
Locality of Sampling and Diversity in Parallel System
Workloads

Dror G. Feitelson
School of Computer Science and Engineering

The Hebrew University, 91904 Jerusalem, Israel

Abstract

Observing the workload on a computer system during a short (but not too short) time
interval may lead to distributions that are significantly different from those that would be ob-
served over much longer intervals. Rather than describing such phenomena using involved
non-stationary models, we propose a simple global distribution coupled with a localized sam-
pling process. We quantify the effect by the maximal deviation of the distribution as observed
over a limited slice of time from the global distribution, and find that in real workload data
from parallel supercomputers this deviation is significantly larger than would be observed at
random. Likewise, we find that the workloads at different sites also differ from each other.
These findings motivate the development of adaptive systems, which adjust their parameters as
they learn about their workloads, and also the development of parameterized workload models
that exhibit such locality of sampling, which are required in order to evaluate adaptive systems.

1 Introduction

Locality of reference is one of the best known and widely occurring attributes of computer work-
loads [6]. It means that if a certain memory location is referenced, there is high probability that
it (or a nearby location) will be referenced again soon. Thisis the basis for the success of all
caching schemes that maintain recently-referenced data inhigh-speed memory for possible reuse,
including processor caches, virtual memory, file system buffer caches, and caching web pages on
proxies. Likewise, complex functions may cache their result and reuse it rather than recomputing
it if they are called again with the same argument [21], and freed memory blocks can be cached in
anticipation of future requests for the same block sizes [33].

Systems can also use their history to learn about their environment [34]. For example, several
algorithms have been devised to predict job runtimes based on historical data regarding previous
executions, in the interest of providing schedulers with better information [12, 26]. Adaptive algo-
rithms can be designed that observe the workload and change the system’s behavior accordingly.
For example, schedulers and load balancers may adapt to their workload and tune their settings so
as to provide the best performance [22, 29, 30, 35].

1

The common thread uniting all these examples is the belief that the recent past is indicative of
the near future, and that this can be exploited to advantage.As such, it is a generalization of the
idea of locality of reference. In particular, a distinctioncan be made between the workload on short
time scales, which tends to be repetitive and regular, and the workload on long time scales, which
tends to be more random [11]. This distinction has a generative explanation: users of computer
systems often perform the same tasks repeatedly many times before moving on to do something
else; programs often repeatedly execute the same nested loops over and again before moving on to
the next phase of the computation, etc.

Regrettably, synthetic workloads used for performance evaluation often do not have this prop-
erty. The predominant approach to workload generation considers it as a process of sampling from
some population or distribution [18, 15], and this approachis indeed used in parallel workload
models [16, 7, 5, 20] A large population of possible workloaditems is postulated, and the next one
to arrive is simply selected at random from this population.Likewise, the specification of service
time distributions in queueing analysis assumes this model[17]. But such random sampling, where
each workload item is independent of those that came before it, will not lead to any type of locality.

Instead, we suggest that the workload generation model should employ sampling with locality.
This means that the sampling process has two levels: at the top level, one selects the part of the
distribution or population on which to focus. Then, at the bottom level, you select workload items
at random from this part of the distribution or population. In its simplest form, the top level selects
a single workload element, and the bottom level repeats it many times. Such an approach matches
the observed characteristics of workloads at both short andlong time scales: the local sampling
creates regularity and repetitiveness at the short time scales, while the shifts from one locality to
another create the randomness of long time scales.

Using a workload model with such repetitions for performance evaluation is important because
real systems operate in an on-line manner, and must contend with the workload as it appears on
the immediate time scale. Thus a model based on random sampling from a global distribution will
subject the system to a very different workload than one based on localized sampling from the same
distribution. This has two consequences. First, a workloadsampled from a global distribution will
be more mixed, and have a higher probability that unusual events cancel each other out. Second,
using a global workload will not enable a reliable evaluation of adaptive systems thatrely on
locality.

Adaptive systems are becoming more common in the quest for efficiency and autonomous
management. For example, consider a batch scheduler in a parallel system that needs to set the
relative priorities of its different queues to obtain the best possible performance. This can be done
by simulating the results that would be obtained for the current workload had other settings been
in effect, and switching if those other setting seem to be better [29, 30]. In reality, as workloads
evolve, new settings would be needed, and each setting wouldstay in effect for a certain period of
time due to the locality. But in a model that just uses the global distribution this is not the case.
Thus such a model prevents the evaluation of the potential benefits of the adaptive scheduler.

The idea of two-level sampling is not new. Perhaps the closest related work is that on user-
behavior graphs [11, 4]. These are motivated by the same arguments submitted here — that the
workload should reflect the activity of those users that are active at each point in time. While this

2

CTC SP2

lag
0 25 50 75 100 125 150 175 200

au
to

co
rr

el
at

io
n

0

0.2

0.4

0.6

0.8

1

original
scrambled

SDSC Blue

lag
0 25 50 75 100 125 150 175 200

au
to

co
rr

el
at

io
n

0

0.2

0.4

0.6

0.8

1

original
scrambled

Figure 1:Autocorrelation of runtimes of parallel jobs submitted to two parallel supercomputers.
When the sequence of jobs is scrambled all correlation is lost. In this and other figures only a
couple of examples are shown; similar plots can be drawn for the other logs too.

device can be used to generate locality of sampling, the focus of user-behavior graphs is different:
it is the desire to capture thesequencesof jobs that typify different users.

The main contributions of this paper are

• To identify the phenomenon of locality of sampling as an important characteristic of com-
puter workloads, distinct from known characteristics based on the autocorrelation function
(Section 2),

• To quantify this effect based on the maximal deviation between the distributions observed
during a limited slice of time from the global distribution (Section 3),

• To show how this effect can be generated in synthetic workload models by repeating selected
jobs multiple times (Section 4), and

• To show that the same mechanism may be used to characterize how workloads differ from
one location to another (Section 5).

2 The Phenomenon of Locality of Sampling

When analyzing and modeling empirical workload data, a chief concern is often that the data be
stationary. This stems from the common approach of modelingworkload generation as a sampling
from a distribution [18, 15]. To be valid, this model requires observed workloads to look like
random sampling from a distribution, and in particular, allworkload items should come from the
same distribution. The formal definition of stationarity requires that the correlation structure also
be preserved, but this is not always verified.

