
Effects of Variable Names on Comprehension:
An Empirical Study

Eran Avidan Dror G. Feitelson
School of Computer Science and Engineering

The Hebrew University, 91904 Jerusalem, Israel

Abstract—It is widely accepted that meaningful vari-
able names are important for comprehension. We con-
ducted a controlled experiment in which 9 professional
developers try to understand 6 methods from pro-
duction util classes, either with the original variable
names or with names replaced by meaningless single
letters. Results show that parameter names are more
significant for comprehension than local variables. But,
surprisingly, we also found that in 3 of the methods
there were no significant differences between the con-
trol and experimental groups, due to poor and even
misleading variable names. These disturbingly common
bad names reflect the subjective nature of naming,
and highlight the need for additional research on how
variable names are interpreted and how better names
can be chosen.

Index Terms—code comprehension; variable names;
misleading names; method parameters; local variables

I. Introduction
Code comprehension is a task present in many aspects

of a programmer’s daily work. In particular, it is pivotal
in facilitating effective software maintenance and enabling
successful evolution of computer systems [27]. As Martin
writes, “the ratio of time spent reading vs. writing is well
over 10:1. We are constantly reading old code as part of
the effort to write new code” [17]. This implies the need to
understand code that was written by another programmer
or in the past. Likewise, examples are important when
learning skills such as using new frameworks or languages
[26], as witnessed by the burgeoning use of sites like
Stack Overflow. And again, one must understand the code
examples to benefit from them.

An important element of code comprehension is to
understand the underlying concepts embodied in the code
[22]. In principle, such concepts should be described by
in-code documentation and design documents [21]. But
documentation is often missing or outdated. So in many
cases the most important and trusted beacons1 that pro-
vide signals about concepts are identifiers. It has even been
said that “if a name requires a comment, then the name
does not reveal its intent” [17], suggesting identifiers are
the documentation.

Identifiers are also prevalent. In large open source
projects about a third of the tokens are identifiers, and

1In program comprehension the term “beacon” describes a code
element which illuminates the code’s function beyond this element’s
immediate use.

they account for about two thirds of the characters in the
source code [8]. It is therefore doubly important that they
convey meaning. The importance of meaningful identifier
names was established in a number of papers [6], [24].
For example, Lawrie et al. found that full word identifiers
and abbreviations may lead to better comprehension than
identifiers composed of single letters [16]. This was done
using controlled experiments, where the different experi-
mental treatments were versions of the same methods but
with different identifier names. Our work continues this
line of research using a similar methodology, but focusing
on the identifiers’ meaning rather than their length.

As may be expected, not all identifiers are born equal:
some are more important than others. This has been
reflected in naming recommendations, such as the adage
that “The length of a name should correspond to the
size of its scope” [17]. In particular, several authors have
expressed the belief that variables in method headers,
namely the method’s parameters, are more important than
local variables. Our goal is to test such beliefs empiri-
cally. Specifically, we aim to examine the impact of local
variables and parameters names by themselves on the
comprehension process of software developers approaching
an unseen snippet of Java code.

Our contributions to the field are
1) To quantify the effect of meaningful names in an ex-

perimentally valid manner (one-on-one experiments
with industry professionals in their work environ-
ment with no dropouts, and using real methods from
popular production codes).

2) To demonstrate that bad names that actually im-
pede comprehension are not uncommon, illustrating
the fact that naming is subjective, and motivating
placing an emphasis on names in code reviews.

3) To identify parameters as more important than lo-
cals in most cases. This is part of the whole signature
being important, with implications to API design.

4) On the methodological level, to demonstrate the use
of experiments with dynamic treatments, where the
treatment changes during the experiment.

II. Background on Identifier Naming
Practically all programming guidelines state that vari-

ables should be given “meaningful names”. But naming
is hard. Furnas et al. studied spontaneous word choice



for objects in different application-related domains, and
found the variability to be surprisingly high: in every case
two people favored the same term with a probability of
less than 0.2 [12]. Arnaoudova et al. studied identifier
renaming, and found that the vast majority of cases
include changes or at least modifications of meaning [4].
Problematic situations include mismatch of type, number,
or behavior (e.g. a set method that returns) [3].

Hindle et al. show that in large projects the vast ma-
jority of the vocabulary used is identifiers, and that the
vocabularies of different projects tend to be more diverse
than the commonly used vocabulary in natural language
[15]. Rilling and Klemola have shown that code fragments
with a high identifier density may act as “comprehen-
sion bottlenecks” [23]. These results imply that identifier
naming is not self-evident, and that programmers need
guidance when it comes to naming identifiers in their code.

Regrettably typical coding conventions supply very su-
perficial guidelines on naming, focusing on style and for-
matting, with no regard to their meaning and what they
represent. For instance, “Method names are written in
lowerCamelCase” and “Package names are all lowercase”
are very common conventions. The Java code conventions
do mention the importance of meaning, saying “Variable
names should be short yet meaningful” and “designed to
indicate to the casual observer the intent of its use” [25].
This is a good start, but hardly enough, considering that
different people give different names to the same thing.

How can one write more useful guidelines? Binkley et al.
have suggested rules to improve field names based on natu-
ral language processing providing part-of-speech informa-
tion [5]. Deißenböck and Pizka created a formal model
with naming rules that check consistency, conciseness,
and composition of each element name [8]. Caprile and
Tonella are more practical, and suggest standardization of
variable names using a lexicon of concepts and syntactic
rules for arranging them [7]. Allamanis et al. have recently
presented a framework that learns the style of a codebase,
building on recent work in applying statistical natural
language processing to source code [1]. This was then
applied to suggest natural identifier names and formatting
conventions and to suggest revisions to improve stylistic
consistency. Unfortunately, it is not clear that any of the
above ideas is used in practice.

