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Abstract—Most of the text in a computer program is composed
of the names of variables and functions. These names are selected
by one developer, and need to be understood by others. This is
similar to the role of words written in natural language. But there
are several marked differences between the names in a program
and the words in a book. First, names are frequently composed
of multiple existing words, in an attempt to capture nuanced
meanings and intents. Second, because of the use of multiple
words, names can be rather long. Third, conventions may also
allow names to be very short, and many single-letter names are
used. But despite these differences, the general statistics of names
are rather similar to the statistics of words. Like words, the
distribution of names is close to a Zipf distribution. Also, popular
names tend to be shorter than rarely used names. However, the
underlying vocabulary if different. The composition of words
leads to a more diverse vocabulary that can grow without bounds.
But if we look at the individual words used in compound names,
we find a rather limited vocabulary. These properties help explain
the predictability of software, and how it can coincide with
the large variability of names. It also suggests that it may be
beneficial to model programs at the level of individual words
rather than at the level of source code tokens.

Index Terms—variable name, program lexicon, words distri-
bution

I. INTRODUCTION

When asked about the vocabulary of programming, most
people think of programming language keywords: the basic
types the language supports (int, float), the control struc-
tures (if, while), and so on. But the bulk of a program’s text
is not made of keywords but of names — mainly the names
that developers give to variables, data structures, and functions
[16]. It is the names which imbue programs with meaning. For
example, consider the following pair of code snippets:

f o r x i n c :
i f not r ( x ) :

x . s ( )

f o r s tudent i n class members :
i f not ready for f ina l exam ( student ) :

s tudent . study ( )

The first is meaningless in the sense that it could mean
anything. The second can be read nearly as if it was English
prose. The difference lies in the meaningful names given
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to variables and functions. They anchor the program in the
domain, and identify the elements and operations which the
program performs. We can therefore claim that it is the names
which constitute the language of programming.

In studying the linguistic aspects of programming a natural
place to begin is therefore the vocabulary of names. And
given the emphasis in modern software development on self-
explanatory readable code, an interesting initial question is
whether the use of names in programs is statistically similar
to the use of words in natural languages.

The study of word usage statistics is often associated with
the name of George Kingsley Zipf. Following his investigation
of word use frequencies in the 1930s, Zipf published two major
findings[47]:

• The frequency of word usage is highly skewed. If the
most frequently used word in a corpus is used k times,
the second most frequently used word will appear about
k/2 times, the third most frequent about k/3 times, and
so forth. In general, the frequency of the rth ranked word
will be

f(r) =
f(1)

r

This equation is now commonly known as “Zipf’s law”.
• A word’s length is associated with its frequency ranking,

with frequent words being shorter than infrequent words.
Zipf called this “the principle of least effort” [48], based
on the premise that uttering frequent words will require
less effort if they are short.

We start our study by looking whether we can identify
Zipf’s law in programming language corpora. The data comes
from popular active open-source Java projects hosted on
GitHub. Extracting the names used in these projects and
analyzing them reveals that the two elements of Zipf’s findings
indeed apply: the distribution is close to that given by Zipf’s
law, and more frequently used names tend to be shorter. In
this sense program texts are similar to natural language texts.

However, we find that the distribution of name lengths in
programs is different from the distribution of word lengths
in natural language texts. For one thing, single-letter names
are much more common than single-letter words. But more
interestingly, names can also be much longer. The reason is
that new names are created by concatenating multiple words
together. While such compound words exist also in natural



languages, most notably in German, we find that they are much
more prevalent and long in program code. Moreover, when the
compound names are broken into their constituent words, we
find that the vocabulary of these words is rather limited. So
when looking at the structure of program names and natural
language words we find that they are quite different.

Our contributions in this paper are
• To show that Zipf’s law provides a reasonable description

of the distribution of names, similar to words in natural
language.

• To show that the distribution of name lengths in software
is different from the distribution of word lengths in
natural language corpora:

– It has a mode at length 1 (single-letter names);
– It has a heavier tail (non-negligible probability of

very long names).
• To show an inverse correlation between a name’s popu-

larity and length. While a similar effect exists in words
in natural language, the effect for names is stronger.

• To show that names tend to be composed of multiple
words, much more so than the compound words that exist
in natural languages.

• To show that the vocabulary of the atomic words used in
compound names is rather limited.

