
On Identifying Name Equivalences
in Digital Libraries

Dror G. Feitelson
School of Computer Science and Engineering

The Hebrew University of Jerusalem

91904 Jerusalem, Israel

Abstract

The services provided by digital libraries can be much improved by correctly identifying
variants of the same name. For example, this will allow for better retrieval of all the works
by a certain author. We focus on variants caused by abbreviations of first names, and show
that significant achievements are possible by simple lexical analysis and comparison of names.
This is done in two steps: first a pairwise matching of names isperformed, and then these are
used to find cliques of equivalent names. However, these steps can each be performed in a
variety of ways. We therefore conduct an experimental analysis using two real datasets to find
which approaches actually work well in practice. Interestingly, this depends on the size of the
repository, as larger repositories may have many more similar names.

1 Introduction

People have names. In fact, most have two or three names, and some have four or more. The
names serve to identify people; they can be viewed as labels attached to the named individuals.

Regrettably, the mapping of names to people is not one-to-one. Several individuals may share
the same name. Some individuals change their name during their lifetime, e.g. after getting married
and establishing a new family. But the most common problem isthe inconsistent use of names.
People often do not use all their names, or abbreviate them. This leads to a situation where a
many-to-many mapping exists from names to people (Fig. 1).

The fact that the mapping is many-to-many rather than one-to-one causes various problems in
using digital libraries. For example,

• The ACM portal1 includes the following distinct entries in its author index:

DROR G◦ FEITELSON

DROR FEITELSON

D◦ G◦ FEITELSON

D◦ FEITELSON

1The digital library of the Association for Computing Machinery, a large professional society of computer scien-
tists, at URLhttp://portal.acm.org/.

1



Jill Smith

J. Smith

John Smith

Figure 1:Naming is a many-to-many mapping of names to people.

All of these refer to the same person. If this is a common case,the index is four times larger
than it need be, requiring extra browsing and scrolling.

• Having different names for the same person makes it harder touse the data in the digital
library for automatic classification of papers and identifying equivalent entries. Also, data
about co-authorship may be misleading rather than helpful.

• A side effect of the distinction among the different name variants of the same person is that
it is impossible to retrieve all the papers by this individual at once. Instead, the papers listed
under each name have to be retrieved separately. This is trueboth when using the author
index and when conducting a search. For example, the CiteSeer2 search instructions say

For authors, list all variants that appear in citations, separated by ”or”, e.g. m
jordan or michael jordan or m i jordan or michael i jordan

but what if you don’t know all the variants? A possible alternative is to conduct a more gen-
eral search, say by specifying only the last name; this risksretrieving many extra documents
by other people who have the same last name.

• Likewise, it is impossible to directly count the papers written by an individual, or the ci-
tations to the work of an individual. While not the primary goals of a digital library, such
actions are often performed in the process of evaluating an author’s work. They are also
needed for more advanced services, e.g. the generation of anauthor collaboration graph.

Of course, detecting name equivalences is also important inother applications, e.g. the identifi-
cation of returning customers [2, 1]. In fact, digital libraries seem to be a relatively easy case,
because names are based on how the authors themselves write them in print, rather than on how
they are entered into the system by other people.

Nevertheless, current digital libraries do not handle thisproblem very well. The ACM portal
takes the conservative approach of retaining all names as they appear. This includes all variants of
each name, some of which are clear spelling errors. For example, the the following five entries in
the author index all represent Turing award winner Niklaus Wirth:

2A digital library based on the concept of autonomous citation indexing [6], at URLhttp://citeseer.ist.psu.edu/.

2



N WIRTH

N◦ WIRTH

NICKLAUS WIRTH

NIKLAUS E◦ WIRTH

NIKLAUS WIRTH

The first one is just an abbreviation with the◦ missing, and the third one is an obvious misspelling.
The CiteSeer web site takes the opposite approach. In its listing of most cited computer scien-

tists, only the first initial is ever used. This causes many distinct names to be bundled together; for
example, the top entry is D◦ JOHNSON, which could be any of at least 18 individuals, and proba-
bly more (according to a search in the DBLP database3). Somewhat surprisingly, this practice may
also split a single author into two: most of the papers by W◦ DANIEL HILLIS , for example, are
attributed to W◦ HILLIS , but some to D◦ HILLIS , because the first initial is sometimes dropped.