Gellenbeck et al. found that both meaningful procedure
and variable names serve as beacons to high-level compre-
hension [13]. Similarly, Osman et al. found that names are
crucial for the understanding of UML diagrams — without
them there is no clue of what the different classes actually
do [20]. Haiduc et al. found that when summarizing code,
developers tend to include in the summary practically all
the terms that appear in method names, and the vast
majority of terms in parameter types [14]. This suggests
that they perceive these elements as conveying important
information regarding what the method does.

Our study stresses the importance of proper identifier

naming, and shows the impact that unsatisfactory names
have on comprehension. We also use controlled experi-
ments to show that some variables have a higher impact on
comprehension than others, and thus should be given more
attention. To the best of our knowledge this distinction has
not been made explicitly before.

III. Research Questions
Our specific research questions are as follows:
1) What impact do identifier names have on the com-

prehension of what a method does? This is essentially
a replication of previous work, perhaps with some
methodological variation.

2) Assuming names are important, which type of iden-
tifiers contribute more to comprehension, parameters
or local variables? This is a new distinction that has
not been studied before. It is interesting because
locals with limited scope have been disparaged in
coding guidelines as not necessarily requiring mean-
ingful names, whereas parameters are part of a
method’s signature and thus potentially part of an
API. But do these different roles compel different
levels of naming?

In the experiments these questions are treated together,
by comparing methods that either have meaningful names
or else replace some or all of the names by single letters.

IV. Research Design
A. Controlled Experiments

An important category of empirical study is the con-
trolled experiment, which is the classical scientific method
for identifying cause-effect relationships. Our experiment
was designed to assess the effect of variable names on
comprehension, using real methods from utility packages.
To remove meaning from identifier names we replace
them with consecutive letters of the alphabet. This allows
compilation, but conveys absolutely no information. In
particular, it facilitates the generation of code where either
parameters or locals, or even both, are devoid of meaning.

Experimental subjects were professional developers
working at a major hi-tech company in Israel. The ex-
periments were conducted by the first author in multiple
individual sessions with each subject. In each session
subjects were presented with the task of understanding
one or more methods, in either an experimental treatment
or a control treatment. Overall 38 sessions were recorded,
totaling approximately 22 hours.

B. Experimental Treatments
The experimental treatments are versions of the selected

methods with different classes of variable names masked
out. In addition the method name was removed, replacing
it with ‘xxx’, to enable a focus on variable names and
avoid any confounding effect (including both possibilities:
that the method name aids comprehension or that it is
misleading). From each method we prepared four versions:

2



public static void xxx(final boolean[] a,
final int b, final int c) {

if (a == null) {
return;

}
int d = b < 0 ? 0 : b;
int e = Math.min(a.length, c) - 1;
boolean f;
while (e > d) {

f = a[e];
a[e] = a[d];
a[d] = f;
e--;
d++;

}
}

Fig. 1: Method with all variables replaced by single letters
(version 4).

1) Only the method name was removed. All variable
names remained intact.

2) The method name was removed and parameters were
replaced with single letters.

3) The method name was removed and local variables
were replaced with single letters.

4) The name was removed and both parameters and
local variables were replaced with single letters.

When variable names were replaced by single letters, these
were a, b, c, and so on in order of appearance. An example
of a method with all names replaced by single letters is
shown in Figure 1.

The control treatment consisted of using version no.
1, namely the original code as is except for the method
name. This retains all the information that was embedded
in the variable names by the original programmers.

The experimental treatment consisted of using 3
versions in sequence. Initially we presented the participant
with version 4 of the method, where all variables were
replaced with single letter identifiers in alphabetical order.
The participant was asked to explain what is the method’s
purpose. Once an answer was received, we asked how sure
is he in this answer, and if he feels certain enough and
would like to move forward and receive one more type
of identifier names. This phase was identical in all the
experimental treatment sessions.

We then revealed either the parameters or the local
variables identifier names (essentially switching to version
3 or 2, respectively). The decision of which to reveal was
random. The participant was asked whether his under-
standing had changed or his confidence improved due to
this additional information. Finally, we revealed the other
type of identifier names, leading to code that has all the
original variable names (version 1). This is the same in all
sessions, and identical to the control treatment.

This dynamic change of treatment was used to reduce
the number of subjects and experiments required, and
the length of each session, which was up to thirty five
minutes even so. In addition, it enabled an observation

of the “aha” moment when variables are revealed and
it makes an immediate difference to the comprehension
and/or confidence.

All the participants went through all three phases. Each
phase was limited to ten minutes: after ten minutes the
subject was asked what he believes the method does and
his confidence level, after which he was presented with one
more type of identifier names.

C. Experimental Design
Naturally each subject who performs an experiment

with the control treatment for a certain method cannot
also perform the experimental treatment, and vice versa,
because the method is already familiar. We are therefore
forced to use a “between subjects” design when comparing
versions of the same method.

We randomly divided the subjects into two groups, S1
and S2, and the methods into two groups, M1 and M2.
Group S1 did methods M1 under control conditions, and
methods M2 under experimental treatment. Group S2 did
the opposite: methods M1 under experimental treatment
and methods M2 as control.

D. Variables
The main independent variables are the treatments, and

naturally also the subjects (and their experience, sex, etc.)
and the methods.

The main dependent variable is time for comprehen-
sion. This variable represents the time it took for each
participant to give a correct answer. For the experimental
treatment the time was measured from the beginning of
phase one, when the participants were first presented with
the striped method, up until the time the right answer was
received. This time is probably a lower-bound on the time
required to understand the method without any variable
names, as variables are gradually revealed. Deciding that
a participant correctly comprehends a method was based
on using the think-aloud methodology with interactions.
Thus to ascertain comprehension the experimenter read
the participant’s description back to him, and asked fol-
lowup questions to verify meaning. The observer never
confirmed to the participant the correctness of his answer,
and the experiment continued until phase three, even if the
time measurement had stopped because a correct answer
had already been given.