• To identify mixed-style variable names, which combine
camelCase style with snake case style.

II. BACKGROUND AND RELATED WORK

There has been extensive research on Zipf’s law for many
years, attempting to provide reasons for this particular behav-
ior of human language [40], [38]. A recurring finding is that
the law as formulated by Zipf is only an approximation, and
better statistical characterizations of the distributions of words
in text can be found [7]. However, as a first approximation
Zipf’s law was also found to describe many phenomena in
many fields [34], including, for example, the Internet, where
it describes the distribution of popularity of web sites or the
number of links to and from them among other things [1].
Another interesting result is that word lengths as described by
Zipf are optimized for efficient communication [41].

Focusing on the linguistic perspective, one recurring criti-
cism of Zipf’s law is that the same relationship exists not only
in human language but also in “monkey typing”, that is the
random typing of letters, one of which—the space—is used
to delimit words [36], [33]. However, the nature of the words
is completely different. Monkey typing creates a much larger
vocabulary, with a geometric distribution of word lengths [21].
In real language words are but a small fraction of all possible
letter combinations, and the distribution of word lengths is
better described as log-normal.

Computer-related evidence of Zipf’s law dates as far back
as 1986. Researchers logged the aliases and user-defined
commands used by students at the NASA Ames Research
Center on a Unix command interpreter over a period of several
months [18]. Collecting the results of all the usages and

testing their rank-frequency ratio revealed that they indeed
exhibited Zipf-like behavior. A more recent study by Dorin
and Montenegro suggests applying Linguistic Economy to
programming languages as a way to measure source code
readability [17]. Linguistic Economy is the notion that words
requiring less effort to speak are used more often than words
requiring more effort. The study found that code files identified
as unpleasant to review had more linguistically complicated
identifiers in them than pleasant programs. Their identifiers’
frequency/rank analysis of the source code produced results
which support the data’s compliance with Zipf’s law. Hal-
stead’s Software Science is also based on the vocabulary of
programs, with equations for size, complexity, and effort based
on the numbers of operators and operands in the code [24]. But
Halstead’s formula relating vocabulary to code size does not
hold for modern large-scale object-oriented software. Instead,
a revised formula based on Zipf’s law does [46].

Modern NLP methods go far beyond Zipf’s law in creating
and using statistical models for language processing [13].
At the same time, the notion that software shares statistical
commonalities with natural language texts was suggested by
Hindle et al. [27]. An important result was that most written
code, just like most human utterances, is often repetitive
and predictable. From this insight they went on to analyze
the possibilities of modeling code with the same statistical
language models used for natural language. This has led
to a plethora of applications, most prominently source code
generation [2]. Interestingly, recent work has also shown that
code is actually more repetitive and predictable than natural
language text [15]. This was attributed to the fact that writing
code requires effort, like writing in a foreign language.

Our interest, in contradistinction, is less in the modeling
of software and more in the linguistics of names as they
relate to human developers. Most of the previous work in
this area concerned the semantics of names, and its relation
with the names’ lengths. More than 30 years ago, Gorla et al.
claimed that the effort to debug COBOL programs by students
is minimized when name lengths are in the range of 10–
16 characters [22]. In more recent work Holzmann showed
that names are becoming longer with time [28]; on the other
hand, Binkley et al. hypothesize that the limit on effective
name lengths has already been reached, because longer names
tax programmer memory [11]. Aman et al. show that length
correlates with scope: in long functions (above 42 lines, which
is the 90th percentile) single-letter names drop from 17% to
5%, and compound names grow from 34% to 51% [3].

Of special interest are compound names composed of
multiple words. For example, Schankin et al. showed that
such names contribute to comprehension [43]. Feitelson et
al. presented a model of how concepts — and the words
which represent them — are chosen when names are created
[20]. Deissenboeck and Pizka suggest rules for the consistent
composition of compound names, in the interest of improved
naming [16]. They also link the consistency of name usage to
program comprehension. Arnaoudova et al. extend this work
to the use of individual terms that appear as components in



compound names, and show that their indiscriminate use is
correlated with fault proneness [5]. Interestingly, in other work
Arnaoudova et al. show the fluidity of naming: specifically, the
semantics of names may actually change when variables are
renamed during refactoring, typically as a result of replacing a
word in the name [4]. Conversely, Peruma et al. find that most
renamings add terms in a way that narrows the semantics of
the name [39]. However, this was for method and class names,
not for variable names.