The goal of this work is to find automatic means to identify thenature of the mapping of names
to people. Specifically, we want to identify situations in which multiple names actually refer to the
same person. This problem has attracted research for dozensof years, due to its obvious importance
in business and services, where names are often entered incorrectly due to mistranscription. One
early algorithm is the “soundex” method, in which names are mapped to short codes that represent
the salient features of how they sound [4, p. 394]. Another isthe “metaphone” method, which
preserves more detail and is therefore more accurate [7]. These methods can be used to identify
large variations in the way last names (surnames) are written, but may also lead to many false
positives.

The present work is limited to identifying variations infirst names, where the main source of
variability is different forms of abbreviation — a topic that has not attracted much research in the
past. Moreover, we do so using lexical means, i.e. by only using the names themselves. Extensions
based on semantic information are listed as future work at the end of the paper.

It should be noted that the problem we are addressing does nothave a single “correct” answer.
For example, the names G◦ HERBERT and HERBERT W◦ may be two abbreviations of someone
with the three first names GEORGE HERBERT WALKER, but they may also be abbreviations of
two people with two first names each. It is impossible to know from the names alone. What
we need is heuristics that work wellin practice. We therefore use an experimental approach,
and evaluate our proposed heuristics by tabulating their performance on author names from two
online bibliographies. This enables the identification of the weaknesses of each heuristic, and the
suggestion of a better one.

The next section outlines the framework used for identifying name equivalences. It also
presents the environment used for evaluations, and the evaluation results for the different heuristics.
This is used to motivate the progression of heuristics detailed in the following sections.

2 Framework and Evaluation

The framework employed by our system is outlined in Fig. 2. The first step is to parse and normal-
ize the input names. This step is required in order to preparethe data for processing: to compare

3Another digital library of computer science, at URLhttp://www.informatik.uni-trier.de/˜ley/db/.

3



Parsing and
normalization

Pairwise
equivalences

Cliques of
equivalences

Various names

Normalized names

Graph of equivalences

Sets of equivalent names

Figure 2:System framework.

first names when the last name is the same, we need to know what is a first name and what is a last
name. It is also used to avoid simple problems, such as variations that result from unusual capital-
ization or foreign accents. While not the focus of the present work, we provide some comments on
this issue in Section 3.

The equivalence-detection algorithm itself operates in two phases. The first is matching pairs of
names to each other. This induces a (very sparse) graph on allthe names, where nodes are names,
and edges represent equivalences. The second is an analysisof this graph to identify sets of names
that are all equivalent to each other. Obviously, these names come from connected components of
the graph. These phases are described in detail in Sections 4and 5, respectively.

The developed heuristics are evaluated by tabulating theirperformance on two sets of names.
The first set comes from the BoW database4 [3]. This database contains 3872 documents tagged
with 5740 author names. These relatively small numbers allow for a manual inspection and an
educated guess at which names are indeed equivalent. The output of the heuristics is then compared
with the manual evaluation, and deviations are classified aseither false positives (the heuristic
claims an equivalence that is most probably not true) or false negatives (the heuristic missed an
equivalence that most probably is true).

In addition, we also check the performance of our algorithmson a small fragment of the ACM
Portal author index. The fragment used contained all the names where the last name starts with
the letters FE. There were 3076 such names. In this case a full manual inspection is impractical,
because some last names have dozens of instances, making a manual comparison of all pairs very
error-prone. However, it is still possible to compare the different heuristics to each other.

The evaluation using a fragment of a large database is important due to non-trivial scaling
effects. In a very large database, many more documents are covered. There is therefore a bigger
chance to observe variations on an author’s name. In addition, there is a bigger change to observe
multiple authors that share names or at least initials (Fig.3). This makes it harder to pick out those
names that are indeed equivalent to each other.

4This is an experimental bibliographic server, accessible at URL http://www.bow.cs.huji.ac.il/.