Another dependent variable is each subject’s subjective
opinion of identifier type importance, namely whether
parameters or locals were more important for their un-
derstanding of the method. This is naturally influenced
by the stage in which they reached an understanding.

E. Code Selection
Context plays a major role in code comprehension,

which may lead to a confounding effect: lack of under-
standing may result from bad identifier names (or other

3



aspects of code complexity) or from lack of domain knowl-
edge. Domain knowledge also impacts the way program-
mers approach the code [19]. In order to eliminate the
need for context and domain knowledge, we chose to use
methods from popular open source utility packages. In ad-
dition to making the code accessible, this facilitates using
real code that was developed by different programmers.

Searching for classes from which to extract methods was
done as follows. First, we reviewed the most popular Java
repositories on github, identified as those starred by at
least 10K users. Then the nature of the repository was
evaluated, to understand the potential for finding robust
utility classes. For those repositories which seemed promis-
ing, a manual examination of the source code was used to
select suitable methods. During this process we reviewed
over 30 different repositories and over 200 different classes.

The selected packages were Apache Commons, Google
Guava, and Spring Framework. We chose util classes for
data types that should be familiar to any Java developer,
arrays and strings. Choosing the methods to use in the
experiments was harder than expected. Many methods are
just too trivial, or contain beacons that make it easy to
simply guess their purpose. Likewise, we avoided methods
that use uncommon types or programming styles, in order
to keep the focus on identifier naming and not on design
patterns or coding techniques. Finally, we made an effort
to choose diverse methods, in order to eliminate a learning
process that may lead to successful guesses instead of code
comprehension.

Initially we extracted 12 suitable methods with 10–30
lines of code and 3–10 parameters and local variables. We
then conducted a pilot with two subjects, one perform-
ing the control treatment and the other an experimental
treatment. Based on the pilot we removed some candidate
methods that were found to be too hard or easy relative
to other ones. These were mainly either short methods
that contain very few identifiers, as the lack of variables
made them inappropriate for our study, or long methods
with many identifiers that were simply too hard to follow.
We ended up with the 6 methods characterized in Table
I, where their descriptions are taken from the online Java
documentation of the packages. More details and code will
be presented when we discuss the results.

Naturally the choice of specific methods has a subjective
element. Reproducibility is however guaranteed as anyone
can use the same methods we chose. Alternatively, other
researchers can apply the same considerations and select
their own methods. This is exactly the type of variation
that leads to better confidence in experimental results (or
to uncovering differences that need to be investigated) [11].

F. Participant Recruitment
The subjects who took part in this study were all

industry professionals from Israel. They all work at the
same division of a major hi-tech company and spend most
of their time in code development. We allowed participants

with different tasks, project roles, and experience in order
to explore program comprehension as broadly as possible
and to improve external validity. According to [16] men
may understand single-letter abbreviations better than
women. Despite the fact that our single letter identifiers
are not abbreviations, in order to eliminate this threat to
validity, the recruitment was limited to men.

The recruitment was done personally by the first author,
starting with random selection from a longer list of devel-
opers. In total there were 9 participants in the experiment:
6 developers, a team leader, a senior developer, and a tech-
nical lead. The age of participants ranged from 25 to 45,
and work experience from 3 to 20 years. All participants’
work experience includes a good knowledge of Java. Eight
of the subjects participated in sessions on all 6 methods,
but in one case one session was discarded from the analysis
due to interference during the session. One subject was
hard to schedule and did only one session.

The experiments were conducted during working hours
in the participants’ working place, and did not require any
investment beyond attending the conference room for the
duration of the sessions. The participants showed signifi-
cant interest in the study, and seemed to appreciate the
importance of identifier naming and the lack of sufficient
guidelines. Consequently, they all gladly volunteered to
participate without getting any kind of compensation.

G. Experimental Procedure

Each subject participated in multiple sessions scheduled
on different days. Control sessions included 2–3 different
methods, and experimental sessions one method. At the
beginning of each session the subject was given a short
reminder of the purpose and process of the current session.
We explained that he will be presented with a “real world”
method with its name removed, and that we would like to
know what this method is meant to do. In experimental
treatment sessions we also explained that whenever he
feels satisfied with his answer we would reveal one more
type of identifier names. Based on the pilot, participants
were asked to think aloud to give us a better understanding
of how they understand the code [10]. We concluded
with questions on what the method name should be and
whether local variables or parameters were more beneficial
for comprehension.

Note that we use an unorthodox experimental procedure
with these two features:

1) Dynamic change of code version as the subject makes
progress — we start with no variable names, and
then add the names of parameters and locals in a
random order. Thus our experimental treatments are
actually a sequence of 3 versions.

2) Some level of interaction between the experimenter
and the subject, as asking questions adjacent to
actions is expected to result in the most direct and
“capture the moment” answers.

4



TABLE I: The methods which were used in the experiment.
ID Name LOC Params Vars Description
1 reverse 15 3 3 Reverses the order of the given array in the given range
2 indexOfAny 27 2 5 Find the first index of any of a set of potential sub-strings
3 substringsBetween 30 3 5 Searches a String for sub-strings delimited by a start and end tag, returning

all matching substrings in an array
4 replaceChars 28 3 6 Replaces multiple characters in a String in one go
5 repeat 25 2 5 Repeat a String repeat times to form a new String
6 abbriviateMiddle 20 3 4 Abbreviates a String to the length passed, replacing the middle characters

with the supplied replacement String

The experiments were conducted in front of a laptop
in a quiet room, with only the experimenter and subject
present. Based on the pilot, subjects were provided pen
and paper to enable simulating the execution of the code to
aid comprehension. They could not run the code. For doc-
umentation we kept a protocol of every experimental ses-
sion, including a webcam video, screen capture, observer
notes, and the participant’s notes and code alterations if
any.

