On ldentifying Name Equivalences
In Digital Libraries

Dror G. Feitelson
School of Computer Science and Engineering
The Hebrew University of Jerusalem
91904 Jerusalem, Israel

Abstract

The services provided by digital libraries can be much inapdoby correctly identifying
variants of the same name. For example, this will allow fdtdrveretrieval of all the works
by a certain author. We focus on variants caused by abbi@viaof first names, and show
that significant achievements are possible by simple leaitalysis and comparison of names.
This is done in two steps: first a pairwise matching of nameeiformed, and then these are
used to find cliques of equivalent names. However, these si@p each be performed in a
variety of ways. We therefore conduct an experimental amalysing two real datasets to find
which approaches actually work well in practice. Interggiy, this depends on the size of the
repository, as larger repositories may have many moreaimdmes.

1 Introduction

People have names. In fact, most have two or three hames,oamel lsave four or more. The
names serve to identify people; they can be viewed as latiatshad to the named individuals.

Regrettably, the mapping of names to people is not one--8rveral individuals may share
the same name. Some individuals change their name durimdjtbigme, e.g. after getting married
and establishing a new family. But the most common problethdsinconsistent use of names.
People often do not use all their names, or abbreviate thehns |€ads to a situation where a
many-to-many mapping exists from names to people (Fig. 1).

The fact that the mapping is many-to-many rather than or@ocauses various problems in
using digital libraries. For example,

e The ACM portat includes the following distinct entries in its author index

DROR G, FEITELSON
DROR FEITELSON
D, G, FEITELSON
D, FEITELSON

1The digital library of the Association for Computing Machiwy, a large professional society of computer scien-
tists, at URLhttp://portal.acm.org/.

| John Smith [—_—

9. Smith A

Jill Smith

Figure 1:Naming is a many-to-many mapping of names to people.

All of these refer to the same person. If this is a common dasdandex is four times larger
than it need be, requiring extra browsing and scrolling.

e Having different names for the same person makes it hardeséahe data in the digital
library for automatic classification of papers and identifyequivalent entries. Also, data
about co-authorship may be misleading rather than helpful.

¢ A side effect of the distinction among the different nameaats of the same person is that
it is impossible to retrieve all the papers by this indivitatonce. Instead, the papers listed
under each name have to be retrieved separately. This ibtriewhen using the author
index and when conducting a search. For example, the CiteéSearch instructions say

For authors, list all variants that appear in citations,asafed by "or’, e.g. m
jordan or michael jordan or m i jordan or michael i jordan

but what if you don’t know all the variants? A possible alt#ive is to conduct a more gen-
eral search, say by specifying only the last name; this nskgeving many extra documents
by other people who have the same last name.

o Likewise, it is impossible to directly count the papers terit by an individual, or the ci-
tations to the work of an individual. While not the primaryay® of a digital library, such
actions are often performed in the process of evaluatingusimoas work. They are also
needed for more advanced services, e.g. the generationaafthor collaboration graph.

Of course, detecting name equivalences is also importaothier applications, e.g. the identifi-
cation of returning customers [2, 1]. In fact, digital libkes seem to be a relatively easy case,
because names are based on how the authors themselveshemitént print, rather than on how
they are entered into the system by other people.

Nevertheless, current digital libraries do not handle gnablem very well. The ACM portal
takes the conservative approach of retaining all namesegsaippear. This includes all variants of
each name, some of which are clear spelling errors. For ebeatte the following five entries in
the author index all represent Turing award winner NiklaughyV

2A digital library based on the concept of autonomous citatimexing [6], at URLhttp://citeseer.ist.psu.edul.

N WIRTH

N, WIRTH
NICKLAUS WIRTH
NiIKLAUS E, WIRTH
NIKLAUS WIRTH

The first one is just an abbreviation with thenissing, and the third one is an obvious misspelling.

The CiteSeer web site takes the opposite approach. Intitsgief most cited computer scien-
tists, only the first initial is ever used. This causes masyinitt names to be bundled together; for
example, the top entry is DJOHNSON, which could be any of at least 18 individuals, and proba-
bly more (according to a search in the DBLP dataBassomewhat surprisingly, this practice may
also split a single author into two: most of the papers by DANIEL HiLLIS, for example, are
attributed to W HiLLIS, but some to D HILLIS, because the first initial is sometimes dropped.