4



rank of last name
1 10 100 1000

nu
m

be
r 

of
 fi

rs
t n

am
es

1

10

100

BoW
ACM

Figure 3:The distribution of names in both datasets is Zipf-like, butwith different exponents. The
BoW dataset has an exponent of about 0.55, and the ACM datasetan exponent of about 0.9.

The results of the evaluations are shown in Table 1. We take the unusual approach of showing
the results first, as this will facilitate and motivate the introduction of the various algorithms. Each
part of the results is discussed at the appropriate point.

3 Parsing and Normalization

3.1 Parsing Names

In order to compare names to each other, one must first determine where each name starts, where
it ends, what part constitutes the last name, what parts are first names, and whether any salutations
or suffixes are present. While definitely important, this aspect of name equivalences lies outside
the scope of the present work. This disregard is possible because the BoW data is based on the
BibTeX format, which has strict rules that make parsing easy5 [5]:

1. Sequences of names referring to different people are separated byAND without any commas.
Example: JOHN SMITH AND JEFF SMITH AND JACK SMITH.

2. In a sequence of names identifying a person,

(a) If a comma is present, the part before the comma is the lastname, and the part after
the comma the first name. If multiple commas are present, use the last one. Example:
WATSON, JR◦, THOMAS J◦ .

(b) If any of the names starts with a lower-case letter, the last name starts from that point.
Everything before it is a first name. Example: JOHN VON NEUMANN.

(c) If all names start with upper-case letters, the last one is the last name and all previous
ones are first names.

5Actually there are a couple of additional rules for special circumstances, but these ones give the gist.

5



BoW ACM
Total Total

Heuristic cliques False False cliques False False
found positive negative found positive negative

Simple match
independ clique 650 31(3) 47 306 8(9) 142

Strict match
independ clique 629 4 41 312 1 131

Strict match
weighted clique 645 4 26(1) 395 1 49(14)

Strict match
full names 649 4 22 441 7(2) 7(5)
weighted clique
numbers in parentheses indicate added members or missing members from a real clique.

Table 1:Effectiveness of the different heuristics. In the BoW data,the correct number of cliques
according to a manual inspection is 666, and false positivesand negatives are counted relative to
these manually identified cliques. For the ACM data such a manual identification is not available,
so false negatives and positives are counted relative to a manual inspection of the cliques found by
the algorithms.

The ACM Portal data is from an author index, and thus already provided as individual first and last
names. We do however handle simple mundane issues, such as identifying initials without a period
with initials that do have a period (e.g. J with J◦), and partitioning sequences of initials into their
components (e.g. A◦B◦ is A◦ B◦, with two distinct abbreviated names).

It should be noted that suffixes (such as JR◦) are actually a qualifier of the first name, but
are typically treated as part of the last name. We retain thisapproach. Our data did not contain
any identified instance of a missing or wrong suffix. However,there are variations regarding the
separation of the suffix from the last name with a comma. Theseare handled by the normalization.

We note in passing that several methods can be used when the input data is less forgiving. For
starters, one can compare input data with names that have been recognized in the past and are
already present in the database. When the data comes from automatic acquisition of documents, it
is possible to compare the list of authors at the beginning with the list of references at the end. In
particular, self citations may provide important clues regarding the correct parsing of names, and
the equivalence of different abbreviations.

3.2 Name Normalization

Once the names have been parsed, it is advisable to normalizethem. We performed the following
types of normalization:

• Translate all upper-case letters to the corresponding lower-case letters. This is useful in
multi-part names, in which the second part is sometimes inconsistently written with different
capitalizations.

6



09
’00

01
’01

04
’01

11
’01

05
’02

09
’02

05
’03

nu
m

be
r 

of
 a

ut
ho

rs
0

100000

200000

300000

400000

500000

600000

700000

Figure 4:Number of authors in the CiteSeer database is large and growing.

• Remove all foreign accents. Again, we empirically find that names are often written incon-
sistently, either with the wrong accent or without the accent altogether. Note, however, that
it is important to conserve the base letter. Example: THOMÁS, THOMÀS, and THOMAS.