H. Statistical Methods
Our study is based on comparing small samples sizes,

which most likely are not normally distributed. This pre-
vents us from using the common t-test. Instead, we chose
to use the Mann-Whitney U test [18]. This is a nonpara-
metric test of the null hypothesis that two independent
samples A and B come from the same distribution, against
the alternative that one population A tends to have larger
values than another population B (in other words, that A
stochastically dominates B). More formally, in the specific
case of our experiments the null hypothesis is
H0: the time it takes a programmer that receives
the experimental treatment to understand a method
has the same distribution as the time it takes a
programmer that receives the control treatment

The results were that for some methods we were able to
reject the null hypothesis at a significance level of 0.05.

Since we are comparing two small sets of observations,
the calculation of the U statistic is trivial. First, assign
numeric ranks to all the observations, beginning with 1
for the shortest time for comprehension. Then add up the
ranks for the observations which came from the control
group (which we denote Rc) and from the experimental
group (Re). Note that Rc+Re = N(N +1)/2 which is the
sum of all ranks up to N , the total number of observations.
Now calculate Ui = Ri−ni(ni+1)/2 where i ∈ {c, e} and
ni is the number of observations in the control and exper-
imental groups, respectively. Finally compare min(Uc, Ue)
to a standard table of Mann-Whitney critical values and
reject or accept the hypothesis accordingly.

I. Validity Concerns and Mitigation
Some decisions leading to the experimental procedure

described above were taken explicitly to mitigate threats
to validity. A major concern was establishing construct
validity, meaning that we really measure comprehension.

This led to the decision to focus on real production code
that is unlikely to be known to subjects, as opposed to
using textbook examples and algorithms which might be
recognized. Production code also contributes to external
validity as it better represents the code developers en-
counter in their daily work. Another issue with construct
validity is the possible confounding effect of lack of domain
knowledge. This was mitigated by using util classes.

Another concern is that masking the method names cre-
ates an unrealistic comprehension scenario, because in real
life method names would be available. Moreover, method
names are expected to provide significant information.
But this is precisely why they need to be masked in
order to enable the study of the effects of variable names.
Moreover, method names can also be misleading, adding
a confounding effect.

Another external validity issue is the possible use of
students as subjects, as was done in many previous studies
on program comprehension. We preferred professionals
because students normally hardly ever read code, whereas
professionals need to read and comprehend code a lot
[17]. We conjecture that as a result professionals develop
expertise in comprehension of unknown code, making
them especially suited for this specific type of experiment.
Moreover, the recruitment of professional developers in
their workplace increases the experimental realism, and,
thereby, the applicability of the results.

The most common internal validity threat is that in-
dividual differences between experimental subjects may
mask the measured effects. We mitigated this concern by
having each subject participate in both experimental and
control treatments. Choosing same sex subjects from the
same company prevented unintended confounding effects
of sex and work culture.

V. Results and Analysis
In retrospect, the results obtained with the 6 methods

we used exhibit interesting diversity. We therefore start by
describing the results for each method in detail, and then
proceed to summarize and discuss the observed effects.

A. reverse
The reverse method is shown in Figure 2 (and version

4 with all variable names masked was shown previously
in Figure 1). It reverses the part of an array between two
indexes. Cumulative distribution functions of the times for

5



public static void xxx(final boolean[] array,
final int startIndexInclusive,
final int endIndexExclusive) {

if (array == null) {
return;

}
int i = startIndexInclusive<0 ? 0 : startIndexInclusive;
int j = Math.min(array.length, endIndexExclusive) - 1;
boolean tmp;
while (j > i) {

tmp = array[j];
array[j] = array[i];
array[i] = tmp;
j--;
i++;

}
}

Fig. 2: reverse method.

comprehension are shown in Figure 4. Participants under
the control treatment understood the method’s function-
ality in 2.5–8 minutes, while those with the experimental
treatment took 7–19 minutes to come up with a sufficient
answer. Due to the separation between the time ranges
in the control and experimental treatments, calculating
the Mann-Whitney statistic returned a U -value of 1. This
leads to the conclusion that the time for comprehension
in the control group was significantly lower than in the
experimental group, with a significance level of 0.05.

Five out of six experimental participants indicated that
the parameters were more beneficial to their compre-
hension. Moreover, while three of them were given the
parameter names first and three the local variables, all six
reached the correct answer only after the parameters were
revealed. Participants who were given the local variables
first were quick to request the parameters as well, saying
that the local variables had very little value to them.

Interestingly, all of them missed the fact that the end
index is exclusive, despite the “-1” in line 8 that sug-
gests this, until the parameter endIndexExclusive was
revealed. One stated in disappointment “I missed the -1 in
the end exclusive index”, and another said “from the start
I saw the -1 but did not treat it right”. This demonstrates
how beacons in identifier names can focus attention on
related code.

All participants described the functionality of the
method correctly as a series of actions, but none of them
used phrases such as “reversing the array” which describe
it at a higher level of abstraction. But when asked to name
the method, one participant did call it reverseRange.

B. indexOfAny

indexOfAny is shown in Figure 3. This method finds
the index of the first of a set of potential substrings.
Participants under the control treatment understood the
method functionality in 2–7 minutes, while those of the
experimental treatment took 12.5–22 minutes (figure 4).
Due to the complete separation between the time ranges

public static int xxx(final CharSequence str,
final CharSequence... searchStrs) {

// some lines not shown
final int sz = searchStrs.length;
int ret = Integer.MAX_VALUE;
int tmp = 0;
for (int i = 0; i < sz; i++) {

final CharSequence search = searchStrs[i];
if (search == null) {

continue;
}
tmp = CharSequenceUtils.indexOf(str, search, 0);
if (tmp == INDEX_NOT_FOUND) {

continue;
}
if (tmp < ret) {

ret = tmp;
}

}
return ret == Integer.MAX_VALUE ? INDEX_NOT_FOUND : ret;

}

Fig. 3: indexOfAny method (some lines removed).

the Mann-Whitney statistic was U = 0, again leading to
the conclusion that time to comprehension in the control
group was lower than in the experimental one with a
significance level of 0.05.