The goal of this work is to find automatic means to identifyla¢ure of the mapping of names
to people. Specifically, we want to identify situations inigthmultiple names actually refer to the
same person. This problem has attracted research for dokzgears, due to its obvious importance
in business and services, where names are often enteregdeicity due to mistranscription. One
early algorithm is the “soundex” method, in which names aapped to short codes that represent
the salient features of how they sound [4, p. 394]. Anotheéhés“metaphone” method, which
preserves more detail and is therefore more accurate [gs@ methods can be used to identify
large variations in the way last names (surnames) are wyitiet may also lead to many false
positives.

The present work is limited to identifying variationsfirst names, where the main source of
variability is different forms of abbreviation — a topic th@as not attracted much research in the
past. Moreover, we do so using lexical means, i.e. by onlygie names themselves. Extensions
based on semantic information are listed as future workeaéttd of the paper.

It should be noted that the problem we are addressing dodsmeta single “correct” answer.
For example, the names,GIERBERT and HERBERT W, may be two abbreviations of someone
with the three first names E®RGE HERBERT WALKER, but they may also be abbreviations of
two people with two first names each. It is impossible to knoent the names alone. What
we need is heuristics that work well practice We therefore use an experimental approach,
and evaluate our proposed heuristics by tabulating thefopeance on author names from two
online bibliographies. This enables the identificationte tveaknesses of each heuristic, and the
suggestion of a better one.

The next section outlines the framework used for identdymame equivalences. It also
presents the environment used for evaluations, and theati@h results for the different heuristics.
This is used to motivate the progression of heuristics betamn the following sections.

2 Framework and Evaluation

The framework employed by our system is outlined in Fig. 2e Titst step is to parse and normal-
ize the input names. This step is required in order to pretberelata for processing: to compare

3Another digital library of computer science, at URLtp://www.informatik.uni-trier.de/"ley/db/.

i Various names

Parsing and
normalization

Normalized names
Y
Pairwise
equivalences

Graph of equivalences
Y

Cliques of
equivalences

i Sets of equivalent names

Figure 2:System framework.

first names when the last name is the same, we need to knowsvnéitst name and what is a last
name. Itis also used to avoid simple problems, such as wargathat result from unusual capital-
ization or foreign accents. While not the focus of the présenk, we provide some comments on
this issue in Section 3.

The equivalence-detection algorithm itself operates mpwases. The first is matching pairs of
names to each other. This induces a (very sparse) graph the alhmes, where nodes are names,
and edges represent equivalences. The second is an amélysssgraph to identify sets of names
that are all equivalent to each other. Obviously, these sarame from connected components of
the graph. These phases are described in detail in Sectamd 8, respectively.

The developed heuristics are evaluated by tabulating gegformance on two sets of names.
The first set comes from the BoW datalfafg]. This database contains 3872 documents tagged
with 5740 author names. These relatively small numbersvaids a manual inspection and an
educated guess at which names are indeed equivalent. Tiné otithe heuristics is then compared
with the manual evaluation, and deviations are classifiedither false positives (the heuristic
claims an equivalence that is most probably not true) oefakgatives (the heuristic missed an
equivalence that most probably is true).

In addition, we also check the performance of our algoritoma small fragment of the ACM
Portal author index. The fragment used contained all theesawhere the last name starts with
the letters [E. There were 3076 such names. In this case a full manual itispes impractical,
because some last names have dozens of instances, makimyal m@mparison of all pairs very
error-prone. However, it is still possible to compare tHéedent heuristics to each other.

The evaluation using a fragment of a large database is impodue to non-trivial scaling
effects. In a very large database, many more documents aeeeth There is therefore a bigger
chance to observe variations on an author’'s name. In addthere is a bigger change to observe
multiple authors that share names or at least initials @igThis makes it harder to pick out those
names that are indeed equivalent to each other.