Upon inspection, however, one finds that many workload datasets do not seem to be stationary.
On long time scales of months and years, this can be caused by workload evolution — the change
in workload as users learn to use a new system, or as the dominant application types change with
time [14, 13]. On shorter time scales, it can be caused by workloads that have periodic cycles (e.g.
as a result of the human daily work cycle).

3

original data

J
1995

F M A M J J A S O N D

ru
nt

im
e

1s

10s

1m

10m

1hr

10hr
original data

J
1995

F M A M J J A S O N D

jo
b

si
ze

1

4

16

64

256

scrambled data

J
1995

F M A M J J A S O N D

ru
nt

im
e

1s

10s

1m

10m

1hr

10hr
scrambled data

J
1995

F M A M J J A S O N D
jo

b
si

ze

1

4

16

64

256

Figure 2: Graphical demonstration of the existence of locality of sampling, by comparing the
original data with scrambled data after a random permutation along the time axis. The original
workloads typically do not look like a random sampling from aglobal distribution. Data from the
SDSC Paragon.

Another important characteristic of computer workloads istheir locality — a persistent simi-
larity between nearby items. Locality may be quantified by noting that if items are similar to each
other there is a correlation between them. The degree of locality can then be measured by the
autocorrelation function: the correlation of a list of items with itself after being shifted by a certain
lag. An example is shown in Fig. 1. The items here are paralleljobs, and the quantity of interest is
their runtime1. The autocorrelation function is pretty high even for largelags, showing that there
is a correlation between jobs that are separated by dozens ofother jobs. (Locality can also be
quantified by the average stack distance — the average numberof distinct items since seeing this
one the last time, so named because it is easily calculated bykeeping the items in an LRU stack
[28]. However, this requires continuous quantities like runtime to be discretized and is therefore
sensitive to the granularity of the discretization.)

The relationship of locality and stationarity is subtle. For example, workloads may exhibit
bursty behavior at many different time scales, but this doesnot necessarily imply a lack of station-
arity — just that there are long-range dependences among jobs. In fact, given finite data it is not
always possible to distinguish between long-range dependence and a non-stationary trend. Like-

1Our study focuses on the workload on parallel supercomputers and clusters. Such workloads are composed of
parallel jobs, that need a certain number of processors and run for a certain time. The data comes from the Parallel
Workloads Archive, which contains accounting logs from large-scale production systems; it is summarized in Table 6.

4

synthetic data

J
1996

A S O N D J
1997

F M A M

sy
nt

he
tic

 r
un

tim
e

0

2000

4000

6000

8000

10000

J
’96

A S O N D J
’97

F M A M

m

 i

0

0.1

0.2

0.3
CTC SP2
synthetic

lag
0 50 100 150 200

au
to

co
rr

el
at

io
n

0

0.2

0.4

0.6

0.8

1

CTC SP2
synthetic

Figure 3:Synthetic dataset displaying consistently high locality of sampling (as quantified in Sec-
tion 3, middle plot), but no autocorrelation at positive lags.

wise, the existence of locality does not contradict stationarity — it just means that there are local
correlations. Locality of sampling focuses on these short-range dependences. While the exposition
here assumes a stationary background distribution, this distribution can in principle change with
time. Locality of sampling is therefore orthogonal to long-range dependence and non-stationarity,
and can be combined with them if needed.

In essence, locality of sampling assumes a stationary global distribution (the marginal distribu-
tion), but a localized sampling process. In effect, this is away to avoid the need to describe how
the distribution changes with time. Instead, we describe how the sampling changes. The advan-
tage is that this can be very simple, as shown in Section 4: simply replicating samples can lead
to the desired effect. Moreover, it resonates with observations regarding how real workloads are
generated. But of course other modeling approaches are alsopossible.

Note also that locality of sampling is a generalization of locality of reference, in that it refers to
all aspects of workloads and not only to locations in storage. In particular, it may also imply a form
of clustering, as we may consider sampling of complete multi-attribute workload items, rather than
just values from each workload attribute distribution independent of other such distributions.

A simple way to visualize locality of sampling is by using scatter plots in which theX axis is
time, and theY axis is a workload attribute. Such a plot shows how the distribution of values of this
attribute changes with time: a vertical slice of the plot shows the distribution at the time (position
along theX axis) of this slice. To visualize multiple samples that fallat the same spot (that is,
samples with the same value that occur at the same time) we create a disk; the more samples, the
larger the disk.

An example of this device is shown in Fig. 2. This shows the distributions of job runtimes and
sizes on the SDSC Paragon parallel supercomputer, and how they changed over a period of one
year. To emphasize the concentrations of sampling certain values in a restricted span of time, we
compare the given data with a scrambled version. The top two plots are the original ones. Some
prominent concentrations of values are marked with circlesto help guide the eye (but note that
there are many other concentrations too). The bottom plots are scrambled, or randomized. This
means that some random permutation was applied to the jobs inthe log (but keeping the original
arrival times, so the vertical streaks corresponding to high loads remain). As a result, jobs that

5

used to be next to each other may now be distant, and jobs that originally were unrelated are now
next to each other.

The effect of scrambling on the scatter plots is that the locality properties are lost: at every
time, we now observe a random sample from the global (marginal) distribution. In particular, the
concentrations of very many samples of related values are spread out and create or contribute to
horizontal streaks (this is especially common for powers oftwo in the size distribution). At the
same time, gaps in the original horizontal streaks are now filled in. The fact that this is different
from the original plots testifies to the fact that the original ones exhibit locality of sampling. Such
phenomena are not unique to the SDSC Paragon machine. Using other datasets from the Parallel
Workloads Archive leads to similar plots.

It should be noted that while locality of sampling can lead toautocorrelation, and it seems that
the two indeed go hand in hand in real datasets, these two properties of the data are not equivalent
to each other. This is demonstrated by the simple synthetic dataset shown in Fig. 3. The global
distribution of this data is uniform. But in each time slice,only two small sub-ranges are sampled,
leading to a strong locality (this is quantified in the next section). The trick is that these sub-ranges
are symmetrically placed, thereby leading to essentially no autocorrelation at any positive lag.

Locality of sampling is also distinct from the well-known phenomenon of self similarity (e.g.
[19, 23]). Self similarity refers to structure in thearrival process, i.e. in the series of time instances
at which new work arrives; it refers to the fact that this sequence is bursty at many different time
scales. Locality of sampling refers toattributes of the arriving work items, i.e. to what arrives at
those time instances.