The natural language that is most famous for its use of
compound words is German. Very much like in programming,
German compounds are often created “on the fly”. In contrast
with other languages that have compounds, and especially
those that are created ad-hoc, German compounds are not
connected by hyphens but are simply melted together into
a new word. Several studies have looked into the creation
of natural languages compounds, and different outcomes of
integrating them into everyday speech [26]. There has been
ongoing research in an attempt to overcome issues with
perception and translation of these by NLP and AI models
[9], [42], since German compounds contain no clear borders
between their constituent words and so it is difficult to split
them apart for analysis and translation. Other studies have
looked into how long or complex compounds might hinder
comprehension by humans [30], and how the meanings of
popular individual words in them might help [31]. Conclusions
from such studies might be relevant for applying similar
models to code readability.

III. RESEARCH QUESTIONS

As noted above, programming language keywords are not
really the building blocks of programs. The expressiveness
of programs lies in the class, method, and variable names
chosen by developers. So it is interesting to investigate the
process by which such names are generated, and the degree
to which it is similar to the creation of new words in natural
languages. However, the available data — that is, the names
that developers select — pertains to the outcome of the process
and not to the generative process itself. What we can do is
therefore to compare the vocabulary of names to that of natural
languages. Based on this observation, our research question are

1) Is the distribution of names in programs similar to the
distribution of words in natural texts? In other words,
does Zipf’s law apply?

2) Does software exhibit an inverse relation between name
popularity and length, as seen in natural languages?

3) Are the statistics of compound names in programs sim-
ilar to those of compound words in natural languages?

4) When compound names are divided into their constituent
words, what is the distribution of the core vocabulary of
these words?

IV. METHODOLOGY

Our approach to answering the above questions was to select
several open-source code projects, and to extract and analyze
the identifiers used in them.

TABLE I
GitHub projects used in the study.

Names
Project Owner Total Unique
dbeaver dbeaver 23,734 3,660
gson google 15,246 1,194
Hystrix Netflix 41,080 3,162
jenkins jenkinsci 194,617 13,827
mockito mockito 30,703 2,961
mybatis-3 mybatis 42,812 3,281
playwright-java microsoft 25,912 1,646
rebound facebookarchive 941 215
Signal-Server erdinctaskin 45,454 3,698
xxl-job xuxueli 16,088 1,696
All together 436,587 29,604∗

∗The total number of unique names is smaller than the sum of unique
names in all the projects due to overlap in popular names.

A. Selection of Projects

A natural source for code to analyze is the GitHub repos-
itory. However, not all projects on GitHub represent solid
software engineering work. We therefore initially tried to use
the list of “engineered software projects” created by Munaiah
et al. [37]. This list1 contains software projects that leverage
sound software engineering practices in several dimensions
such as documentation, testing, and project management.
The complete list contains over 1.85 million projects, so we
focused on projects which were classified as “engineered” by
both the Random Forest and the score-based models, were
larger than the average repository size, and were written in
Java. Our decision to focus on large repositories stemmed from
our research questions: We wanted to test the code corpora
for similarity with natural language phenomena, which only
reveal in their fullest extent when the data is large enough.
Java projects were selected for the language’s popularity,
community, and for consistency reasons.

This attempt turned out to be unsuccessful for several
reasons:

• The projects list contained many duplicates.
• Many of the projects on the list had been deleted or

archived since the list was created.
• Many of the projects on the list were listed as Java

projects, but in fact contained less than 70% Java files.

We therefore reverted to using existing filtering tools available
on GitHub to manually select the projects. Filtering for the
most popular and active (trending) repositories written in Java,
we came up with the projects listed in Table I.

All the analyses described below were applied to these ten
projects. We note, however, that initially we had two more
projects: Runelite and RxJava. We decided to remove them
from consideration because they turned out to be significantly
larger than the others, and so they skewed the results. Also,
the Runelite project had a strange distribution dominated by
10-letter identifiers, possibly originating in some resource files

1Available at https://reporeapers.github.io.



or constants. The implications are discussed in the threats to
validity (Section VI).