• Replace special characters by commonly-used alternatives. For example,Ø is replaced byO,
Ł by L, and ß bySS. In some cases such a replacement can also be considered for accents;
for example,Ä is often written asAE.

• Remove all special marks, such as apostrophes. The only onesretained are hyphens.

Actual examples illustrating the effect of these normalizations on our datasets are given in the
appendix. By far the most important is to remove foreign accents, and doing so facilitates many
matches that seem to be correct. The second most important isto translate upper-case letters into
lower case. We did not observe situations in which these normalizations led to erroneous results.

4 Pairwise Matching

The first phase of finding name equivalences is to identify allpairs of names that potentially match
each other. As the dataset may be very large (Fig. 4), it is unreasonable to check all pairs. Rather,
we first divide the dataset into disjoint subsets according to the normalized last names. Within
each such set, we check for equivalences among the normalized first names. This is in harmony
with our focus on the variability among names that is concentrated in the first names, that may be
abbreviated in different ways.

The following sub-sections pertain to the second step, i.e.to the matching of first names. We
first consider the comparison of two names in isolation, and then the comparison of sequences
of first names. Note that we take a conservative approach, anddo not attempt to correct spelling
errors and find names with small edit distances [1]. Rather, we attempt to apply domain-knowledge
regarding the way names tend to be abbreviated.

7



Name Regexp Matches
J◦ j•∗ J◦, JON, JOHN, JOHNNY, JOHNNIE, JO

JOE, JOSEPH, J◦-H◦, J-H◦ , JIE-HIE

JOHN john•∗ JOHN, JOHNNY, JOHNNIE

J◦-H◦ j•∗-h•∗ J◦-H◦, J-H◦ , JIE-HIE

Table 2:Turning names into regular expressions for matching.• denotes a match to any character,
and∗ means that the previous element (in our case, the•) is repeated zero or more times.

4.1 Matching Single Names

When are two names actually one and the same?
The simplest case is, of course, when they are indeed identical. Another simple case is when

one is an abbreviation of the other; for example, we can safely identify J◦ with JOHN. But there
are other abbreviations that are also used, notably nicknames.

Nicknames fall into two categories: Those that are a prefix ofthe full name and those that are
not. For example, ALEX can appear as a short version of ALEXANDER. This is a prefix, and can
be handled easily as shown below. But BILL may appear as a short version of WILLIAM . This is
not a prefix, and can only be identified using table lookup.

Our proposed approach is to only try and identify nicknames that are a prefix of the full name.
This is done as follows. Whenever two names are compared, we use the shorter one to create a
regular expression, and match this regular expression withthe longer one. the regular expression is
obtained by removing trailing◦, if any, and allowing an arbitrary suffix. In the case of hyphenated
names, each part is treated separately. This is illustratedin Table 2.

The problem with this approach is that it may also be the case that one name just happens to be
a prefix of another name, without being a nickname. For example, RON may be an abbreviation of
RONALD, but it may also be a distinct name by itself. Worse, PAUL is a prefix of PAULA , without
being an abbreviation. We therefore tabulate all the matches that occurred in practice in our datasets
in the appendix. This indicates that the proposed approach identifies many real matches, while only
introducing a small number of false matches. In the BoW dataset, for example, 16 correct matches
depended on this feature, and only 3 incorrect matches were introduced. In the ACM dataset, there
were 24 correct matches and 12 incorrect ones. The most common correct match was Steve as
an abbreviation for Steven; the incorrect ones were all different. In both datasets, these incorrect
matches were responsible for most of the false positives in the equivalence finding schemes based
on strict matching. However, many nicknames are missed because they are not a prefix; in the BoW
dataset, there were 13 such cases, and in the ACM dataset 6 were identified (but it is plausible that
there were more, as a full manual inspection was not performed). Mike as an abbreviation for
Michael is the most common. Thus using table lookup should beconsidered.

A special case occurs with hyphenated names. Such names may display various alternative
forms: the second part can start with and upper-case or lower-case letter (handled by our nor-
malization), the hyphen may be replaced by a space (turning asingle hyphenated name into two
independent names), or the hyphen may be deleted altogether(turning a hyphenated name into a
regular name, possibly with special capitalization). At this point we chose to only give cursory

8



treatment to these problems. We retain hyphens and try to match both parts, but do not attempt to
treat all other variations. The full treatment of hyphenated names is left to future work.