3 Quantifying Locality of Sampling

The essence of locality of sampling is that if we look at a short time scale, we will only see part of
the global distribution. In other words, the distribution at a short time scale is different: it is less
diverse in the values that it contains, or in other words, it is more modal. Moreover, this is time
dependent: at different times we will observe different values.

The proposed metric for quantifying the degree of locality of sampling tries to formalize this
intuition. This has to be done with care, because at extremely short time scales lack of diversity
is expected: a small number of samples cannot represent the whole distribution. We will start by
dividing the time line into equal-duration slices, and finding the distributions of workload items
when considering each slice independently; we call theseslice distributionsbecause they are lim-
ited to a slice of time. The metrics are then based on direct measurement of the difference between
these slice distributions and the global distribution.

3.1 Step 1: Deviation of Slice Distributions

Fig. 4 shows example slice distributions for 3 selected week-long slices of the SDSC Paragon log.
Due to the locality of sampling, these distributions tend tobe different and much more modal
than the global distribution, as indicated by their more step-like shape. For example, the data for

6

SDSC Paragon

runtime
1s 10s 1m 10m 1hr 10hr

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

0

0.2

0.4

0.6

0.8

1

Feb 1−7, 1995
Apr 15−21, 1995
Aug 13−19, 1995
complete log

SDSC Paragon

job size
1 4 16 64 256

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

0

0.2

0.4

0.6

0.8

1

Feb 1−7, 1995
May 25−31, 1995
Sep 28−Oct 4, 1995
complete log

Figure 4:The distributions of job runtimes and sizes on select weeks tend to be modal and different
from each other and from the distribution of the whole log. Selected weeks correspond to markings
in Fig. 2.

February 1–7 indicates a preponderance of 16-node jobs, running for either a couple of minutes or
about one hour.

Based on this, we can propose an actual measure of the divergence of the weekly (or other
short-range) distributions from the global distribution.This is inspired by a combination of two
tests for goodness of fit: theχ2 test and the Kolmogorov-Smirnov test. The difference is that here
we use the tests in reverse: we want to show that the distributions are different from each other,
and quantify how different they are.

The essence of theχ2 test is to divide the range of possible values into sub-ranges with equal
probabilities, and verify that the number of samples observed in each are indeed nearly equal. Our
quantification will therefore be to divide the overall rangeinto subranges that have equal probabil-
ities according to the global distribution, and observe themaximalprobability for a single range
according to the slice distributions. This measures a mode that is present in the slice distributions
but not in the global one. We use the maximal deviation, as in the Kolmogorov-Smirnov test, as
we are interested in the deviation between the global and slice distributions.

In order to be meaningful, there should be at least a few samples in each subrange. This places
constraints on how the measurement is done. Assume the wholelog contains a total ofN samples
(e.g. parallel jobs). If the length of the log isd days, there areN/d jobs per day on average. This
has to be large enough to apply theχ2 test using enough subranges. If it is too small, we need to
consider a larger basic time unit. Using the 1995 SDSC Paragon log as an example, it contains
53,970 jobs (in the cleaned version) and spans a full year, for an average of 147.9 jobs per day.
This should be enough for a resolution of more than 20 subranges. However, due to fluctuations in
activity, some days will have much less jobs. It may therefore be better to use a somewhat longer
time unit, say 3 days.

Given that we have selected a slice size oft time units and a resolution of dividing the range of
values intor bins, the calculation proceeds as follows.

1. Create a histogram of the complete (global) data, and partition it into r equally likely ranges.
This defines the boundary points of the ranges.

2. Partition the log intod/t successive slices oft time each (this need not be measured in days

7

 50 40 32 24 16 8 4

 30
 20

 14 10 7 5 3 1

 1
 0.8
 0.6
 0.4
 0.2

slices
used

SDSC Paragon

number of subranges slice size [days] 50 40 32 24 16 8 4

 30
 20

 14 10 7 5 3 1

 1
 0.8
 0.6
 0.4
 0.2

slices
used

LANL CM5

number of subranges slice size [days]

Figure 5:Fraction of slices found to be usable for different parameter combinations.

as in the above example — the time unit should match the type ofdata being considered).

3. For each of these slices of the log (indexed byi), do the following:

(a) Find the number of workload itemsNi in this slice of the log.

(b) Create the slice histogram of theseNi workload items, and count how many of them fall
into each of ther ranges defined in step 1. Denote these observed counts byo1, . . . , or.

(c) By construction, the expected number of items in each range (assuming the global dis-
tribution) isei = Ni/r. We are interested in the deviations from this, and in particular,
in the maximal relative deviation. Therefore we compute

mi =
max
j=1..r

{

|oj − ei|
}

Ni − ei

This is slightly different from the conventional expression used in theχ2 test. First,
we use the max rather than a sum, as is done in the Kolmogorov-Smirnov test. This
has the effect of being more sensitive to deviations, and emphasizing the concentration
of values in a subrange. Second, we use the absolute value rather than the square to
ensure that the result is positive. This retains a linear scale for comparison. Finally, we
divide by Ni − ei rather than byei. This normalizes the result to the range[0, 1], as
the maximal value for anyoj is Ni, which occurs ifall the samples appear in thejth
subrange.

4. Record themi values of the different slices.

An important question regarding the suggested procedure isthe choice of parameters. As noted
above, one of the considerations is data availability: we need enough data items to populate every
subrange in each slice. Using a threshold of 5 items as the minimal requirement (as is common
for theχ2 method, e.g. [1]) we may expect that using a large number of subranges and short slices
will cause many of them to be unusable. An example of what happens with real data is given in
Fig. 5. This shows the fraction of slices of durationt days that are usable when divided intor
subranges, meaning that they contain enough jobs. The data indicate that only very short slices

8

LANL CM5

O
’94

D F
’95

A J A O D F
’96

A J A O

m

i

0

0.1

0.2

0.3

maxima

medians

SDSC Blue

A
’00

J A O D F
’01

A J A O D F
’02

A J A O D

m

i

0

0.1

0.2

0.3
maxima

medians

Figure 6: The values obtained bymi vary considerably in successive slices. As a result their
maximum attains widely fluctuating values even in successive quarters. Their median is much
more stable.

create a problem. In particular, our default choice of 3-dayslices and 24 subranges is in the middle
of the rim of the plateau, and utilizes 94% of the slices for the SDSC Paragon log and 100% for
the LANL CM5 log.