4This is an experimental bibliographic server, accessibléRL http://www.bow.cs.huji.ac.il/.

8 BoWw
£ 100 1 ACM
[
[
S 10 -
3 o
%]
2 1
T T T T
1 10 100 1000

rank of last name

Figure 3: The distribution of names in both datasets is Zipf-like, with different exponents. The
BoW dataset has an exponent of about 0.55, and the ACM datagaiponent of about 0.9.

The results of the evaluations are shown in Table 1. We takenlisual approach of showing
the results first, as this will facilitate and motivate theaduction of the various algorithms. Each
part of the results is discussed at the appropriate point.

3 Parsing and Normalization

3.1 Parsing Names

In order to compare names to each other, one must first detenvhere each name starts, where
it ends, what part constitutes the last name, what partsrateéimes, and whether any salutations
or suffixes are present. While definitely important, thisemsmf name equivalences lies outside
the scope of the present work. This disregard is possiblausecthe BoW data is based on the
BibTeX format, which has strict rules that make parsing e#sy

1. Sequences of names referring to different people areaeplzbyaAND without any commas.
Example: dHN SMITH AND JEFF SMITH AND JACK SMITH.

2. In a sequence of names identifying a person,

(a) If a comma is present, the part before the comma is thendaee, and the part after
the comma the first name. If multiple commas are present,heskast one. Example:
WATSON, JrR,, THOMAS J, .

(b) If any of the names starts with a lower-case letter, tseame starts from that point.
Everything before it is a first name. Exampl@HN VON NEUMANN.

(c) If all names start with upper-case letters, the last srithe last name and all previous
ones are first names.

SActually there are a couple of additional rules for spediaiomstances, but these ones give the gist.

5

BowW ACM
Total Total
Heuristic cliqgues False False| cliques False False
found positive negative found positive negativé

14

Simple match
independ clique 650 31(3) 47 306 8(9) 142

Strict match

independ clique 629 4 41 312 1 131
Strict match

weighted cliqug 645 4 26(1) 395 1 49(14)
Strict match

full names 649 4 22 441 7(2) 7(5)

weighted clique
numbers in parentheses indicate added members or missmpengfrom a real clique.

Table 1: Effectiveness of the different heuristics. In the BoW d#ta, correct number of cliques
according to a manual inspection is 666, and false posiinesnegatives are counted relative to
these manually identified cliques. For the ACM data such aualadentification is not available,
So false negatives and positives are counted relative tanaahaspection of the cliques found by
the algorithms.

The ACM Portal data is from an author index, and thus alreadyiged as individual first and last
names. We do however handle simple mundane issues, suanéiyiag initials without a period
with initials that do have a period (e.g. J witk) Jand partitioning sequences of initials into their
components (e.g. 8B, is A, B, with two distinct abbreviated names).

It should be noted that suffixes (such as)Jare actually a qualifier of the first name, but
are typically treated as part of the last name. We retainappmoach. Our data did not contain
any identified instance of a missing or wrong suffix. Howeteere are variations regarding the
separation of the suffix from the last name with a comma. Theséandled by the normalization.

We note in passing that several methods can be used whemtlted@ta is less forgiving. For
starters, one can compare input data with names that haverbeegnized in the past and are
already present in the database. When the data comes fromaiitt acquisition of documents, it
is possible to compare the list of authors at the beginninb thie list of references at the end. In
particular, self citations may provide important cluesareting the correct parsing of names, and
the equivalence of different abbreviations.

3.2 Name Normalization

Once the names have been parsed, it is advisable to norrtfatize We performed the following
types of normalization:

e Translate all upper-case letters to the correspondingrigase letters. This is useful in
multi-part names, in which the second part is sometimesisistently written with different
capitalizations.

700000 -
¢ 600000
% 500000
g 400000
E 300000
£ 200000
£ 100000 -

0

|

|

|

|

T T T T T T T
09 0104 11 05 09 05
‘00 01701 01 '02 '02 '03

Figure 4:Number of authors in the CiteSeer database is large and ggowi

e Remove all foreign accents. Again, we empirically find thates are often written incon-
sistently, either with the wrong accent or without the at@#ogether. Note, however, that
it is important to conserve the base letter. ExampleoWiAs, THOMAS, and THOMAS.

e Replace special characters by commonly-used alternatfeeexampleg is replaced by,
t by L, and 3 byss In some cases such a replacement can also be consideretéots
for exampleA is often written as\E.

e Remove all special marks, such as apostrophes. The onlyeta@sed are hyphens.