B. Extracting the Identifiers

Once the projects were selected, we moved to extracting
the identifiers and names from the code files. Only .java

files were used for the research. Test files were omitted,
as they contain a lot of boilerplate code and repetitive pat-
terns which do not reflect naturally written code. We used
the JavaParser2 Java library to generate abstract syntax
trees and extract identifiers from Java source files. This
included all the “Simple Names”, defined as names which
do not contain namespace dots. Names originating from a
dots-separated namespace were divided into their compo-
nents before being counted (so name.space.dots would be
counted as: name=1, space=1, dots=1). Names were tagged
with their role in the program (e.g., VariableDeclarator,
MethodDeclaration, MethodCallExpr and so on). Natu-
rally, this process did not take into account any comments,
keywords, and import statements. Related and similar words,
e.g. count and counter, were left separate.

We debated whether we should include type declarations
in the data collected. In analogy to counting words in natural
language texts, we approached this by trying to define the
grammatical role of types in code. We concluded that one
might think of type specifiers as adjectives in natural language,
describing the nature of the following noun. For instance, in
the following code snippet3 the type JsonWriter describes
the following new variable jsonWriter:

JsonWriter jsonWriter =
new JsonWriter(stringWriter);

At first, we believed the types should be omitted to avoid
skewing the result with names that are external to the project.
Variable and method names are by definition always originally
selected by the code developer, but types are often imported
from external libraries or are predefined by the language itself.
For instance, String, the most common word we found in
many of the selected projects, is in fact a class defined in
Java’s basic library, and is not defined originally in any of the
projects themselves. Nevertheless, omitting the types meant
also ignoring classes such as JsonWriter above, which is an
organic part of the Gson project files. With these arguments
in mind, we decided to retain the “Type as Adjective” analogy
and keep all type declarations and usages in the data.

C. Names’ Analysis

For each row in the extracted names data file, we added
two additional columns: length and wordCount. The length
column was simply the number of characters in the name. The
wordCount column was generated using a function which rec-
ognized the identifier’s style (camelCase and snake case), and
then split the identifier to its constituent words. For instance,

2https://javaparser.org
3Example from Google’s Gson project. Using types in names like this is

pretty common [23].

the method identifier getResultNumber would have a length
value of 15, and wordCount value of 3. The splitting function
also handled uppercase abbreviations and mixed cases, such
as randomUUID (2 words), or sizeOf_kinfo_proc_32 (5
words). Underscores at the beginning or end of an identifier
were omitted, so _my_name_ was considered a 2-words iden-
tifier, consisting of my and name.

Lastly, the data rows were aggregated by different columns
depending on the question we were trying to address, grouping
by name, length, or project. In most analyses, the data was
sorted by frequency in a descending order, and a rank column
was added to the aggregated data.

D. Comparison to Natural Languages

In addition to the programming language corpora, we used
both an English and a German corpus for comparison. The
English language corpus we selected is COCA, the Corpus
of Contemporary American English. This corpus was selected
for its size, popularity and availability. It also proved to be a
good match for our research since it offers a frequency list for
the top 60,000 most frequent words in the corpus.

The German corpus was selected for comparison with com-
pound words. Compounds are words which consist of more
than one stem, and are the result of chaining together several
other words to form a new one. Although compounds exist in
English (afternoon = after + noon, blueprint = blue + print),
it is rare to find compounds with more than two stem words.
In German, on the other hand, compounds consisting of three
to four stem words are not at all uncommon (Büroarbeitsplatz
= Büro + arbeit + platz, kreisvolkshochschule = kreis + volks
+ hoch + schule).

In our research, we wanted to compare the splitting of iden-
tifiers to their stem words with splitting of German compounds
to their stem words. As a basic data source we used The
German Reference Corpus (Das Deutsche Referenzkorpus —
DeReKo4). Their word frequency corpus contains the 100,000
most common words in their 50-billion-words corpus, along
with their frequency.

Identifying compound words in German is hard because
there are no syntactic indications: the constituent words are
just concatenated together. Rather than trying to identify them
ourselves we used GermaNet’s dataset of German compounds
[25]. This dataset contains 106,780 different compounds, each
with a breakdown of “head” and “remainder”. We created a
recursive function which peeled off each head until it split ev-
ery compound to its individual components, and then counted
their total. For instance, if the word was Büroarbeitplatz, the
first split was head = Büro and remainder = arbeitsplatz, and
the second head = arbeit and remainder = platz, leading to a
total of 3 words. Running the above function on the DeReKo
corpus, we were able to achieve a similar wordCount column
for a natural corpus, as we did for the programming language
corpus.