All 4 experimental participants indicated that the pa-
rameters were more beneficial to their comprehension.
Moreover, all of them reached the correct answer only after
receiving the parameter names, regardless of the order
names were revealed. We also noticed the rise in the level
of confidence as more identifiers were revealed, even if this
did not prompt the subjects to change their answer.

Two participants in the experimental treatment com-
pletely missed the ‘...’ type annotation in the second
parameter. One was even recorded saying “ahhh there
are the three dots, was it there from the beginning? I
could have known it before if I noticed the annotation.”
The other two seemed to notice it, but still treated the
parameter as a single charSequence. A possible reason
is that variable arguments with the ‘...’ notation are not
commonly used, so its significance was not obvious. Two
participants described the for loop as “running char by
char” when pointing to the line with final CharSequence
g = b[f]; (the replacement for line 7), even though g is
clearly of type charSequence and not char. It may be that
the single letter name b gave the impression of a single
object, in this case a string, and grasping the fact that it
represents more than one object did not come naturally.

None of the participants gave the method the same
name as its developer. One did give a similar name,
indexOfFirstOccurrence.

C. subStringsBetween

This is a longer method with 30 lines of code which
searches a string for all occurrences of substrings delimited
by given start and end tags (Figure 5). The participants
with the control treatment took 6–15 minutes to reach a

6



0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

time for comprehension [minutes]

reverse

control
experimental

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

time for comprehension [minutes]

indexOfAny

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

time for comprehension [minutes]

subStringBetween

Fig. 4: Cumulative distribution functions of required time in the control treatment vs. the experimental treatment.

public static String[] xxx(final String str,
final String open, final String close) {

// some lines not shown
final int closeLen = close.length();
final int openLen = open.length();
final List<String> list = new ArrayList<String>();
int pos = 0;
while (pos < strLen - closeLen) {

int start = str.indexOf(open, pos);
if (start < 0) {

break;
}
start += openLen;
final int end = str.indexOf(close, start);
if (end < 0) {

break;
}
list.add(str.substring(start, end));
pos = end + closeLen;

}
if (list.isEmpty()) {

return null;
}
return list.toArray(new String [list.size()]);

}

Fig. 5: subStringsBetween method (some lines removed).

correct answer, but the distribution indicates only one of
them really found it hard to follow the code (Figure 4).
The participants with the experimental treatment gave a
correct answer in 15–18 minutes, and all of them resorted
to a pen and paper in the process. As in the previous two
cases, the Mann-Whitney test indicated that the control
treatment time was lower than the experimental time with
a significance level of 0.05.

All participants reported that identifiers containing
“open” and “close” were very informative, so receiving
them as parameters (open, close) or as locals (openLen,
closeLen) was the most helpful clue in understanding the
method. As a result all of the participants reached their
answer after the first type of identifier was revealed, be it
parameters or locals.

D. replaceChars
With this method we observed an interesting phe-

nomenon: 2 out of 4 control participants gave the same
incorrect answer, while all of the experimental treatment
participants reached the correct answer. The method

String xxx(final String str,
final String searchChars, String replaceChars)

Fig. 6: replaceChars method header

header can be seen in Figure 6. What it actually does is to
replace multiple characters in a string in one go, by search-
ing for characters in the searchChars parameter string,
and replacing them with the corresponding characters in
replaceChars. In the first few minutes 3 of the 4 controls
mistakenly claimed that the functionality was quite clear
from the parameters alone, and they only needed to verify
their intuition that “it performs a simple replace string”.
One changed his answer after further examining the code,
while the other two remained with their initial intuition.
Though it took the control group less time than the
experimental one, 4.5–10 minutes vs. 8–12 minutes (Figure
7), this partial separation in the time for comprehension is
meaningless since half of the answers of the control group
were incorrect. Therefore no statistical test was performed.

Inputs from the control group indicate that the main
reason for their mistake was that searchChars and
replaceChars were perceived as a search string and a
replace string. This may be attributed to two root causes:
1) Lack of language sensitivity. To non-English natives,
“chars” and “string” can look like synonyms. 2) The fact
that the type of these parameters is String conflicts with
their use as a collection of chars. Hence, a better option,
which was also suggested by some participants, would be
to change the type to an array of chars. In any case,
it appears that just as identifiers can inform and speed
up comprehension, they can also hinder its correctness,
by supplying beacons for a different mental model than
intended. And when one gets an intuition regarding a
method’s functionality, it is hard to change it, even when
some beacons point to a different solution.
E. repeat

This method repeats a string several times to form a
new string (Figure 8). It uses a non-trivial system function,
arrayCopy, which led all participants in the experimental
treatment to read the attached Java documentation. On
the other hand, none of the control group felt a need
to read the documentation, and they did not seem to

7



0 5 10 15
0

0.2

0.4

0.6

0.8

1

time for comprehension [minutes]

replaceChars

0 5 10 15
0

0.2

0.4

0.6

0.8

1

time for comprehension [minutes]

repeat

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

time for comprehension [minutes]

abbreviateMiddle

control
wrong answer
experimental

Fig. 7: Cumulative distribution functions of required time in the control treatment vs. the experimental treatment.

public static String xxx(String string, int count) {
// some lines not shown
final int len = string.length();
final long longSize = (long) len * (long) count;
final int size = (int) longSize;
// some lines not shown
for (n = len; n < size - n; n <<= 1) {

System.arraycopy(array, 0, array, n, n);
}
System.arraycopy(array, 0, array, n, size - n);
return new String(array);

}

Fig. 8: repeat method (some lines removed).

pay much attention to the function at all. This suggests
that good identifiers not only aid the comprehension of a
specific method, but that the lack of good names could
lead to the need to comprehend additional methods.