4.2 Simple Matching Algorithm

Given the regular-expression-based mechanism to compare single names, we turn to the compari-
son of sequences of names. It is obvious that sequences of first names are often abbreviated, and
sometimes some of the names are simply not used. However, we offer the observation that names
which are retained will appear in the same order (there were only two exceptions found in our
datasets). This motivates the following simple matching rule:

Each name appearing in the shorter list must be matched with aname in the longer
list, in the same order.

Note that we do not place a special emphasis on the first name, and do not distinguish it from the
middle names. This is because there are quite a few people whoprefer their middle names, and
therefore tend to discard the first name and retain the middleone when abbreviating.

However, this simple matching rule produces dismal results, and is especially prone to false
positives (see top row in Table 1). The reason is that there isno preference to the matching of full
names as opposed to abbreviations. For example, it is clear that it is unlikely that DAVID P◦ is a
variant of PAUL , but if we skip the DAVID in the longer name, and then match the initial P◦ with
the name Paul, we abide by the above rule.

4.3 Strict Matching Algorithm

To give full names their proper due, we propose the followingrule:

If we match any abbreviation in a sequence of names, we must also match all full
names that appear in that sequence.

Abbreviations, for the purpose of this rule, are single letter names such as J◦ or J◦-H◦. This solves
problems like the one posed by the above example, because if we want to match P◦ with Paul, we
must also match DAVID . If we cannot do so we declare that the two name sequences do not match.
Note that in implementing this rule we need only count matched names in the longer sequence,
because if all names in the shorter sequence are not matched,the matching fails anyway.

However, this does not fully solve the problem. Consider matching the names DAVID P◦ with
the names D◦ PAUL . This will abide by the rule that all full names need to be matched. What is
missing is a sense of directionality: if we match a full name from one sequence to an abbreviation
in another, we should not do so in the other direction as well.This is formulated by

Matching full names to abbreviations should only be done in one direction. For this
rule, skipping a full name qualifies as matching it to an abbreviation.

Note that in implementing this rule we should also check names in the longer sequence that are
left over after all names in the shorter sequence are matched.

The experimental results in Table 1 show that using the strict matching rules eliminates prac-
tically all false positives. We therefore base the quest forcliques of equivalent names on these
matching rules.

9



M.

M. J.

Mark

Michael J.

Michael Joseph

Figure 5:Example of finding a high-weight clique in a graph of equivalences weighted by names
matched.

5 Choosing Among Alternative Matches

Given the set of pairwise equivalences among names, we want to find sets of names that are all
equivalent to each other — in other words, we want to find cliques. Finding maximal cliques is
in general NP-complete, but efficient algorithms are known that work on large graphs [8]. In our
case in particular this is not a problem, because we work on sets of names that have the same last
name, and these are typically of limited size. The variants of clique matching we use are described
below.

The description here considers the algorithm as an off-lineprocess. In a real digital library
it should be on-line: we have an existing database with equivalences that have been identified
in the past, and need to add new authors as they are introduced. But this can easily be done by
re-computing all equivalences for the new author’s last name, thus reverting to the off-line version.

5.1 Independent Cliques

The simplest approach to identifying cliques of equivalentnames is to require independent cliques.
This is a simple quadratic algorithm: for each name, traverse its list of equivalences, and verify
that this set forms a clique. If they do, they are all considered equivalent. If any of them have
additional equivalences outside the set, then the members of this set are not considered equivalent
to each other.

The results in the second row of Table 1 indicate that this works pretty well for small reposi-
tories like BoW. However, it is too restrictive for large repositories like that of the ACM. In large
repositories there may be very many names that share the samelast name. It is then highly proba-
ble that several names will share an initial, and thus not be independent of each other. We therefore
need to allow cliques that have some external neighbors. Thedifference between the clique mem-
bers and the external neighbors is that the members are connected to each other more tightly. For
this, we need to quantify the strength of the matching between names.

