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Abstract

Observing the workload on a computer system during a shatt ribt too short) time
interval may lead to distributions that are significantlffetient from those that would be ob-
served over much longer intervals. Rather than describimp phenomena using involved
non-stationary models, we propose a simple global digtabicoupled with a localized sam-
pling process. We quantify the effect by the maximal dewiatf the distribution as observed
over a limited slice of time from the global distribution,dafind that in real workload data
from parallel supercomputers this deviation is signifibatgrger than would be observed at
random. Likewise, we find that the workloads at differenesialso differ from each other.
These findings motivate the development of adaptive systeitish adjust their parameters as
they learn about their workloads, and also the developnigrarameterized workload models
that exhibit such locality of sampling, which are requirearder to evaluate adaptive systems.

1 Introduction

Locality of reference is one of the best known and widely @gng attributes of computer work-
loads [6]. It means that if a certain memory location is refieed, there is high probability that
it (or a nearby location) will be referenced again soon. Ti&ithe basis for the success of all
caching schemes that maintain recently-referenced datigimspeed memory for possible reuse,
including processor caches, virtual memory, file systenfebuiaches, and caching web pages on
proxies. Likewise, complex functions may cache their regndl reuse it rather than recomputing
it if they are called again with the same argument [21], arddrmemory blocks can be cached in
anticipation of future requests for the same block size§ [33

Systems can also use their history to learn about their@mvient [34]. For example, several
algorithms have been devised to predict job runtimes basddstorical data regarding previous
executions, in the interest of providing schedulers witthdsenformation [12, 26]. Adaptive algo-
rithms can be designed that observe the workload and chaeggystem’s behavior accordingly.
For example, schedulers and load balancers may adapt tavibiiload and tune their settings so
as to provide the best performance [22, 29, 30, 35].



The common thread uniting all these examples is the belgfttie recent past is indicative of
the near future, and that this can be exploited to advantagesuch, it is a generalization of the
idea of locality of reference. In particular, a distinctican be made between the workload on short
time scales, which tends to be repetitive and regular, amavtirkload on long time scales, which
tends to be more random [11]. This distinction has a gemneratkplanation: users of computer
systems often perform the same tasks repeatedly many tiefeselmoving on to do something
else; programs often repeatedly execute the same neseldger and again before moving on to
the next phase of the computation, etc.

Regrettably, synthetic workloads used for performancéueti@n often do not have this prop-
erty. The predominant approach to workload generationidersit as a process of sampling from
some population or distribution [18, 15], and this approscindeed used in parallel workload
models [16, 7, 5, 20] A large population of possible workldadhs is postulated, and the next one
to arrive is simply selected at random from this populatiolkewise, the specification of service
time distributions in queueing analysis assumes this mad¢l But such random sampling, where
each workload item is independent of those that came bdfavélinot lead to any type of locality.

Instead, we suggest that the workload generation modeldkeawploy sampling with locality.
This means that the sampling process has two levels: at phievel, one selects the part of the
distribution or population on which to focus. Then, at théttm level, you select workload items
at random from this part of the distribution or populatiomits simplest form, the top level selects
a single workload element, and the bottom level repeatsiiyienes. Such an approach matches
the observed characteristics of workloads at both shorti@mglitime scales: the local sampling
creates regularity and repetitiveness at the short timlescahile the shifts from one locality to
another create the randomness of long time scales.

Using a workload model with such repetitions for performaagaluation is important because
real systems operate in an on-line manner, and must contghdh& workload as it appears on
the immediate time scale. Thus a model based on random sajfidim a global distribution will
subject the system to a very different workload than onedasdocalized sampling from the same
distribution. This has two consequences. First, a workkzadpled from a global distribution will
be more mixed, and have a higher probability that unusualteweancel each other out. Second,
using a global workload will not enable a reliable evaluataf adaptive systems thatly on
locality.

Adaptive systems are becoming more common in the quest fictegicy and autonomous
management. For example, consider a batch scheduler irngbalystem that needs to set the
relative priorities of its different queues to obtain thetygossible performance. This can be done
by simulating the results that would be obtained for theentrivorkload had other settings been
in effect, and switching if those other setting seem to bé&ebg29, 30]. In reality, as workloads
evolve, new settings would be needed, and each setting wtaydn effect for a certain period of
time due to the locality. But in a model that just uses the glalistribution this is not the case.
Thus such a model prevents the evaluation of the potentredfiie of the adaptive scheduler.