4https://www.ids-mannheim.de/en/digspra/corpus-linguistics/projects/
corpus-development



TABLE II
The 40 most frequent names in all the projects combined.

1 String 11 Class 21 Jenkins 31 size
2 e 12 add 22 p 32 protobuf
3 Object 13 type 23 File 33 item
4 T 14 getName 24 equals 34 context
5 IOexception 15 LOGGER 25 req 35 json
6 get 16 log 26 key 36 Level
7 name 17 length 27 append 37 toString
8 List 18 r 28 c 38 put
9 value 19 result 29 Integer 39 s

10 i 20 options 30 Map 40 Exception

V. RESULTS

A. Name / Word Frequency

Observing the most frequent names in all the projects
combined (see Table II), we see that native Java classes
(String, Object, IOException, List, Class, Integer,
and so on) dominate the top of the frequency list. This finding
is not surprising, as these are the most basic classes in Java,
making up most of the declared variables in any project. It is
similar to the dominance of articles and prepositions in English
(the, to, of, in, it, etc.). To check whether the inclusion of such
type names affects our results we ran all the analyses again
after excluding them; the results were largely the same. All the
following results therefore include all names, including types.

A more interesting result is the significant representation
of single-letter variables among the top names. These include
not only the ubiquitous loop index i, but also e, T, c, s, f, t,
and more. These seem to serve as a “programmers’ slang”, i.e.
agreed upon practices when naming certain variables [8], [23].
For instance, exception variables are almost always called e

and generic types are called T.
Some function names also appear among the most common

names. These can be divided into two classes. The first is com-
monly used generic methods, such as length, equals, and
toString. The second is getters and setters, and especially
getName.

To compare the distributions of names and words we need
to consider their frequency. Figure 1 shows Zipf plots, namely
the relation between the words’ frequency and rank on double
logarithmic axes, for all the names in all the projects we’ve
analyzed, and for COCA. These are reasonably straight lines,
indicating a power law as anticipated by Zipf. The dent at the
top ranks of names is due to the extremely high frequency
of the first word, String, and the more equal frequencies
of the following few names. The second graph shows the
60,000 most frequent words in COCA. The curving at the end
of the plot is typical when observing large natural language
corpora from various speech and text origins. The vocabulary
is ultimately limited, and so the frequency of words keeps
rising when more sources are appended, but new ranks (that
is, new unique words) are added less frequently [45]. In
programming languages on the other hand, we speculate that
this phenomenon does not exist because of the generative

projects

COCA

Fig. 1. Zipf rank-frequency plots for all the names in all the projects and for
English words in COCA.

nature of identifiers, which places no limit on the corpus
vocabulary. Similar results and explanations were given by
Casalnuovo et al. on larger datasets; however, they looked at
all tokens and not just names [15].

B. Name / Word Length

When analyzing the distribution of name or word lengths,
one must distinguish between the distribution of unique names
and words and the distribution of name and word occurrences.
The distributions of unique names and lengths are similar
in that they have a general bell-shape with a certain right
tail. But their spread is different. For English (COCA) the
most common word length is 7 letters long, and the longest
observed is 21. In the German DeReKo corpus the most
common length is 9, and the longest word is 27 letters long.
And in the Java projects the most common name length was
12, and the longest observed was 75 characters long! (it was
internal_static_textsecure_ServerCertificate_

Certificate_fieldAccessorTable).
The distributions of name and word occurrences accentuate

the differences in the tails (Figure 2). But they also exhibit
marked differences for short lengths. In code, single-letter
identifiers are widespread: single-letter names are the 7th most
frequent name length in our projects, and in particular they
are 3 times more common in comparison to two-letter names.
Meaning, there is a special preference for single-letter names
in programming, which is not caused by a general fondness
of shorter names. In English, single letter words (a and I) are
not uncommon, but less so than 2-letter words. In German



projects COCA DeReKo

Fig. 2. Lengths histograms for occurrences of names in all the projects (left), COCA English words (middle), and DeReKo German words (right).

projects

DeReKo

Fig. 3. Top: name lengths histogram with word count breakdown for all
projects. Bottom: German word lengths histogram with compound words
breakdown, DeReKo.