5.2 Weighted Cliques

Weighted cliques are cliques based on high-weight equivalences. The weight is defined simply by
the number of names matched: matching three names creates a stronger connection than matching
only two, and matching two is better than only one.

A simple example of the effect of such weighting is given in Fig. 5. The initial M◦ matches
all other names, and therefore no independent cliques are possible. But if we use weighting by
the number of names matched, we can find that the names M◦ J◦, M ICHAEL J◦, and MICHAEL

10



JOSEPHform a clique of weight 2 (heavy lines in the figure). All the others are connected to this
clique by links of weight 1.

The heuristic for finding cliques must now be modified to acknowledge the weights on the
links. In particular, the order in which names are considered becomes important. Our solution is
as follows, and is illustrated in Fig. 6.

1. First sort the names according to their heaviest equivalence, from heavy to light. In the
example the first are A◦ B◦ C◦ and ABE BOB C◦, then ACE D◦ E◦, A◦ D◦, and ABE B◦,
and finally A◦ and ABE F◦ G◦. (Note that the maximal equivalence does not necessarily
correspond to the number of names.)

2. For each one, identify the set of its neighbors that all have the highest equivalence score. In
the example, starting from A◦ B◦ C◦, it has one such neighbor: ABE BOB C◦.

3. Verify that this set is a high-weight clique. This means that it is a clique when all edges with
lower weights are ignored. Cases of only two nodes, as in the example, are sure to pass this
test. If the set is indeed a clique, try to expand it. Otherwise return to step 2.

4. Try to expand the found clique by adding names that have lower weight connections. The
criterion for adding to the clique are that the new name should be linked to all current clique
members, and furthermore, that all its top-weight neighbors should be in the clique. In the
example, ABE B◦ will be added, but A◦ will not.

5. When finished with this clique, continue with the main loop(step 2), but skip all names that
have already been assigned. In the example, this will find another clique composed of ACE

D◦ E◦ and A◦ D◦.

The results in Table 1 show that using weighted matching identifies many of the missing
cliques. But when large groups of names are involved, this isnot enough. Consider the example in
Fig. 7(a). When all names have the same weight, there are so many equal-weight connections that
it is impossible for any clique to stand out. But if we give a higher weight to the matching of full
names, two obvious candidates stand out (Fig. 7(b)).

The question is what weight to give to the matching of full names. Specifically, should full
names count more or less than additional names? Our results indicate that matching more names is
more important than matching full names, so we only give fullnames a sight advantage: a weight
of 1.1 as opposed to a weight of 1 when matching an abbreviation.

A.

Abe B.

A. B. C.

Abe Bob C.Ace D. E.

A. D.

Abe F. G.

Figure 6:Illustrative example of the heuristic for weighted cliques.

11



Richard

Richard A.

Eugene A.

A.

Andrew

Andrew G.

David A.
Richard

Richard A.

Eugene A.

A.

Andrew

Andrew G.

David A.

(b) higher weight for full names(a) all weight equal

Figure 7:Adding weight to matching of full names.

M.

R. M.

R.

Martin

Martha

Martha S.

Maryann

Maryann P.

M. B.

Michael R.

Michael Robert

Mike

Lawrence Mark

Marcus W.

Marc J.

Boris

Birgitt

Bryan

Bryan E.

Michael Bliss

Michael B.

Michael

Richard M.

Roy

Ronen

Raymond

Raymond G.

R. D.

D.

Richard K.

Robert H.

Roxanne Hsu

Raisa E.

Doron
Duane L.

David

David S.

David P.

David L.

Clique found using weighted matching

Clique requiring extra weight for full names

Figure 8:Largest connected component from the graph of equivalencesof people with last name
FELDMAN from the ACM dataset.

The final results are shown in the bottom row of Table 1. The improvement is especially striking
for the ACM data. The reason is that this is based on a very large database, including some popular
names that are repeated dozens of times. As a result, situations such as those portrayed above do
occur in practice. An example based on the last name FELDMAN is given in Fig. 8. In this large
connected component of the graph, no cliques are found if they are required to be independent.
By using weighted cliques, three are found. By giving full names extra weight, another four are
found. All of these are considered correct, and no additional real equivalences seem to exist in this
example.