The control group reached a correct answer in 3.5–6.5
minutes, while the experimental group needed 5–11 min-
utes, with no significant separation (Figure 7). The control
group seemed to get their understanding from the parame-
ters, while the experimental subjects got the intuition from
identifying the patterns where the returned string size is
the original string’s length times count. However, they
were a bit hesitant with their answer, starting with “in
my opinion” and a confidence level of 60%, or “my guess
is” with 80%.

Moreover, participants mentioned that some of the
names are confusing. Specifically, size and len have
practically the same meaning, but one pertains to the
input and the other to the output. count is imprecise: its
role is to state the number of times to repeat and not to
count. Finally, string is a redundant name for a String
type variable, and can be overlooked as String the type
when scanning the code.

F. abbreviateMiddle
This method abbreviates a String to the given length,

by exchanging its middle with the provided replacement
string (Figure 9). It is relatively short, but all subjects
needed to verify every line in order to understand what it
does. We attribute this to the fact that its functionality
is very unique. In fact, it was hard for the subjects to
grasp that there is a method that does such a thing, they

public static String xxx(final String str,
final String middle, final int length) {

// some lines not shown
final int targetSting = length-middle.length();
final int startOffset = targetSting/2+targetSting%2;
final int endOffset = str.length()-targetSting/2;
final StringBuilder builder = new StringBuilder(length);
builder.append(str.substring(0,startOffset));
builder.append(middle);
builder.append(str.substring(endOffset));
return builder.toString();

}

Fig. 9: abbreviateMiddle method (some lines removed).
targetSting typo in the source.

did not understand “why would someone write a method
for that?” Evidently, when the apparent functionality does
not make sense, it is harder to comprehend the code.

Moreover, the variable names were not meaningful and
even misleading. Perhaps the most offending one is the int
targetString. The name implies a string, but the type is
an integer, and the actual usage is to calculate the length
of those parts in the original string that will be retained
in the output string. So this name is obviously misleading;
a better name could be something like lengthToCopy.
Likewise, the parameter length is too general, and par-
ticipants asked “length of what?”, which led them to all
kinds of directions. A more appropriate name might have
been targetLength.

Presumably due to the bad names, the subjects who re-
ceived the control treatment seemed to be more confused.
One of them gave up after 21 minutes, and another reached
a wrong answer. The experimental subjects took about the
same time and all reached correct answers (Figure 7).

VI. Discussion
Given the above results, we now summarize their impli-

cations for the research questions, as well as unexpected
observations such as the detrimental effect of bad names.

A. The importance of meaningful names
The results for the first three methods (reverse,

indexOfAny, and substringsBetween) show a clear sepa-
ration between treatments. In all three methods the time
it took participants to reach comprehension under the

8



control treatment was shorter than the time needed with
the experimental treatment, where variable names were
replaced by a, b, c, and so on. This result was statistically
significant at a level of 0.05 using the Mann-Whitney test.
It conforms with previous results in the literature that also
showed names to be important [6], [16], [24].

The flip side of meaningful names is misleading names.
The replaceChars and abbreviateMiddle methods pro-
vide striking examples. With these methods participants
who received the experimental treatment were found to
perform better despite the missing identifier names! More-
over, participants in the control treatment, who saw the
full original identifier names, tended to make mistakes
and arrive at wrong conclusions. Obviously, bad names
can mislead just as much as good names inform. This is
not a deep observation, but our results do demonstrate
and quantify the effect using real production code and
professional developers.

In another method, repeat, variables were not so good,
but not as bad as the misleading variables noted above.
In addition, two methods suffered from a clash between
identifier names and their type. In replaceChars this was
a mismatch between the type String and the name chars.
In indexOfAny hiding the plural name led to masking of
the variable parameters notation.

Importantly, we did not select these methods to demon-
strate bad names, and in fact we did not realize how bad
their variable names were when we started the experiment.
The fact that half of the methods we selected turned out
to have problematic names is a warning that such names
are most probably not uncommon. This may explain why
results reported in the literature are sometimes inconsis-
tent with each other.

B. Parameters vs. Locals
Our experiments indicate that parameters contribute

more to the code comprehension than locals: they were
deemed more beneficial by the participants in 79% of the
cases. Figure 10 shows the distribution of answers for
the different methods. In some cases, notably reverse,
indexOfAny, and abbreviateMiddle, parameters were
nearly universally preferred. This is notable as it implies
that local variables alone were not enough, and the partici-
pants really needed the parameters in order to understand
these methods. We believe this can have several reasons:

• Parameter names are more carefully chosen by the
original developers. Developers may even tend to
embed comprehension beacons in parameters because
they are part of the interface that defines the method.

• Because parameters are part of the header, they might
facilitate a more top-down approach to comprehen-
sion. As one subject phrased it: “Parameters are more
beneficial, since once I have a clear starting point
everything else is easier”.

• Missing information about local names can be com-
pensated by seeing how they are computed.

reverse

indexOfAny

substri
ngsBetw

een

rep
laceC

hars
rep

eat

abbreviateM
iddle

0

1

2

3

4

5

6

7

pa
rt

ic
ip

an
ts

parameters
locals79%

21%

Fig. 10: parameters vs. locals: which was claimed to be
more significant for comprehension.