Actual examples illustrating the effect of these normaiaa on our datasets are given in the
appendix. By far the most important is to remove foreign atsseand doing so facilitates many
matches that seem to be correct. The second most importantranslate upper-case letters into
lower case. We did not observe situations in which these alizations led to erroneous results.

4 Pairwise Matching

The first phase of finding name equivalences is to identifpailis of names that potentially match
each other. As the dataset may be very large (Fig. 4), it isasanable to check all pairs. Rather,
we first divide the dataset into disjoint subsets accordmthé normalized last names. Within
each such set, we check for equivalences among the norehdiligenames. This is in harmony
with our focus on the variability among names that is conegat! in the first names, that may be
abbreviated in different ways.

The following sub-sections pertain to the second steptad.the matching of first names. We
first consider the comparison of two names in isolation, dreh tthe comparison of sequences
of first names. Note that we take a conservative approachdamdt attempt to correct spelling
errors and find names with small edit distances [1]. Ratheattempt to apply domain-knowledge
regarding the way names tend to be abbreviated.

Name Regexp Matches
Js Jok J,, JON, JOHN, JOHNNY, JOHNNIE, JO
JOE, JOSEPH J,-H,, J-H,, JE-HIE

JOHN john,x JOHN, JOHNNY, JOHNNIE
Jo-Ho Jex-hex Jo-Ho, J-H,, JE-HIE

Table 2: Turning names into regular expressions for matchjmenotes a match to any character,
and+ means that the previous element (in our case, tlierepeated zero or more times.

4.1 Matching Single Names

When are two names actually one and the same?

The simplest case is, of course, when they are indeed idnAnother simple case is when
one is an abbreviation of the other; for example, we cangadehtify J, with JOHN. But there
are other abbreviations that are also used, notably nickeam

Nicknames fall into two categories: Those that are a prefitheffull name and those that are
not. For example, AEX can appear as a short version afEXANDER. This is a prefix, and can
be handled easily as shown below. But. B may appear as a short version ofMMAM . This is
not a prefix, and can only be identified using table lookup.

Our proposed approach is to only try and identify nicknarhes éare a prefix of the full name.
This is done as follows. Whenever two names are compared se¢he shorter one to create a
regular expression, and match this regular expressiontixgttonger one. the regular expression is
obtained by removing trailing, if any, and allowing an arbitrary suffix. In the case of hypated
names, each part is treated separately. This is illustrat€able 2.

The problem with this approach is that it may also be the daseoine name just happens to be
a prefix of another name, without being a nickname. For exanfifiiN may be an abbreviation of
RONALD, but it may also be a distinct name by itself. WorseyP is a prefix of RuLA, without
being an abbreviation. We therefore tabulate all the mattiregt occurred in practice in our datasets
in the appendix. This indicates that the proposed appratttifies many real matches, while only
introducing a small number of false matches. In the BoW datésr example, 16 correct matches
depended on this feature, and only 3 incorrect matches weregluced. In the ACM dataset, there
were 24 correct matches and 12 incorrect ones. The most camoreect match was Steve as
an abbreviation for Steven; the incorrect ones were alebfiit. In both datasets, these incorrect
matches were responsible for most of the false positiveasaretjuivalence finding schemes based
on strict matching. However, many nicknames are misseclisedaey are not a prefix; in the Bow
dataset, there were 13 such cases, and in the ACM dataset6deetified (but it is plausible that
there were more, as a full manual inspection was not perfdymblike as an abbreviation for
Michael is the most common. Thus using table lookup shoulcdnsidered.