3.2 Step 2: Reduction to a Single Number

Given a year’s worth of data, and using slices of 3 days, we endup with over 120 values ofmi for
successive slices. The question then is how to best reduce them into a single metric.

Recall that we are looking to quantify the maximal divergence of slice distributions from the
global distribution. This was the reason to definemi based on the range with the maximal deviation
from what was expected according to the global distribution. It would therefore be natural to
continue with this approach, and define the final metric to be the maximalmi value:

M ′

max= max
1≤i≤d/t

{mi}

The problem with using the maximum is that extremal values are by their very nature unstable.
An example is shown in Fig. 6. Obviously the values ofmi in the different slices varies widely.
In a long log it may reach high values several times, but in between are slices withmi values that
are considerably lower. As a result the outcome of the calculation is very sensitive to the period
being studied: if the log was shorter or longer, the maximal observed value could be considerably
different.

Another demonstration of the volatility of results based onthe maximum of themis is obtained
as follows. Recall that we are using slices of 3 days for the slice distributions. These can be defined
in three different ways, with shifts of one day relative to each other. Re-calculating the metrics for
these different shifts leads to results like those shown in Table 1: a shift of one day can change the
results by some 15%, or not at all.

The obvious alternative is to use the median of themis in the different slices. While this too
fluctuates to a certain degree, the fluctuations are much smaller than for the maximum (Fig. 6 and

9

shift
metric 0 1 2
M ′

max 0.3204 0.2692 0.2701
M ′

med 0.0691 0.0698 0.0706

Table 1:Effect of shifts of 1 or 2 days on the
metric results, for the SDSC Blue Horizon log.

log M ′

max M ′

med
LANL CM5 0.269 0.059
SDSC Paragon 0.429 0.098
CTC CP2 0.336 0.063
KTH SP2 0.218 0.085
SDSC SP2 0.577 0.101
Blue Horizon 0.320 0.069
DataStar 0.419 0.085

Table 2:Results of measuring the degree of lo-
cality of sampling for the runtime distributions
in different logs using theM ′

max andM ′

med
metrics.

Table 1). We may therefore define our metric to be

M ′

med= m(d/2t)

Applying the above to various logs of workloads from parallel supercomputers, when using 24
subranges and slices of 3 days, leads to the results shown in Table 2. For example, in the SDSC
DataStar log the maximum-based metric is 0.419. This means that in one of the slices, 44.3% of
the jobs were concentrated in a single subrange, rather thanbeing equally dispersed among all 24
subranges. On the other hand, in the LANL CM5 log this metric was only 0.269, implying that the
biggest concentration of jobs in one range was 29.9%. The values using the median are of course
much lower. For example, the value of 0.085 for the SDSC DataStar log implies that for half of the
slices, 12.3% or more of the jobs were concentrated in one range, which is about 3 times higher
than would be expected by random sampling from the global distribution.

The question regarding all these results is whether they areactually significant. Obviously,
even if the slice distributions are identical to the global one, some deviations are to be expected in
a random sampling. We therefore need to compare our results to those that would be obtained via
random sampling from the global distribution. This will be done using the bootstrap method [8, 9].

The bootstrap method is very simple: we just repeat the measurement a large number of times
(say a thousand), using random samplings from the global distribution rather than the real slice dis-
tributions. In our case, each repetition createsN samples from the global distribution, partitions
them into groups with sizes dictated by theNis, creates the histogram for each group, calculates
themi based on the deviation between the group’s empirical distribution and the original global
distribution, and finally finds the maximum and median of themis. Each repetition thus produces
a single data point for each metric (the values ofM ′

max andM ′

med) valid for a specific sam-
pling from the global distribution. Repeating this a thousand times allows us to approximate the
distribution of such results, that is, the distribution ofM ′

maxandM ′

medfor random sampling.
We then check where the results for the real slice distributions falls in this distribution of

results. If it is at the extreme end of the range (or beyond theend of the range), it is unlikely to
have occurred by chance. Examples of the outcome of following this procedure are shown in Fig.

10

SDSC Paragon

maximal deviation
0 0.1 0.2 0.3 0.4

nu
m

be
r

of
 te

st
s

0

20

40

60

80

100

bootstrap M’max

median (M’g) data
M’max

Mmax

LANL CM5

maximal deviation
0 0.1 0.2 0.3

nu
m

be
r

of
 te

st
s

0

20

40

60

80

100

bootstrap M’max

median (M’g) data
M’max

Mmax

SDSC Paragon

median deviation
0 0.025 0.05 0.075 0.1

nu
m

be
r

of
 te

st
s

0

100

200

300

400

500

600

bootstrap M’med

median (M’g) data
M’med

Mmed

LANL CM5

median deviation
0 0.02 0.04 0.06

nu
m

be
r

of
 te

st
s

0

100

200

300

400

500

600

bootstrap M’med

median (M’g) data
M’med

Mmed

Figure 7: Results of 1000 random tests of the maximal/median deviation observed when sam-
ples come from the global distribution of runtimes, compared to the maximal/median deviation
observed in the slice distributions.

log Mmax Mmed
LANL CM5 0.221 0.039
SDSC Paragon 0.367 0.073
CTC CP2 0.302 0.046
KTH SP2 0.159 0.056
SDSC SP2 0.511 0.072
Blue Horizon 0.271 0.052
DataStar 0.376 0.068

Table 3: Results of measuring the degree of locality of sampling for the runtime distributions in
different logs using theMmaxandMmedmetrics.

7. Obviously, the actual results for the real slice data are way out of the scale of results that are
obtained by random sampling from the global distribution, for both the maximum and median-
based metrics. We can therefore claim that our results are highly significant.

The relatively narrow distributions ofM ′

max and even more so ofM ′

medobtained by random
sampling from the global distribution present an opportunity for improving the metric of locality
of sampling. Instead of measuring the absolute value ofM ′ as computed above, we can measure
the difference betweenM ′ and the value that would be obtained by chance. We define the latter as
the median of the distribution of results obtained by the bootstrap method, because the median is

11

 50
 40

 32
 24

 16
 8 4

 30 20 14 10 7 5 3 1

 0.6
 0.4
 0.2

 0

Mmax

LANL CM5

number of
subranges

slice size [days]

Mmax

 50
 40

 32
 24

 16
 8 4

 30 20 14 10 7 5 3 1

 0.6
 0.4
 0.2

 0

Mmed

LANL CM5

number of
subranges

slice size [days]

Mmed

Figure 8: The maximum-based metric is much more sensitive to the choice of parameter values
than the median-based one.

both representative and much more stable than the mean or max. Denote this median value byM ′
g.