3-letter words predominate (e.g. der, die, und, von, mit, etc.),
and there are no real single-letter words.

As noted above, software includes names that are much
longer than any words in natural languages. This is due to
the use of compounds composed of multiple words. Figure 3
shows histograms of names and words lengths, partitioned by
the number of constituent words each one includes. As one
might expect, as identifiers get longer, they tend to consist
of more words. Testing the same breakdown on the German
DeReKo corpus revealed a similar pattern, though not nearly
as strong. While 3-words identifiers are quite frequent at
lengths 10 to 25, and 4- and 5-word identifiers are also readily
observed, German words consisting of 3 or more words are
almost non-existent in the corpus.

projects

DeReKo

Fig. 4. Identifier and word lengths by rank, Java projects and DeReKo.

C. Name / Word Length and Rank

An interesting observation made by Zipf was that word
length is inversely correlated with frequency: the most frequent
words tend to be short, and the infrequent ones long. We
observe the same effect also in software entity names. To
visualize this we partitioned the data into logarithmic bins by
their frequency rank, and then created a boxplot representing
the distribution of the words’ lengths in each bin (Figure
4). There’s quite some variation within each distribution, but
looking at the percentiles the trend is clear: as names become
less frequent in the project, the distribution of their lengths
consistently shifts toward longer names. The only exception
to this is the most frequent word in all the projects, String,
whose popularity despite its non-minimal length we have
already discussed.



projects

DeReKo

Fig. 5. Word count by rank in identifiers from all projects, and in German
compound words from DeReKo.

As expected, this behavior was similarly observed in the
German corpus, with the most common word being the singu-
lar male article “der”. One main difference between the plots
is the variation in words lengths, which is much greater in the
coding projects than the natural language corpus as mentioned
above.

The inverse correlation of frequency and length matches the
linguistics studies mentioned in the background and related
work section, indicating that word lengths are optimized for
efficient communication. This is similar to the efficient en-
coding of information, as in Huffman coding [29]: Languages
too can be made more efficient by giving the most frequently
used meanings the most concise symbols. Evolution through
different organic social processes results in this effect in most
spoken natural languages. It is therefore interesting to see that
the same effect also exists in code, which is not subject to the
same social processes (or, at least, to a much lesser degree).
Using shorter identifiers can also be an attempt to improve
program readability, by having shorter and more concise lines
of code. In addition, shorter names exert less pressure on short-
term memory [6], [11], [19], again indicating that there may
be a benefit in using shorter names for more popular objects.

As seen in Figure 5, the greater length of low-frequency
names is associated with being composed of more constituent
words. This motivates an investigation of the core vocabulary
of these constituent words next. In German words, on the other
hand, it appears that many low-frequency words are longer
despite not being compounds.

Fig. 6. Zipf plot of the core-vocabulary of all names from all projects.

D. The Core Vocabulary of Names

Using the name-splitting algorithm for finding the number
of individual words which constitute a compound name, we
can also extract these individual words and derive the “core-
vocabulary” of the projects. This can then be fed into all the
analyses performed above.

The core vocabulary is defined to be all the individual words
used in names. Note that these words come from two sources:

• Non-compound names that are a single word to begin
with;

• Words extracted from compound names by the splitting
algorithm.

For example, if there were 10 usages of the identifier
getDisplayName in the corpus, in the new data there were
10 more usages of get, of display, and of name, and no
occurrences of getDisplayName. If there were 2 usages of
Hello and 3 usages of helloWorld, in the new dataset
there were 5 usages of hello. Note too that all words were
lowercased to identify the different styles.

Looking at the new data and graphs generated with the
new core-vocabulary presents a curious picture. First, in the
initial data there were 29,604 distinct identifiers. In this case
differently cased identifiers were considered to be different
words, since case plays an important role in Java’s naming
conventions, as they separate types and classes from variables
and instances. After applying the algorithm mentioned above,
there were only 5,329 distinct names left. The most common
word in the corpus was still string, and words like file,
get, and key climbed to much higher positions in the fre-
quency chart.

This finding can have significant impact on language models
for code. The use of long compound names causes severe
problems for such language models, because of the large
vocabulary of names that needs to be learned [32]. But if we
break compound names into their constituent words the effect
is reversed, and we have only a relatively small vocabulary to
deal with. So learning a model of how compound names are
created can replace the need to learn large corpora of code.