A special case occurs with hyphenated names. Such namesispdgydvarious alternative
forms: the second part can start with and upper-case or {oass letter (handled by our nor-
malization), the hyphen may be replaced by a space (turnsiggie hyphenated name into two
independent names), or the hyphen may be deleted altogaiheing a hyphenated name into a
regular name, possibly with special capitalization). Asthoint we chose to only give cursory

treatment to these problems. We retain hyphens and try tonfuaith parts, but do not attempt to
treat all other variations. The full treatment of hyphedatames is left to future work.

4.2 Simple Matching Algorithm

Given the regular-expression-based mechanism to comayle sames, we turn to the compari-
son of sequences of names. It is obvious that sequencestafdires are often abbreviated, and
sometimes some of the names are simply not used. Howeveilffevalee observation that names
which are retained will appear in the same order (there wahg two exceptions found in our
datasets). This motivates the following simple matchirg:ru

Each name appearing in the shorter list must be matched withree in the longer
list, in the same order.

Note that we do not place a special emphasis on the first nardej@anot distinguish it from the
middle names. This is because there are quite a few peopleveher their middle names, and
therefore tend to discard the first name and retain the mmtbenvhen abbreviating.

However, this simple matching rule produces dismal resaltsl is especially prone to false
positives (see top row in Table 1). The reason is that thamne @reference to the matching of full
names as opposed to abbreviations. For example, it is ¢leaittis unlikely that DwvID P, is a
variant of RuL, but if we skip the DwvID in the longer name, and then match the initial With
the name Paul, we abide by the above rule.

4.3 Strict Matching Algorithm

To give full names their proper due, we propose the followiurg:

If we match any abbreviation in a sequence of names, we msstrahtch all full
names that appear in that sequence.

Abbreviations, for the purpose of this rule, are singlesiettames such as br J,-H,. This solves
problems like the one posed by the above example, becaugawfnt to match P with Paul, we
must also match BviD . If we cannot do so we declare that the two name sequenced dwabch.
Note that in implementing this rule we need only count matchames in the longer sequence,
because if all names in the shorter sequence are not matbleedatching fails anyway.

However, this does not fully solve the problem. Consideramiaig the names B&vID P, with
the names DPauL. This will abide by the rule that all full names need to be rhatt What is
missing is a sense of directionality: if we match a full namaf one sequence to an abbreviation
in another, we should not do so in the other direction as Wélis is formulated by

Matching full names to abbreviations should only be doneria direction. For this
rule, skipping a full name qualifies as matching it to an abiateon.

Note that in implementing this rule we should also check raimehe longer sequence that are
left over after all names in the shorter sequence are matched

The experimental results in Table 1 show that using thetstratching rules eliminates prac-
tically all false positives. We therefore base the questcfimues of equivalent names on these
matching rules.

o |chael Joseph

M
Mark /
M

Figure 5: Example of finding a high-weight clique in a graph of equivales weighted by names
matched.

T Mlchael J.

5 Choosing Among Alternative Matches

Given the set of pairwise equivalences among names, we wdind sets of names that are all
equivalent to each other — in other words, we want to find @guFinding maximal cliques is
in general NP-complete, but efficient algorithms are knolat tvork on large graphs [8]. In our
case in particular this is not a problem, because we work nofenames that have the same last
name, and these are typically of limited size. The variahtsigue matching we use are described
below.

The description here considers the algorithm as an offgimeess. In a real digital library
it should be on-line: we have an existing database with edgmces that have been identified
in the past, and need to add new authors as they are introdBegdhis can easily be done by
re-computing all equivalences for the new author’s last@ahus reverting to the off-line version.

5.1 Independent Cliques

The simplest approach to identifying cliques of equivaterhes is to require independent cliques.
This is a simple quadratic algorithm: for each name, travésslist of equivalences, and verify
that this set forms a clique. If they do, they are all con®degquivalent. If any of them have
additional equivalences outside the set, then the membénsset are not considered equivalent
to each other.

The results in the second row of Table 1 indicate that thike/pretty well for small reposi-
tories like BoW. However, it is too restrictive for large wegitories like that of the ACM. In large
repositories there may be very many names that share thelaasnmame. It is then highly proba-
ble that several names will share an initial, and thus nobhdependent of each other. We therefore
need to allow cliques that have some external neighborsdiffegence between the clique mem-
bers and the external neighbors is that the members are @edne each other more tightly. For
this, we need to quantify the strength of the matching betweaenes.