Our final metric for locality of sampling is therefore

M = M ′ − M ′
g

applied to either the maxima of themi or to their medians. This is demonstrated in Fig. 7, and the
results are tabulated in Table 3.

The results shown in Fig. 6 indicate that themi values fluctuate widely among slices. Some of
the values are very high, but many are actually quite low. This raises the concern that they may
also be sensitive to the parameter values used in the measurement (in our case, 3-day slices and
24 runtime ranges). To check this, we repeated the measurements for a wide range of parameter
values. The results shown in Fig. 8 indicate thatMmax is indeed quite sensitive, and obtains
much higher values when the slice size and number of ranges are reduced. TheMmedmetric, by
contradistinction, is very stable. When combined with the previous results, this indicates that the
Mmedmetric should be preferred as a measure of locality of sampling.

4 Modeling Locality of Sampling

Despite its importance, there has been relatively little work on introducing locality into workload
models. Early work on virtual memory primarily used the LRU stack model [28]. Thiébaut et
al. proposed a fractal model of memory traversal based on a hyperbolic law for the probability of
jumps with different sizes [31]. Wang et al. claim that thereis a correlation between burstiness in
time (self similarity) and space (locality), and suggest the QPRS model to capture it, in which time-
space is recursively divided into 4 and sampled with probabilitiesp, q, r, ands which sum to 1 [32].
Arlitt and Williamson used a stack model to investigate locality in Mosaic (WWW) conversations,
and concluded that there isn’t much locality [3]. Instead, they introduced a parameter that specifies
the probability to repeat the last destination. A stack model was also used by Almeida et al. [2].
Shi et al. combined this with simulated large flows to recreate the observed temporal locality in
web-traffic [25].

12

CTC SP2

runlength
1 10 100 500

nu
m

be
r

of
 o

cc
ur

en
ce

s

1

10

100

1000

10000

LANL CM5

runlength
1 10 100 500

nu
m

be
r

of
 o

cc
ur

en
ce

s

1

10

100

1000

10000

Figure 9: Histograms of run lengths of similar jobs in production workloads. Note the use of
logarithmic axes; the dashed line has a slope of−2.5.

Our approach to modeling locality of sampling is both general and extremely simple. We
initially sample from the global distribution. But then, instead of using each variate once, we
repeat it a number of times. With enough repetitions we will get a sequence of samples that exhibits
modal slice distributions. This approach is based on the observation that humans often repeat the
same commands over and over again. For example, when writingand typesetting this paper I
repeatedly execute the LATEX command with only minor modifications to the input file, leading to
a sequence of executions with a very similar profile. The samehappens with compilations done
when developing code, or when running production simulations of a set of related configurations.
But on another day the work at hand changes, and we see repeated runs with a different profile.

Analyzing repetitions in workload logs leads to results like those shown in Fig. 9. In this
analysis, we scan the workload data and partition it into separate streams of jobs submitted by
different users. We then look for runs of equivalent jobs, defined to be jobs that execute the same
application, and use the same number of nodes. The distribution of run lengths shows that many
jobs are independent or are part of a short run, but on the other hand, some runs are very long.

Repeating the sampled workload items is designed to reproduce such runs; the only consid-
eration is to correctly model the distribution of runlengths. This intuition may be formalized as
follows. We are given a global distribution described by thepdf f(·). In addition, we need the
distribution of repetitions, which will be denotedfrep(·)

1. Sample a variateX = x with probability proportional tof(x). Note thatX may be a vector
in case we are considering workload items that have multipleattributes, as is the case with
parallel jobs, where two attributes are the runtime and size.

2. Sample a variateR = r with probability proportional tofrep(r).

3. Repeat theX variateR times. This distorts the distribution locally.

4. Return to step 1 until the desired number of samples have been generated.

With a large enough number of samples, the number of times we will see a value ofx will be
proportional tof(x), i.e. according to the global distribution, as desired. Butthese samples will
come in bursts rather than being distributed evenly. This isqualitatively similar to the parameter
used to specify the probability to repeat the last sample, suggested by Arlitt and Williamson [3].

13

theta=2.5

arrival time
0 2x10^6 4x10^6 6x10^6

ru
nt

im
e

1s

10s

1m

10m

1hr

10hr

theta=2.5

arrival time
J M M J S N J M M J S N J M M

m

 i

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

lag
0 25 50 75 100 125 150 175 200

au
to

co
rr

el
at

io
n

0

0.2

0.4

0.6

0.8

1

theta=2.5
theta=5

Figure 10:Results of modeling locality of sampling by repeating workload items.

However, such independent repetitions would lead to a geometric distribution of runlengths, rather
than the power-law distribution suggested by the workload data.

As a concrete example, consider modeling the arrivals of jobs with a certain distribution of
runtimes. The runlengths are taken from a Zipf-like distribution with parameterθ = 2.5, chosen
according to the data in Fig. 9. This means that the probability of a runlength ofr is proportional
to r−2.5. This was generated by creating a table with normalized values running up to a maximal
runlength of 1000.

Note that it is important to incorporate time in the model, inorder to correctly interleave the
generated sequences. Assume that each workload item is associated with an arrival time, and has
some duration (its runtime). We then sample items as above, assigning them arrival times according
to the model. But the repetitions of each item are assigned arrival times that are staggered according
to each one’s duration. Assuming the durations are large enough relative to the interarrival times,
the result will be to interleave different repeated sequences. This interleaving leads to certain
distances between repetition instances, as in the stack model.

The results of using this procedure are shown in Fig. 10, and exhibit essentially the same
behavior as our original workloads. In particular, applying themi measure of locality of sampling
to the output of this model indicates that the dynamic behavior over time of the model is similar to
that of real workloads, as shown in Fig. 6. The autocorrelation structure is also similar to that of
real workloads, as was shown in Fig. 1.

Additional improvements to the model are possible to make the repetitions more realistic and
less deterministic. For example, we can add think times between the repetitions instead of having
each one arrive immediately when the previous one terminates. In addition, we can introduce some
variability between the repetitions, instead of making them identical. Naturally, such adjustments
should be based on an analysis of the repetitions found in workload logs. This is currently left for
future research.

Fig. 11 shows that the degree of locality of sampling dependson the prevalence of long se-
quences of repetitions. This, in turn, depends on the parameter θ of the distribution of repetitions:
smallθ lead to very long runlengths, while largerθ cause the distribution of runlengths to decay
quickly, producing few repetitions if any.