Returning to our study of the core vocabulary, the new
generated Zipf’s plot now seemed to be much rounder, and



Fig. 7. Core-vocabulary word lengths histogram, all projects.

Fig. 8. Core-vocabulary word lengths by rank, all projects.

does no longer have a perfect straight line segment as before
(Figure 6). There is also no significant curve at the top left
corner of the graph as before. This is probably an indication
that many less frequent words contain frequent words as
components. As we’ve seen in Table II, only 4 of the 40 most
popular names were compound names.

The words lengths histogram is now much closer to the
histograms of natural languages we saw above (Figure 7
compared to Figure 2). Unlike the original names histograms,
here we have a lot less variation in length, and most words
are between 1-10 characters. The breakdown of the compound
words brought the mean length of the identifiers much closer
to the average length seen in the natural language corpora,
with the exception of still seeing many single-letter words.
Comparing with the distributions of word length occurrences
from Figure 2, we can see somewhat more intermediate length
words, of lengths 5–8 letters. This may reflect a need to rep-
resent various non-trivial concepts that are not so commonly
encountered in natural language.

The change we see in words lengths is also reflected in the
length by ranks boxplots (Figure 8). Breaking the data to its
core vocabulary caused the effect seen in Figure 4 to be much
reduced. It is still slightly noticeable that as words become less
frequent their length tends to increase, but since the variation
in length was very slight to begin with, the upward curve is
now much shallower.

E. Mixed-Style Names

One of the religious wars of programming concerns the
preferred naming style, especially whether to use camelCase
or snake case to join words when forming compound names.
Several studies have been devoted to the possible effect of
naming style on programmer performance [10], [44]. All
these studies consider this as a dichotomy: it is assumed that
programmers use either one or the other.

However, when looking at the names we collected in this
study, we found that a mixed style is also used. This seems to
be done to provide context to names. Thus levels of context
are separated by underscores, and the name of each level
may use camelCase if more than one word is needed. For
example, the name actions_menu_edit_ContentFormat

indicates that ContentFormat is one of the options in the
edit option of a menu that is one of the possible actions.
Additional examples from the same project context include
action_menu_transactionMonitor_notConnected and
confirm_disconnect_txn_toggleMessage. Additional
examples from another project are CreateViewCommand_

ShortDescription, RunParameterDefinition_Display
Name, and PluginManager_newerVersionExists.

The importance of this practice is that it provides another
explanation for the construction of long names. Long names
are not just a result of needing many words to describe a
concept. They can be the result of building context, similar
to the use of dot-separated namespaces. The availability of
both the camelCase and snake case styles enables developers
to compose such names in a way that clarifies their structure.
We note that this phenomenon was observed already by Butler
et al. [12]. However, they were mostly concerned with the
difficulties such names cause when trying to interpret names
as phrases. Our view is that their use as a composite context
indeed excludes a direct interpretation as a phrase. When a
name is composed of multiple parts, each part should be
interpreted as an independent phrase.

VI. THREATS TO VALIDITY

A study of vocabulary depends on the words that are
identified and used as data. Several decision we made can
be debated, and alternative decisions may modify the results.
However, to the degree that we checked such changes are
expected to be minor.

We used a Java parser to extract names from the source
code. An important decision is then exactly what classes of
elements to include under the heading of “names”. As dis-
cussed in Section IV-B we decided to include not only variable
and function names but also type names. We also decided to
include the namespace components of dot-separated names.
We feel that these decisions correctly reflect the meaning of
names in software, but other decisions are possible.

Another decision concerns names including numbers. Some
of them should obviously be considered as part of a word.
For example, Log4j in Log4jImpl is the name of a logging
library, and UTF8 in isValidUtf8 is an encoding. In others
the number may be considered as a separate adjective, such



as in sha256. There were also many names where it was not
clear how to think of the number, for example rememberMe2

or with0. Finally, in some cases the numbers seems to intro-
duce spurious separations, for example in p99_99 (percentile
99.99?). Given all these options, we elected not to try to
untangle them, and to append numbers to their predeceasing
word (if one exists) and count them together as one word. We
note that in total there were 1166 names with numbers, which
is just less than 4% of the unique names.