5.2 Waeighted Cliques

Weighted cliques are cliques based on high-weight equicale The weight is defined simply by
the number of names matched: matching three names credtesges connection than matching
only two, and matching two is better than only one.

A simple example of the effect of such weighting is given ig./. The initial M, matches
all other names, and therefore no independent cliques aslpe. But if we use weighting by
the number of names matched, we can find that the name3 MMICHAEL J,, and MCHAEL

10

JosepHform a clique of weight 2 (heavy lines in the figure). All thédnets are connected to this
clique by links of weight 1.

The heuristic for finding cligues must now be modified to acikdeolge the weights on the
links. In particular, the order in which names are considdrecomes important. Our solution is
as follows, and is illustrated in Fig. 6.

1. First sort the names according to their heaviest equicalefrom heavy to light. In the
example the first are AB, C, and ABe BosB C,, then ACE D, E,, A, D,, and ABE B.,
and finally A, and ABE F, G,. (Note that the maximal equivalence does not necessarily
correspond to the number of names.)

2. For each one, identify the set of its neighbors that alelthe highest equivalence score. In
the example, starting from AB, C., it has one such neighbor:s%& BoB C..

3. Verify that this set is a high-weight clique. This mearat ihis a clique when all edges with
lower weights are ignored. Cases of only two nodes, as inxhmple, are sure to pass this
test. If the set is indeed a clique, try to expand it. Othesweturn to step 2.

4. Try to expand the found clique by adding names that haverdaveight connections. The
criterion for adding to the clique are that the new name gshballinked to all current clique
members, and furthermore, that all its top-weight neightstrould be in the clique. In the
example, BE B, will be added, but A will not.

5. When finished with this clique, continue with the main Igsfep 2), but skip all names that
have already been assigned. In the example, this will findhenalique composed of 2
D, E, and A, D..

The results in Table 1 show that using weighted matchingtifies many of the missing
cliques. But when large groups of names are involved, tmsignough. Consider the example in
Fig. 7(a). When all names have the same weight, there are 8p @gaial-weight connections that
it is impossible for any clique to stand out. But if we give glier weight to the matching of full
names, two obvious candidates stand out (Fig. 7(b)).

The question is what weight to give to the matching of full m&sm Specifically, should full
names count more or less than additional names? Our resditsiie that matching more names is
more important than matching full names, so we only giveralines a sight advantage: a weight
of 1.1 as opposed to a weight of 1 when matching an abbremiatio

Ace D. E.

AN
A D.// N P

Abe F.G. AbeB.

Figure 6:lllustrative example of the heuristic for weighted cliques

11

David A. David A.
Richard / Richard /

Andrew Andrew

Richard A. A.\ / Richard A. A./ /
Andrew G. / Andrew G.
Eugene A. Eugene A.
(a) all weight equal (b) higher weight for full names

Figure 7:Adding weight to matching of full names.

- Mary|ann P Ray;ondﬂ?‘.‘::
Lawrence Mark 3 -:Ilaaymond ol
Marcus W. |/ i R'E)'Hé'h" David L.
David David P.
Marc J\ g D./ \ David S.
/ R D.
Boris
< K
. P

Birgitt / ~ \ Doron DHA"€

Bryan Richard K.

: H Michael

: | Robert H.

Bryan E

0y
0 R
uuuuuuuuuuuuu

Roxanne Hsu

Michael RoberL’ Raisa E.

2 Cligue found using weighted matching

I Clique requiring extra weight for full names

Figure 8: Largest connected component from the graph of equivalevfgesople with last name
FELDMAN from the ACM dataset.

The final results are shown in the bottom row of Table 1. Thaawgment is especially striking
for the ACM data. The reason is that this is based on a verg datgbase, including some popular
names that are repeated dozens of times. As a result, sitgauch as those portrayed above do
occur in practice. An example based on the last namebMAN is given in Fig. 8. In this large
connected component of the graph, no cliques are found yf &ne required to be independent.
By using weighted cliques, three are found. By giving fulhmes extra weight, another four are
found. All of these are considered correct, and no additiceed equivalences seem to exist in this
example.