14

repetition factor θ
2 3 4 5 6 no

M
’

 m

ed

0

0.05

0.1

0.15

0.2

median of
random med

Figure 11:The measured locality of sampling as a function of the parameter θ of the distribution
of repetitions.

To characterize the effect ofθ onM ′

med, we used the model to create 10 independent sequences
of 100,000 jobs, and measuredM ′

medfor each one. This was repeated for 9 values ofθ between
2 and 6, and again for a model where repetitions are turned offcompletely. As Fig. 11 shows,
values ofθ from 2 to 4 lead to values ofM ′

med from 0.180 down to 0.038. The model default
of θ = 2.5 produces anM ′

med in the range 0.078–0.098, of which the lower end is a bit high
given the data in Table 2. Different workloads are thereforebest modeled by different values in
the rangeθ ∈ [2.5, 3]. The data also show that whenθ > 4 this is essentially the same as having
no repetitions. In this case,M ′

med comes out at essentially the median value seen for random
sampling from the global distribution.

Modeling locality of sampling by using job repetitions as suggested above has two important
advantages: it is parsimonious, and it is generative.

Sampling with repetitions is as simple as a model can be, as itonly requires the distribution of
repetitions, which is described by a single parameter — the slope of the histogram (Fig. 9). Other
models for locality are typically more complex. For example, Shi et al. find that the best model
for a distribution of stack distances is a mixture of a Weibull distribution and a Pareto distribution,
so five parameters are needed. Locality of sampling can also be achieved by a user behavior
graph [11] or an HMM [24, 27]. However, this complicates the model as we need to describe the
complete dynamics and what workload items correspond to each state. For example, when using an
HMM we need to define the transition matrix among the states, and the output distribution for each
state; the number of required parameters is at least linear in the number of states. Sampling with
repetitions is much simpler, albeit this simplicity may come at the price of not capturing potential
non-repetition sequencing properties.

The fact that the model is generative is even more important than parsimony. The alternative
to a generative model is a descriptive one. The difference isthat descriptive models just describe a
certain situation, without explaining its mechanics. Thusthey do not provide any clues regarding
how the model should change under different conditions. Forexample, consider what may happen
when the load on a system changes. If a (descriptive) stack model is used, the same stack depth
distribution would be used for all load conditions. But a repetitions-based generative model shows
that this is probably wrong. When the load is extremely low, there will be little if any overlap

15

log max deviation
LANL CM5 0.043
SDSC Paragon ’95 0.282
SDSC Paragon ’96 0.135
CTC CP2 0.071
KTH SP2 0.113
SDSC SP2 0.055
Blue Horizon 0.043
DataStar 0.040

Table 4: The maximal devia-
tions observed when compar-
ing each log with a global dis-
tribution composed from all of
them.

parallel machines

runtime [s]
1 10 100 1000 10K 100K

pr
ob

ab
ili

ty

0

0.2

0.4

0.6

0.8

1

LANL CM5
SDSC Par95
SDSC Par96
CTC SP2
KTH SP2
SDSC SP2
SDSC Blue
SDSC DS

Figure 12:Runtime distributions on different parallel ma-
chines.

between repeated sequences of jobs, so stack distances should be very small. But when the load is
high, more other jobs will intervene between repetitions, leading to higher stack distances. With a
generative model we only need to create more sequences to increase the load, and the modification
of the locality follows automatically.

Note that our approach to modeling locality of sampling can be viewed as a component in a
more general model that simulates the process that generates the workload. Taking additional steps
in this direction can be expected to lead to even better models that also exhibit locality of sampling.
In particular, it is desirable to combine job repetitions with mechanisms that induce self-similarity.
At present such comprehensive modeling is left for future work.

5 Workload Diversity

Our exposition so far has focused on locality of sampling in the time domain, where the dis-
tributions of workload attributes during a limited slice oftime differ from the global distribution
observed over a much longer period. In this section we generalize this idea, and show that the same
technique may be applied to the spatial domain, by quantifying the difference between workloads
of the same type that come from different sites.

Using the metrics devised in Section 3 to measure “spatial” rather than “temporal” locality
means that the slices are not data from the same site at different times, but rather data from different
sites (possibly but not necessarily at the same time). We exemplify this idea by comparing the
parallel system logs we have used throughout this study. We can define a global distribution that
includes the runtimes of jobs fromall the logs, and then check the deviation between each log’s
distribution and this global average. The results of doing so are shown in Table 4; note that each
log is taken as a single slice, so the maximal deviation is given. Obviously the SDSC Paragon log
is the farthest from the average, especially in 1995. The KTHlog is the second farthest. All the
rest are not so far, but still their distance is significant: checking what deviations we may expect to

16

max deviation
cluster jobs job wgt same wgt
bruce 20,629 0.432 0.307
narwhal 269,902 0.067 0.078
tiger 152,950 0.109 0.110
bull 68,108 0.111 0.071
megaladon 7,998 0.103 0.066
dolphin 8,337 0.123 0.072
requin 50,448 0.062 0.052
whale 589,251 0.036 0.132
zebra 5,749 0.101 0.084
bala 10,280 0.129 0.091

Table 5: The maximal deviations ob-
served when comparing each log with a
global distribution composed from all of
them.

Sharcnet partitions

runtime [s]
1 10 100 1000 10K 100K 1M

pr
ob

ab
ili

ty

0

0.2

0.4

0.6

0.8

1
bruce
narwhal
tiger
bull
megaladon
dolphin
requin
whale
zebra
bala

Figure 13: Runtime distributions on different
SHARCNET clusters.

get due to random sampling led to results around 0.021 for alllogs. The distributions themselves
are shown in Fig. 12 and support these findings. They indicatethat the main divergence of the
Paragon and KTH distributions is at very short jobs of up to about 30 seconds.

An especially interesting dataset for studying workload diversity is provided by the SHAR-
CNET system. As opposed to the above workloads, which come from different installations of
different architectures at different times, SHARCNET is a collection of relatively new clusters
based on the same architecture and located in a group of related academic institutions in Ontario,
Canada. Would such uniformity lead to more similar workloads? As shown in Table 5 and Fig. 13,
the answer is no.