Another issue is the separation of compound names into
their constituent words. Obviously due to their large number
this cannot be done manually. We therefore rely on the
fact that developers usually use case changes or underscores
to signal word boundaries (camelCase/snake case). However,
we have also observed several identifiers with names like
INVOKESPECIAL or Shellinterpreter, which do not in-
clude such signals. Hence, these were considered to consist
of only one word according to our splitting algorithm. Using
more sophisticated splitters would lead to more precise results
[14].

The decision to collect data from only 10 projects, all in a
single language, causes an obvious external validity issue. This
is exacerbated by the fact that two projects which were initially
selected to be included in the research were later omitted.
The RxJava project turned out to be significantly larger than
the other projects, and so its vocabulary and frequencies data
overshadowed the data from the other projects combined.
Using it would therefore lead to an even worse external validity
issue, where the results actually reflect only one project. The
Runelite project had an abnormal distribution where a big
portion of its vocabulary was made up of 10-letter words,
unlike any other project we’ve seen. For this initial research
we chose to avoid such anomalies, but we must acknowledge
that our results are definitely not universal.

Finally, it is worth mentioning some possible matters with
the COCA dataset, which might have altered the results. The
frequencies data provided by the corpus creators contains all
the frequencies of the 5,000 most frequent words, and then
data of only every 5th word. This doesn’t change the Zipf’s
plot dramatically, but it might have an effect on the lengths
histogram and length/rank boxplot. Another issue is that the
dataset doesn’t contain words that appear less than 20 times
in the corpus, which might definitely influence all our results,
as our whole assumption is that less frequent words tend to
be longer.

VII. CONCLUSION

Phil Karlton is credited with the saying that “There are only
two hard things in Computer Science: cache invalidation and
naming things”. And many agree that naming is indeed hard. It
is also ubiquitous: developers constantly need to come up with
new names for classes, methods, data structures, and variables.
And these names need to be meaningful, that is, to convey the
intended purpose to whoever will read the code later.

The creation of new words in natural languages is a con-
tinuous social process. People invent words and use them,

perhaps with an explanation, and if they indeed fill a need
and do so well, others will pick them up, and they eventually
become part of the language. Developers don’t have the benefit
of such a process. When they invent a name, this is a final
decision on how a variable or other structure will be referred
to. And names that require an explanation (that is, a comment
explaining what they mean) are not considered good names
[35]. Good names should be immediately understood; they
should explain themselves.

As a result developers cannot create completely novel
names. Their names must use existing words, or at least be
closely related to existing words. And when a name needs to
convey specific details, the common approach to achieve this
is to use several words in tandem. This leads to the creation
of long compound names. At the same time, a programmer
slang has emerged favoring short and even single-letter names
for certain common uses.

Because of these distinct processes, the vocabulary of pro-
gramming ends up being quite different from the vocabulary
of natural languages. On one hand it allows the construction
of infinitely varied new names, using long concatenations of
existing words. On the other hand it uses a rather limited basic
vocabulary, and some very short names are also very common.
In these senses the language of programming differs from
natural languages. However, these differences make names
easier to understand and potentially more predictable, despite
their length.

We note too that programming is similar to technical writing
and not to prose. Programmers explicitly endeavor to write
clear and readable code, and they are measured, inter alia, by
their code’s readability and modularity. They have no aspira-
tion for literary sophistication. This preference becomes very
clear when looking at programming projects’ core-vocabulary,
which is significantly smaller than that of natural languages
corpora.

Our work suggests a number of directions for future re-
search. One is to determine exactly how programmers come up
with variable names and identifiers. What are their underlying
motives and their priorities? Is it readability? Is it efficiency
(shorter symbols)? Or perhaps they just conform to naming
conventions (the “programmers’ slang”)?

Another appealing study topic could be to examine how
does a program’s vocabulary grow as the size of the project
grows. Zipf’s law implies that vocabulary growth is boundless,
and indeed compounding words together facilitates the infinite
creation of new names. But what are the dynamics of this
process? We have only looked at static snapshots of projects,
without investigating their progression through the version
control system. It could be interesting to see if a project’s
vocabulary’s growth rate resembles the rate observed in natural
language corpora, when new sources or additional text from
the same source are added.

EXPERIMENTAL MATERIALS

The data and scripts we used are available on GitHub:
github.com/NitsanAmit/LanguageOfProgramming
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