12

C. Christof

/ Christof W.
Chris
Christol

Figure 9:Correcting a misspelled nam€RrRISTOL) may allow a new clique to be identified.

6 FutureWork

Our heuristics achieve significant simplifications in théhau indices of digital libraries. In Bow,
the number of distinct authors is reduced from 5740 to 3580thé ACM data, it is reduced
from 3076 to 1007. In both cases, the vast majority of egaive¢s found are thought to be true.
However, these heuristics only use lexical data, and dovest exhaust this type of data.

The main issue that is yet unresolved is the best handlingmfiénated names. Hyphenation
is especially common in Asian and French names. Based onabaisiseems that Asian authors
at least tend not to abbreviate their names. The rules apatepo Asian names may therefore be
different from those that are best for western names. Fanpla it seems that partial matching
that was good for identifying western nicknames only introes errors in the context of Asian
names. Also, the handling of missing hyphens deserves mane w

Another issue that should be handled is the automatic eitioin of errors. Any algorithm
can only be as good as its input. It is plausible that at leastesmisspellings can be caught by
comparing with other names already in the database, andtisglehe more common version.
This can be done based on matching a core code that reprédserissence of each name, as was
suggested in early applications requiring the retrievadarhes [2].

In this context, it should be noted that correcting speléngrs will not only add the misspelled
names to existing cliques, but will also allow many additibcliques to be found. The reason is
that misspellings cause the current heuristics to think difeerent names are equally likely; by
eliminating such competition, new cliques will emerge (FYy

A complete new field of study is the use of semantic infornmatibhe matching of names can
be integrated with checking co-authors, the venues wherksaare published, and the keywords
that appear in the full text of authored articles. Itis alsegible to glean information from common
linking to papers from authors’ home pages. Use of such seoaformation is expected to be
useful for the hardest cases, e.g. when different peoplakyshare the same name.

Finally, the effect of the size of the dataset on the resulth® heuristics is very interesting.
We showed that as the dataset increases in size, the hesinsed a higher degree of fidelity to
extract the real equivalences. It would be valuable to condepeated measurements on a variety
of database sizes, to verify and characterize this effect.

References

[1] G. B. Bell and A. Sethi, Matching records in a national medical patient indeomm. ACM
44(9), pp. 83-88, Sep 2001.

13

[2] L. Davidson, ‘Retrieval of misspelled names in an airlines passengerdeggaten. Comm.
ACM5(3), pp. 169-171, Mar 1962.

[3] D. G. Feitelson, Cooperative indexing, classification, and evaluation iMBo In 7th IFCIS
Intl. Conf. Cooperative Information SysO. Etzion and P. Scheuermann (eds.), pp. 66-77,
Springer-Verlag, Sep 2000. Lect. Notes Comput. Sci. va)119

[4] D. E. Knuth, The Art of Computer Programming. Vol 3: Sorting and Searghidddison-
Wesley, 2nd ed., 1998.

[5] L. Lamport,LaTeX: A Document Preparation SysteAddison Wesley, 2nd ed., 1994.

[6] S. Lawrence, C. L. Giles, and K. BollackeDfgital libraries and autonomous citation index-
ing”. Computer32(6), pp. 67—71, Jun 1999.

[7] L. Philips, “Hanging on the metaphohe Computer Language Magazirgl2), pp. 38—44,
Dec 1990.

[8] E. Tomita and T. Seki, An efficient branch-and-bound algorithm for finding a maximu
cligué’. In Discrete Mathematics and Theoretical Computer Scigppe278-289, Springer-
Verlag, Jul 2003. Lect. Notes Comput. Sci. vol. 2731.