However, in some cases it was not the parameters
that mattered, but which identifiers were revealed first.
This was especially prominent in substringsBetween and
replaceChars, where the first variables to be revealed—
either parameters or locals—were always sufficient for
comprehension. This can happen when the main beacon
for comprehension appeared in both the parameters and
the local variables. It suggests that at least in some cases
it’s not the location or type of variables but their actual
name that makes the difference. Indeed, in the majority
of cases where participants chose the local variables as
more beneficial, the main beacon was embedded in the
parameters as well.

VII. Limitations and threats to validity
As noted above, several decisions about the experimen-

tal design were taken specifically to mitigate threats to
validity. However, other threats remain.

Construct validity refers to correctly measuring the
dependent variable, in our case the time to understand
a method. A possible risk stems from our experimental
procedure which allows a dialog between the observer and
subject. This requires that the observer will restrain him-
self from pointing the subject to the solution or misleading
him away from it. So, there is the risk that the observer
will affect the comprehension process by mistake.

Another possible problem is the dynamic treatment
where new information is revealed along the way. This is
expected to assist in the comprehension process, but it also
requires flexible thinking to assimilate the new information
[9]. Individuals who are less flexible may suffer from the
new information.

Internal validity refers to causation: are changes in the
dependent variable necessarily the result of manipulations
to treatments? A possible problem in our work is that
sometimes local variable names may mirror parameter

9



names. For instance, given a parameter called str, a
method may include a local variable called strLength for
its length. As a result the separation of parameters from
locals is compromised: even if we remove parameter names,
the information leaks via the local name. In addition,
information may leak due to the use of library functions.
These problems seem unavoidable when using real code.

Another risk is that parameters may have been found
to be more important because, being part of the API,
they more directly correlate with the question of “what
does the method do?”. Moreover, the attribution of effect
to variables may be too strong, as in the experiments we
masked the method comments and the method name. In
real life programmers can benefit from these additional
beacons, and the effect of variable names will be reduced.

External validity refers to generalization. Conducting
the experiment on a small number of methods, perform-
ing actions on arrays and strings, may not be generally
representative. Moreover, the fact that the authors of this
paper chose those methods contains the risk of bias. Still,
we did use 6 different methods and observed a range of
behaviors. The recruitment of only male subjects working
at the same company, though intentional, may lead to
lack of generalization outside the company and to female
developers.

VIII. Future Work

Our choice to replace the method names with “xxx”
makes the study less realistic, as names are naturally avail-
able when developers attempt to understand a method.
Moreover, it mixes the understanding of a method’s func-
tionality (in other words, its “contract”) with the un-
derstanding of its code (the contract’s implementation).
Therefore two variations of the current experiment should
be performed to complete the picture. First, we would like
to conduct experiments with the original method names in
place, to examine the effect of the method name relative
to the variables. These experiments thus focus on the
API level. Second, we want to replace the “what does the
method do?” question with a more code-related task like
debugging or refactoring. Such experiments focus on the
implementation level. Taken together, these experiments
are more realistic as they have a better match of the
experimental conditions and the task.

Another problem with our design is that developers
usually do not focus exclusively on a single method, and
the patterns in which methods call each other naturally
convey information. A big challenge is therefore to improve
the experiments’ realism by increasing the scope from a
single method to a class or package.

Finally, all these experiments will benefit from being
reproduced using other code and different experimental
subjects (specifically including women). There are most
probably myriad subtle effects at play, e.g. the quality
of names, which are hard to quantify and characterize.

The cumulative work of multiple researchers is needed to
achieve more comprehensive results.

IX. Conclusions
Replicating previous work on identifier naming recon-

firms that names have a large impact on the compre-
hension of code. Good names can effectively serve as the
code’s documentation, and are instrumental for compre-
hension. We also showed that method parameter names
are typically more significant for comprehension than local
variable names. This can be because parameter names are
more carefully chosen due to their part in the API, and
thus in the definition of the method. Alternatively, it can
just be due to their location at the top of the method.

Surprisingly, three of the six methods we used turned
out to have problematic names that even led to compre-
hension errors. These demonstrate that misleading names,
or names that clash with their types, are worse than
meaningless names like consecutive letters of the alphabet.
But these names were not meant to be misleading. This
reflects the subjective nature of naming, where a name
that one developer thinks is meaningful can be misleading
for another developer.

The main implication of our work is that names must
be picked with caution and given careful attention, so
they reflect the concept or role represented by each vari-
able. But different people have different mindsets and
backgrounds, which may lead to misunderstandings. Thus
it would be interesting to map additional examples of
misleading names, and try to identify common traits that
make them bad. We leave this to future work.

Extending this, our results suggest practitioners would
benefit from including the issue of naming in code reviews,
by making sure that all participants interpret the names in
the same way. Current practice is that code reviews follow
extensive checklists of what to look for, but none of these
checklists address naming problems. Moreover, bad names
are not considered to be defects and do not figure in defect
reports. They should.

More generally, our work highlights the need for ad-
ditional research on how names are interpreted and how
better names can be chosen. An ambitious goal would be
to devise tools capable of effective automatic evaluation
and suggestion of meaningful names. Recent work has
exhibited progress on this front, using techniques from
natural language processing and machine learning [1], [2].
Time will tell whether this can indeed compensate for the
subjective nature of naming.

Verifiability
All versions of the methods used in this study are

available at http://bit.ly/2bbosZL.

Acknowledgments
This study was made possible by its volunteer partici-

pants. Thank you all. This research was supported by the
ISRAEL SCIENCE FOUNDATION (grant no. 407/13).

10



References
[1] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Learning

natural coding conventions”. In 22nd Foundations Softw. Eng.,
pp. 281–293, Nov 2014, DOI:10.1145/2635868.2635883.