12



Christof

Christof W.

Christol

C.

Chris

Figure 9:Correcting a misspelled name (CHRISTOL) may allow a new clique to be identified.

6 Future Work

Our heuristics achieve significant simplifications in the author indices of digital libraries. In Bow,
the number of distinct authors is reduced from 5740 to 3580. In the ACM data, it is reduced
from 3076 to 1007. In both cases, the vast majority of equivalences found are thought to be true.
However, these heuristics only use lexical data, and do not even exhaust this type of data.

The main issue that is yet unresolved is the best handling of hyphenated names. Hyphenation
is especially common in Asian and French names. Based on our data is seems that Asian authors
at least tend not to abbreviate their names. The rules appropriate to Asian names may therefore be
different from those that are best for western names. For example, it seems that partial matching
that was good for identifying western nicknames only introduces errors in the context of Asian
names. Also, the handling of missing hyphens deserves more work.

Another issue that should be handled is the automatic elimination of errors. Any algorithm
can only be as good as its input. It is plausible that at least some misspellings can be caught by
comparing with other names already in the database, and selecting the more common version.
This can be done based on matching a core code that representsthe essence of each name, as was
suggested in early applications requiring the retrieval ofnames [2].

In this context, it should be noted that correcting spellingerrors will not only add the misspelled
names to existing cliques, but will also allow many additional cliques to be found. The reason is
that misspellings cause the current heuristics to think that different names are equally likely; by
eliminating such competition, new cliques will emerge (Fig. 9).

A complete new field of study is the use of semantic information. The matching of names can
be integrated with checking co-authors, the venues where works are published, and the keywords
that appear in the full text of authored articles. It is also possible to glean information from common
linking to papers from authors’ home pages. Use of such semantic information is expected to be
useful for the hardest cases, e.g. when different people actually share the same name.

Finally, the effect of the size of the dataset on the results of the heuristics is very interesting.
We showed that as the dataset increases in size, the heuristics need a higher degree of fidelity to
extract the real equivalences. It would be valuable to conduct repeated measurements on a variety
of database sizes, to verify and characterize this effect.

References

[1] G. B. Bell and A. Sethi, “Matching records in a national medical patient index”. Comm. ACM
44(9), pp. 83–88, Sep 2001.

13



[2] L. Davidson, “Retrieval of misspelled names in an airlines passenger record system”. Comm.
ACM 5(3), pp. 169–171, Mar 1962.

[3] D. G. Feitelson, “Cooperative indexing, classification, and evaluation in BoW ”. In 7th IFCIS
Intl. Conf. Cooperative Information Syst., O. Etzion and P. Scheuermann (eds.), pp. 66–77,
Springer-Verlag, Sep 2000. Lect. Notes Comput. Sci. vol. 1901.

[4] D. E. Knuth, The Art of Computer Programming. Vol 3: Sorting and Searching. Addison-
Wesley, 2nd ed., 1998.

[5] L. Lamport,LaTeX: A Document Preparation System. Addison Wesley, 2nd ed., 1994.

[6] S. Lawrence, C. L. Giles, and K. Bollacker, “Digital libraries and autonomous citation index-
ing”. Computer32(6), pp. 67–71, Jun 1999.

[7] L. Philips, “Hanging on the metaphone”. Computer Language Magazine7(12), pp. 38–44,
Dec 1990.

[8] E. Tomita and T. Seki, “An efficient branch-and-bound algorithm for finding a maximum
clique”. In Discrete Mathematics and Theoretical Computer Science, pp. 278–289, Springer-
Verlag, Jul 2003. Lect. Notes Comput. Sci. vol. 2731.