A. Examplesof Real data

The following is a listing of data quoted in the text.
In the BoW dataset, the following matches relate to norragitin:

o Normalizations that facilitated correct matches

1. AbAawms, Il / AbAams I

BJZRN/ BJORN

BULENT / BULENT

CHAO-JU / CHAO-JU

CHUAN-LIN / CHUAN-LIN

BREZANY / BREZANY
GARCIA-MOLINA / GARCIA-MOLINA
HECTOR/ HECTOR

© © N o o~ DN

GUNTER / GUNTER

=
o

. st / JOSE(2 times)

[EEN
=

. KI-CHANG / KI-CHANG

[EEN
N

. LOHR/ LOHR

=
w

. HANG-HUA / SHANG-HUA

14

14. STEELE, JR, / STEELE JR,
15. THIEBAUT / THIEBAUT

e Normalizations that caused what are probably incorrecthest
None found.
e Normalizations that were not identified
1. MANNER / MAENNER
In the ACM dataset, the following matches relate to nornadions:
e Normalizations that facilitated correct matches

1. ANTONIO / ANTONIO / ANTONIO
CARRA / CARRA’

GYORGY / GYORGY
JEROME / JEROME

JRi / JIRI

JosE / JoSE

RAPHAEL / RAPHAEL

ROGERIO / ROGERIO

© ® N o ok WD

SANDOR / SANDOR (2 times)
. ToMAs / TOMAS / TOMAS
11. Ty. /T.-Y.

[EEN
o

e Normalizations that caused what are probably incorrecthest
None found.
e Normalizations that were not identified
1. BJORN/ BJOERN
In the BoW dataset, the following matches relate to nickreme
¢ Nicknames that facilitated correct matches

1. ALEX / ALEXANDRU
ANGELO/ ANGELOS

DAN / DANIEL

GREG/ GREGORY (2 times)

o b~ N

JEFF/ JEFFREY

15

KEN/ KENNETH
KRITHI / KRITHIVASAN
PETE/ PETER

PHIL / PHILIP

10. RRITH / PRITHVIRAJ

© ® N O

11. RcH/RICHARD

12. RON/ RONALD

13. SAM / SAMUEL

14. STEVE / STEVEN (2 times)

¢ Nicknames that caused what are probably incorrect matches

1. ONG/ JONG-UK
2. LI/ Lixia
3. U/ SuUKIL

o Nicknames that were not identified

1. Avi / ABRAHAM

BiLL / WILLIAM

CEZARY / CZAREK
CHARLIE / CHARLES
GARY / GREGORY

JM / JAMES

KATHY / KATHERINE
MIKE / MICHAEL (3 times)

© © N O h WD

Rick / RICHARD

[EY
o

. Tom/ THOMSON
11. WM / WILLIAM

In the ACM dataset, the following matches relate to nickname
¢ Nicknames that facilitated correct matches (includingrabiations and misspellings)

1. ALEX / ALEXANDER
ALEX / ALEXANDRE
Aw / Awi

BRIGIT / BRIGITT

o k0D

CH / CHRISTOPHER

16

CHRIS / CHRISTOPHER(2 times)
DeEB / DEBORAH

DoN / DONALD

DouG/ DOUGLAS

10. BED / EDWARD (2 times)
11. GREG/ GREGORY

12. EFF/ JEFFERY

13. LEO/ LEONIDAS

14. BT / PATRICIA

15. PHIL / PHILLIP

16. RON/ RONALD

17. RONALD / RONALDO

18. SD / SIDNEY

19. SreVE/ STEVEN (2 times)
20. TH/ THOMAS

21. URI/ URIEL

22. YA | YAKOV

© 0 N O

¢ Nicknames that caused what are probably incorrect matches

=

ANNE / ANNEMARIE
CHIH-CHUN / CHIH-CHUNG
DE (as part of 8 ENE DE FREITAS) / DENIS
JosSE/ JOSEPH

JUN / JUNKANG

KE / KEQI

MARY / MARY-ELLEN

PaUL / PAULA

QIAN / QIANGZE

. TIAN / TIAN-JIN

. XIANG / XIANG-LI

. YONG/ YONGXIAN

13. ZHANG / ZHANGJUN

© 0o NG hrwDN

=
N B O

o Nicknames that were not identified

1. Dave / DAVID
2. MIKE / MICHAEL (4 times)
3. RIcK / RICHARD

17