Looking at the runtime distributions shows that eight of theten clusters have similar distri-
butions, but two are different: bruce has sharp modes at about 10m and 30–60m, and whale has
much fewer jobs shorter than 1h and many more in the range of 1hto 1d. However, when looking
at the divergence metric, whale has the lowest score! This happens because whale has a much
higher load than any of the other clusters, and represents nearly 50% of all the jobs. As a result
the global distribution is heavily biased towards the distribution of jobs that ran on whale, making
whale appear closer and all the other clusters appear farther away.

A possible solution to such a bias is to redefine the global distribution. Instead of just tabulating
all the jobs from all the sources, we can resample each sourcethe same number of times. This puts
all the sources on an equal footing. The results, also shown in Table 5, indeed reflect a global
distribution that better represents the eight clusters that are more similar to each other.

17

6 Discussion and Conclusions

Locality of sampling refers to the fact that workloads oftendisplay a specific internal structure:
successive samples are not independent of each other, but rather tend to be similar to each other.
This applies to all workload attributes, and not only to those that denote location, such as memory
addresses. In terms of a model whereby the workload is sampled from a distribution, this implies
that successive samples be taken from the same part of the distribution.

A major contribution of this work is to suggest locality of sampling as a new way to look at
and quantify short-range dependence. This was done by comparing the general distributions of the
workload attributes of interest with the distributions that are observed during limited slices of time.
We also showed that locality of sampling is distinct from short-range dependence and long-range
dependence: a workload may display locality of sampling butzero autocorrelation at positive lags,
and even if the autocorrelation is non-zero, it does not necessarily decay polynomially.

A second contribution was to suggest interleaved sequencesof job repetitions as a generative
model that can produce locality of sampling. This has two important advantages. First, it provides
control over the degree of locality of sampling, by modifying the distribution of the number of rep-
etitions used. Second, by virtue of being a generative modelit adapts correctly when the workload
as a whole is modified, e.g. when the load is increased. Of course, other models are also possible.

Locality of sampling in general, the job repetitions in particular, imply that on short time scales
workloads display much less diversity than on long time scales, leading to a much more modal
distribution. This lack of diversity on short time scales isan important phenomenon, as it may
be exploited by systems that benefit from regularity in the workload. In particular, it is conjec-
tured that such effects are required for the success of systems that adapt dynamically to workload
conditions. If the workload were totally random, trying to adapt to the workload would be futile.

To date, job repetitions and localized deviations in workload distributions have received little
if any attention. We contend that these important phenomenadeserve to be taken into account
and used as components of a more general workload model. Specifically, job repetitions should
be a component of workload generation, alongside other means to create trends, correlations, and
long-range dependence (an example of this is the work of Songet al. who combine repetitions
with a Markovian model [27]). And our metrics for locality ofsampling should be used both to
characterize real workloads and to verify that synthetic workloads posses the desired attributes.

Our results also highlight the diversity observed in parallel system workloads, both along time
in the same workload, and between workloads from different systems. This diversity implies that
extreme care must be taken when trying to generalize performance results. Performance should
always be evaluated for many different workloads, especially those that are known to be different
from each other. Moreover, it might make sense to separate given workloads into shorter segments
(that are each relatively homogeneous but different from each other) and consider the performance
observed for each such segment. Such an analysis may also uncover the dependence of observed
performance on specific workload features.

As locality of sampling is a newly identified phenomenon, much remains to be done. Directions
for further research include the following. First, there isa need for a deeper exploration of the
phenomenon itself, including the development of alternative metrics to measure it. For example,
it may be necessary to consider other metrics when studying phenomena at very fine time scales.

18

log file proc’s duration jobs
LANL-CM5-1994-3.1-cln 1024 10/1994–9/1996 122,055
SDSC-Par-1995-2.1-cln 400 1/1995–12/1995 53,970
SDSC-Par-1996-2.1-cln 400 1/1996–12/1996 32,135
CTC-SP2-1996-2.1-cln 430 6/1996–5/1997 77,222
KTH-SP2-1996-2 100 9/1996–8/1997 28,489
SDSC-SP2-1998-3.1-cln 128 4/1998–4/2000 59,725
SDSC-BLUE-2000-3.1-cln 1152 4/2000–1/2003 243,314
SDSC-DS-2004-1 1664 3/2004–4/2005 96,089
SHARCNET-2005-1 6828 12/2005–1/2007 1,195,242

Table 6:Main data logs used in this paper (available from the Parallel Workloads Archive).

Second, there is a need to integrate locality of sampling with other workload attributes, such as
self similarity, as comprehensive workload models should incorporate all known features of real
workloads. Finally, we are just beginning to investigate the effects of locality of sampling on
system behavior, and the opportunities for exploiting thisbehavior to improve system performance.
In this context, it is also interesting to conduct a thoroughcomparison of locality of sampling and
other models for locality, such as autoregressive, moving average, and stack models.

Acknowledgments

This research was supported in part by the Israel Science Foundation (grant no. 167/03). The
idea that workloads should contain repetitive jobs was suggested to me by my PhD adviser, Larry
Rudolph, more than 15 years ago, but at the time we didn’t haveany data with which to work. Many
thanks are therefore due to all those who deposited their workload logs in the Parallel Workloads
Archive, and made this research possible.

Appendix: Data Usage

The data analyzed in this paper comes from the Parallel Workloads Archive2. This contains ac-
counting logs describing the activity on large scale production parallel supercomputers for periods
of up to21

2
years. The logs used are described in Table 6. The cleaned versions of the logs were

used when available, which means that flurries of activity belonging to single users were removed
[10], as well as other non-representative data such as records of site-specific automatic cleanup
scripts that are fired up at the same time each day. This is significant as such singular activities
tend to be repetitive and may therefore make a significant contribution to metrics aimed at measur-
ing locality of sampling.

2http://www.cs.huji.ac.il/labs/parallel/workload/

19

References

[1] A. O. Allen, Probability, Statistics, and Queueing Theory with Computer Science Applications. Aca-
demic Press, 1978.

[2] V. Almeida, A. Bestavros, M. Crovella, and A. de Oliveira, “Characterizing reference locality in the
WWW ”. In Parallel & Distributed Inf. Syst., pp. 92–103, Dec 1996.

[3] M. F. Arlitt and C. L. Williamson, “A synthetic workload model for Internet Mosaic traffic”. In
Summer Computer Simulation Conf., pp. 852–857, Jul 1995.

[4] M. Calzarossa and G. Serazzi, “Construction and use of multiclass workload models”. Performance
Evaluation19(4), pp. 341–352, 1994.

