity hardware (e.g. APIC and HPET).
the machine, by sleeping when ticks take place and systemagtiyever, simply doing this in a general-purpose settingtsan
cally avoiding beinglbillgd._The fact _cheaters appear t(Gs0ame ntion, as it allows for any user to essentially bring theterys

no CPU makes their priority very high and allows them to rigbyn e.g. by generating numerous events with nanosecond dif
whenever they choose while starving “honest” processes [3] ferences. This can be solved by aggregating the eventshe.g.
Ticks are a security breach. A side-effect of being able notusing a modified version of “firm timers” [7] that eliminatewet

to be billed is that monitoring applications like the UNDOH' periodic component from this mechanism. A description af ou
utility report such cheater processes as consuming 0% CRU selution can be found in [1].

sentially making them “invisible”. We show that cheaters gat
as much or as little CPU cycles as they want, without thisrmfcﬁeferences

mation showing up on monitors [3] Knowing about an attad¢k D- Tsafrir, Y. Etsion, and D. G. Feitelson. General-ppsp timing: The failure of

. eriodic timers. Tech. Report 2005-6, The Hebrew Univergieb 2005.
is essential to stopping it, and so the fact offending preegsio | ¥ ‘ o
not appear on CPU monitors constitute a serious securiaichre

M. Schwidefsky, A. Cox, and many others. No 100 HZ timerRU
http://lkml.org/lkml/2001/4/9/79, Apr 2001. Linux Kerh®ailing List.

3] D. Tsafrir, Y. Etsion, and D. G. Feitelson. Is your PC slyrrunning nuclear

Parallel applications suffer from “noise” (OS activity unre-

lated to the application), where one late process holds mp hidl
dreds to thousands of peers with which it synchronizesjrigavis
the entire parallel machine idle until the late processhegap.
We analytically quantify the effect and empirically showks’ (6]

[

*Current affiliation: IBM T. J. Watson Research Center.

simulations? Tech. Report 2006-78, The Hebrew UniverSigp 2006. Submitted.

D. Tsafrir, Y. Etsion, D. G. Feitelson, and S. KirkpalicSystem noise, OS clock
ticks, and fine-grained parallel applications.A@GM ICS, Jun 2005.

Y. Etsion, D. Tsafrir, and D. G. Feitelson. Effects of ckoresolution on the scheduling
of interactive and soft real-time processesAEBM SGMETICS, Jun 2003.

D. Tsafrir. Barrier synchronization on a loaded SMP gsiwo-phase waiting
algorithms. Master’s thesis, The Hebrew University, Sep220

A. Goel, L. Abeni, C. Krasic, J. Snow, and J. Walpole. Saoiping time-sensitive
applications on a commodity OS. WSENIX OSDI, Dec 2002.