A. Examples of Real data

The following is a listing of data quoted in the text.
In the BoW dataset, the following matches relate to normalization:

• Normalizations that facilitated correct matches

1. ADAMS, III / A DAMS III

2. BJØRN / BJORN

3. BÜLENT / BULENT

4. CHAO-JU / CHAO-JU

5. CHUAN-L IN / CHUAN-LIN

6. BREZÁNY / BREZANY

7. GARCÍA -MOLINA / GARCIA-MOLINA

8. HÉCTOR / HECTOR

9. GÜNTER / GUNTER

10. JOSÉ / JOSE (2 times)

11. KI-CHANG / K I-CHANG

12. LOHR / L ÖHR

13. SHANG-HUA / SHANG-HUA

14



14. STEELE, JR◦ / STEELE JR◦

15. THIÉBAUT / THIEBAUT

• Normalizations that caused what are probably incorrect matches

None found.

• Normalizations that were not identified

1. MÄNNER / MAENNER

In the ACM dataset, the following matches relate to normalizations:

• Normalizations that facilitated correct matches

1. ANTÔNIO / ANTÓNIO / ANTONIO

2. CARRÁ / CARRA’

3. GYÖRGY / GYORGY

4. JÉRÔME / JÉROME

5. JI ŘÍ / JIRÍ

6. JOSÉ / JOSE

7. RAPHAËL / RAPHAEL

8. ROGÉRIO / ROGERIO

9. SÁNDOR / SANDOR (2 times)

10. TOMÁS / TOMÀS / TOMAS

11. T.Y. / T.-Y.

• Normalizations that caused what are probably incorrect matches

None found.

• Normalizations that were not identified

1. BJÖRN / BJOERN

In the BoW dataset, the following matches relate to nicknames:

• Nicknames that facilitated correct matches

1. ALEX / ALEXANDRU

2. ANGELO / ANGELOS

3. DAN / DANIEL

4. GREG / GREGORY (2 times)

5. JEFF / JEFFREY

15



6. KEN / KENNETH

7. KRITHI / KRITHIVASAN

8. PETE / PETER

9. PHIL / PHILIP

10. PRITH / PRITHVIRAJ

11. RICH / RICHARD

12. RON / RONALD

13. SAM / SAMUEL

14. STEVE / STEVEN (2 times)

• Nicknames that caused what are probably incorrect matches

1. JONG / JONG-UK

2. LI / L IXIA

3. SU / SUKIL

• Nicknames that were not identified

1. AVI / ABRAHAM

2. BILL / WILLIAM

3. CEZARY / CZAREK

4. CHARLIE / CHARLES

5. GARY / GREGORY

6. JIM / JAMES

7. KATHY / KATHERINE

8. MIKE / M ICHAEL (3 times)

9. RICK / RICHARD

10. TOM / THOMSON

11. WM / WILLIAM

In the ACM dataset, the following matches relate to nicknames:

• Nicknames that facilitated correct matches (including abbreviations and misspellings)

1. ALEX / ALEXANDER

2. ALEX / ALEXANDRE

3. AW / AWI

4. BRIGIT / BRIGITT

5. CH / CHRISTOPHER

16



6. CHRIS / CHRISTOPHER(2 times)

7. DEB / DEBORAH

8. DON / DONALD

9. DOUG / DOUGLAS

10. ED / EDWARD (2 times)

11. GREG / GREGORY

12. JEFF / JEFFERY

13. LEO / LEONIDAS

14. PAT / PATRICIA

15. PHIL / PHILLIP

16. RON / RONALD

17. RONALD / RONALDO

18. SID / SIDNEY

19. STEVE / STEVEN (2 times)

20. TH / THOMAS

21. URI / URIEL

22. YA / YAKOV

• Nicknames that caused what are probably incorrect matches

1. ANNE / ANNEMARIE

2. CHIH-CHUN / CHIH-CHUNG

3. DE (as part of SILENE DE FREITAS) / DENIS

4. JOSE / JOSEPH

5. JUN / JUNKANG

6. KE / KEQI

7. MARY / MARY-ELLEN

8. PAUL / PAULA

9. QIAN / QIANGZE

10. TIAN / TIAN -JIN

11. XIANG / X IANG-L I

12. YONG / YONGXIAN

13. ZHANG / ZHANGJUN

• Nicknames that were not identified

1. DAVE / DAVID

2. MIKE / M ICHAEL (4 times)

3. RICK / RICHARD

17