[2] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Suggesting
accurate method and class names”. In 10th Joint ESEC/FSE,
pp. 38–49, Sep 2015, DOI:10.1145/2786805.2786849.

[3] V. Arnaoudova, M. Di Penta, and G. Antoniol, “Linguistic
antipatterns: What they are and how developers perceive them”.
Empirical Softw. Eng. 21(1), pp. 104–158, Feb 2016, DOI:
10.1007/s10664-014-9350-8.

[4] V. Arnaoudova, L. M. Eshkevari, M. Di Penta, R. Oliveto,
G. Antoniol, and Y.-G. Guéhéneuc, “REPENT: Analyzing the
nature of identifier renamings”. IEEE Trans. Softw. Eng. 40(5),
pp. 502–532, May 2014, DOI:10.1109/TSE.2014.2312942.

[5] D. Binkley, M. Hearn, and D. Lawrie, “Improving identifier
informativeness using part of speech information”. In 8th Work-
ing Conf. Mining Softw. Repositories, pp. 203–206, May 2011,
DOI:10.1145/1985441.1985471.

[6] S. Blinman and A. Cockburn, “Program comprehension: Inves-
tigating the effects of naming style and documentation”. In 6th
Australasian User Interface Conf., pp. 73–78, Jan 2005.

[7] B. Caprile and P. Tonella, “Restructuring program identifier
names”. In Intl. Conf. Softw. Maintenance, pp. 97–107, Oct
2000, DOI:10.1109/ICSM.2000.883022.

[8] F. Deißenböck and M. Pizka, “Concise and consistent naming”.
In 13th IEEE Intl. Workshop Program Comprehension, pp.
97–106, May 2005, DOI:10.1109/WPC.2005.14.

[9] C. G. DeYoung, J. B. Peterson, and D. M. Higgins, “Sources of
openness/intellect: Cognitive and neuropsychological correlates
of the fifth factor of personality”. Journal of personality 73(4),
pp. 825–858, 2005.

[10] K. A. Ericsson and H. A. Simon, Protocol analysis. MIT press
Cambridge, MA, 1993.

[11] D. G. Feitelson, “From repeatability to reproducibility and
corroboration”. Operating Syst. Rev. 49(1), pp. 3–11, Jan 2015,
DOI:10.1145/2723872.2723875.

[12] G. W. Furnas, T. K. Landauer, L. M. Gomez, and S. T.
Dumais, “The vocabulary problem in human-system com-
munication”. Comm. ACM 30(11), pp. 964–971, 1987, DOI:
10.1145/32206.32212.

[13] E. M. Gellenbeck and C. R. Cook, “An investigation of proce-
dure and variable names as beacons during program comprehen-
sion”. In 4th Workshop on Empirical Studies of Programmers,
pp. 65–79, 1991.

[14] S. Haiduc, J. Aponte, and A. Marcus, “Supporting program
comprehension with source code summarization”. In 32nd
Intl. Conf. Softw. Eng., vol. 2, pp. 223–226, 2010, DOI:
10.1145/1810295.1810335.

[15] A. Hindle, E. T. Barr, M. Gabel, Z. Su, and P. Devanbu, “On
the naturalness of software”. Comm. ACM 59(5), pp. 122–131,
May 2016, DOI:10.1145/2902362.

[16] D. Lawrie, C. Morrell, H. Field, and D. Binkley, “What’s in a
name? a study of identifiers”. In 14th Intl. Conf. Program Com-
prehension, pp. 3–12, Jun 2006, DOI:10.1109/ICPC.2006.51.

[17] R. C. Martin, Clean code: a handbook of agile software crafts-
manship. Pearson Education, 2009.

[18] N. Nachar, “The mann-whitney U: A test for assessing whether
two independent samples come from the same distribution”.
Tutorials in Quantitative Methods for Psychology 4(1), pp.
13–20, 2008.

[19] M. P. O’Brien and J. Buckley, “Inference-based and expectation-
based processing in program comprehension”. In 9th IEEE Intl.
Workshop Program Comprehension, pp. 71–78, 2001.

[20] H. Osman, A. van Zadelhoff, D. R. Stikkolorum, and M. R. V.
Chaudron, “UML class diagram simplification: What is in the
developer’s mind?” In 2nd Workshop Empirical Studies Softw.
Modeling, art. no. 5, Oct 2012, DOI:10.1145/2424563.2424570.

[21] D. L. Parnas and P. C. Clements, “A rational design process:
How and why to fake it”. IEEE Trans. Softw. Eng. SE-12(2),
pp. 251–257, Feb 1986.

[22] V. Rajlich and N. Wilde, “The role of concepts in program com-
prehension”. In 10th IEEE Intl. Workshop Program Comprehen-
sion, pp. 271–278, Jun 2002, DOI:10.1109/WPC.2002.1021348.

[23] J. Rilling and T. Klemola, “Identifying comprehension bottle-
necks using program slicing and cognitive complexity metrics”.
In 11th IEEE Intl. Workshop Program Comprehension, pp.
115–124, May 2003.

[24] F. Salviulo and G. Scanniello, “Dealing with identifiers and
comments in source code comprehension and maintenance:
Results from an ethnographically-informed study with stu-
dents and professionals”. In 18th Intl. Conf. Evaluation &
Assessment in Softw. Eng., art. no. 48, May 2014, DOI:
10.1145/2601248.2601251.

[25] R. Stoll, “Type-safe PHP: Java code conventions” 2014.
[26] K. VanLehn, “Cognitive skill acquisition”. Ann. Rev. Psychol.

47, pp. 513–539, 1996, DOI:10.1146/annurev.psych.47.1.513.
[27] A. von Mayrhauser and A. M. Vans, “Program comprehension

during software maintenance and evolution”. Computer 28(8),
pp. 44–55, Aug 1995, DOI:10.1109/2.402076.

11