[5] W. Cirne and F. Berman, “A comprehensive model of the supercomputer workload”. In 4th Workshop
on Workload Characterization, Dec 2001.

[6] P. J. Denning, “The locality principle”. Comm. ACM48(7), pp. 19–24, Jul 2005.

[7] A. B. Downey, “A parallel workload model and its implications for processor allocation”. Cluster
Computing1(1), pp. 133–145, 1998.

[8] B. Efron, “Computers and the theory of statistics: thinking the unthinkable”. SIAM Rev.21(4),
pp. 460–480, Oct 1979.

[9] B. Efron and G. Gong, “A leisurely look at the bootstrap, the jackknife, and cross-validation”. The
American Statistician37(1), pp. 36–48, Feb 1983.

[10] D. G. Feitelson and D. Tsafrir, “Workload sanitation for performance evaluation”. In IEEE Intl. Symp.
Performance Analysis Syst. & Software., pp. 221–230, Mar 2006.

[11] D. Ferrari, “On the foundation of artificial workload design”. In SIGMETRICS Conf. Measurement &
Modeling of Comput. Syst., pp. 8–14, Aug 1984.

[12] R. Gibbons, “A historical application profiler for use by parallel schedulers”. In Job Scheduling Strate-
gies for Parallel Processing, pp. 58–77, Springer Verlag, 1997. Lect. Notes Comput. Sci.vol. 1291.

[13] F. Hernández-Campos, K. Jeffay, and F. D. Smith, “Tracking the evolution of web traffic: 1995–2003”.
In 11thModeling, Anal. & Simulation of Comput. & Telecomm. Syst., pp. 16–25, Oct 2003.

[14] S. Hotovy, “Workload evolution on the Cornell Theory Center IBM SP2”. In Job Scheduling Strategies
for Parallel Processing, pp. 27–40, Springer-Verlag, 1996. Lect. Notes Comput. Sci. vol. 1162.

[15] R. Jain,The Art of Computer Systems Performance Analysis. John Wiley & Sons, 1991.

[16] J. Jann, P. Pattnaik, H. Franke, F. Wang, J. Skovira, andJ. Riodan, “Modeling of workload in MPPs”.
In Job Scheduling Strategies for Parallel Processing, pp. 95–116, Springer Verlag, 1997. Lect. Notes
Comput. Sci. vol. 1291.

[17] L. Kleinrock, Queueing Systems, Vol II: Computer Applications. John Wiley & Sons, 1976.

[18] A. M. Law and W. D. Kelton,Simulation Modeling and Analysis. McGraw Hill, 3rd ed., 2000.

[19] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson,“On the self-similar nature of Ethernet
traffic”. IEEE/ACM Trans. Networking2(1), pp. 1–15, Feb 1994.

[20] U. Lublin and D. G. Feitelson, “The workload on parallel supercomputers: modeling the characteristics
of rigid jobs”. J. Parallel & Distributed Comput.63(11), pp. 1105–1122, Nov 2003.

20

[21] D. Michie, “Memo functions and machine learning”. Nature218(5136), pp. 19–22, Apr 6 1968.

[22] T. D. Nguyen, R. Vaswani, and J. Zahorjan, “Parallel application characterization for multiproces-
sor scheduling policy design”. In Job Scheduling Strategies for Parallel Processing, pp. 175–199,
Springer-Verlag, 1996. Lect. Notes Comput. Sci. vol. 1162.

[23] V. Paxson and S. Floyd, “Wide-area traffic: the failure of Poisson modeling”. IEEE/ACM Trans.
Networking3(3), pp. 226–244, Jun 1995.

[24] L. R. Rabiner, “A tutorial on hidden Markov models and selected applications in speech recognition”.
Proc. IEEE77(2), pp. 257–286, Feb 1989.

[25] W. Shi, M. H. MacGregor, and P. Gburzynski, “Synthetic trace generation for the Internet: an inte-
grated model”. In Intl. Symp. Performance Evaluation of Computer and Telecommunication Syst.,
pp. 471–477, Jul 2004.

[26] W. Smith, I. Foster, and V. Taylor, “Predicting application run times using historical information”. In
Job Scheduling Strategies for Parallel Processing, pp. 122–142, Springer Verlag, 1998. Lect. Notes
Comput. Sci. vol. 1459.

[27] B. Song, C. Ernemann, and R. Yahyapour, “Parallel computer workload modeling with Markov
chains”. In Job Scheduling Strategies for Parallel Processing, pp. 47–62, Springer Verlag, 2004.
Lect. Notes Comput. Sci. vol. 3277.

[28] J. R. Spirn,Program Behavior: Models and Measurements. Elsevier North Holland Inc., 1977.

[29] A. Streit, “A self-tuning job scheduler family with dynamic policy switching”. In Job Schedul-
ing Strategies for Parallel Processing, pp. 1–23, Springer Verlag, 2002. Lect. Notes Comput. Sci.
vol. 2537.

[30] D. Talby and D. G. Feitelson, “Improving and stabilizing parallel computer performance using adaptive
scheduling”. In 19th Intl. Parallel & Distributed Processing Symp., Apr 2005.

[31] D. Thiébaut, J. L. Wolf, and H. S. Stone, “Synthetic traces for trace-driven simulation of cache memo-
ries”. IEEE Trans. Comput.41(4), pp. 388–410, Apr 1992. (Corrected inIEEE Trans. Comput.42(5)
p. 635, May 1993).

[32] M. Wang, A. Ailamaki, and C. Faloutsos, “Capturing the spatio-temporal behavior of real traffic data”.
Performance Evaluation49(1-4), pp. 147–163, Aug 2002.

[33] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles, “Dynamic storage allocation: a survey and
critical review”. In Intl. Workshop Memory Management, Sep 1995.

[34] L. Zhang, Z. Liu, A. Riabov, M. Schulman, C. Xia, and F. Zhang, “A comprehensive toolset for work-
load characterization, performance modeling, and online control”. In Computer Performance Eval-
uations, Modelling Techniques and Tools, P. Kemper and W. H. Sanders (eds.), pp. 63–77, Springer-
Verlag, Sep 2003. Lect. Notes Comput. Sci. vol. 2794.

[35] Q. Zhang, A. Riska, W. Sun, E. Smirni, and G. Ciardo, “Workload-aware load balancing for clustered
web servers”. IEEE Trans. Parallel & Distributed Syst.16(3), pp. 219–233, Mar 2005.

21