The idea of two-level sampling is not new. Perhaps the ctaststed work is that on user-
behavior graphs [11, 4]. These are motivated by the samerengis submitted here — that the
workload should reflect the activity of those users that atve@at each point in time. While this
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Figure 1: Autocorrelation of runtimes of parallel jobs submitted watparallel supercomputers.
When the sequence of jobs is scrambled all correlation is lbsthis and other figures only a
couple of examples are shown; similar plots can be drawrhfoother logs too.

device can be used to generate locality of sampling, thesfo€user-behavior graphs is different:
it is the desire to capture tleequencesf jobs that typify different users.
The main contributions of this paper are

¢ To identify the phenomenon of locality of sampling as an imgat characteristic of com-
puter workloads, distinct from known characteristics lolage the autocorrelation function
(Section 2),

e To quantify this effect based on the maximal deviation betwthe distributions observed
during a limited slice of time from the global distributioBéction 3),

e To show how this effect can be generated in synthetic wotkinadels by repeating selected
jobs multiple times (Section 4), and

e To show that the same mechanism may be used to charactevizesdrixloads differ from
one location to another (Section 5).

2 ThePhenomenon of Locality of Sampling

When analyzing and modeling empirical workload data, afatvacern is often that the data be
stationary. This stems from the common approach of modelorigload generation as a sampling
from a distribution [18, 15]. To be valid, this model requirebserved workloads to look like
random sampling from a distribution, and in particular,vadirkload items should come from the
same distribution. The formal definition of stationaritgué&es that the correlation structure also
be preserved, but this is not always verified.

Upon inspection, however, one finds that many workload é#taf not seem to be stationary.
On long time scales of months and years, this can be causedijoad evolution — the change
in workload as users learn to use a new system, or as the donaippglication types change with
time [14, 13]. On shorter time scales, it can be caused bylwads that have periodic cycles (e.g.
as a result of the human daily work cycle).
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Figure 2: Graphical demonstration of the existence of locality of pang, by comparing the

original data with scrambled data after a random permutalong the time axis. The original
workloads typically do not look like a random sampling frorglabal distribution. Data from the
SDSC Paragon.

Another important characteristic of computer workloadthisr locality — a persistent simi-
larity between nearby items. Locality may be quantified byngpthat if items are similar to each
other there is a correlation between them. The degree ofitpcan then be measured by the
autocorrelation function: the correlation of a list of itemith itself after being shifted by a certain
lag. An example is shown in Fig. 1. The items here are paijaltes, and the quantity of interest is
their runtimé. The autocorrelation function is pretty high even for lalags, showing that there
is a correlation between jobs that are separated by dozeowher jobs. (Locality can also be
guantified by the average stack distance — the average nuwhbestinct items since seeing this
one the last time, so named because it is easily calculatéedyying the items in an LRU stack
[28]. However, this requires continuous quantities likatmne to be discretized and is therefore
sensitive to the granularity of the discretization.)

The relationship of locality and stationarity is subtle. r Example, workloads may exhibit
bursty behavior at many different time scales, but this dm¢siecessarily imply a lack of station-
arity — just that there are long-range dependences amorsg |alfact, given finite data it is not
always possible to distinguish between long-range deperedand a non-stationary trend. Like-

10ur study focuses on the workload on parallel supercomgpuated clusters. Such workloads are composed of
parallel jobs, that need a certain number of processorsumébr a certain time. The data comes from the Parallel
Workloads Archive, which contains accounting logs frongé&ascale production systems; it is summarized in Table 6.
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Figure 3:Synthetic dataset displaying consistently high localftgampling (as quantified in Sec-
tion 3, middle plot), but no autocorrelation at positivedag

wise, the existence of locality does not contradict statitim — it just means that there are local
correlations. Locality of sampling focuses on these shamge dependences. While the exposition
here assumes a stationary background distribution, thtsilalition can in principle change with
time. Locality of sampling is therefore orthogonal to loragige dependence and non-stationarity,
and can be combined with them if needed.

In essence, locality of sampling assumes a stationary bitktaibution (the marginal distribu-
tion), but a localized sampling process. In effect, this vgag to avoid the need to describe how
the distribution changes with time. Instead, we describe tihee sampling changes. The advan-
tage is that this can be very simple, as shown in Section 4plgineplicating samples can lead
to the desired effect. Moreover, it resonates with obsamatregarding how real workloads are
generated. But of course other modeling approaches arpassible.

Note also that locality of sampling is a generalization aflity of reference, in that it refers to
all aspects of workloads and not only to locations in stor&gearticular, it may also imply a form
of clustering, as we may consider sampling of complete ratitibute workload items, rather than
just values from each workload attribute distribution ipeledent of other such distributions.

A simple way to visualize locality of sampling is by using geaplots in which theX axis is
time, and the” axis is a workload attribute. Such a plot shows how the distion of values of this
attribute changes with time: a vertical slice of the plotwhaohe distribution at the time (position
along theX axis) of this slice. To visualize multiple samples that filthe same spot (that is,
samples with the same value that occur at the same time) \a&eaalisk; the more samples, the
larger the disk.

An example of this device is shown in Fig. 2. This shows thérithistions of job runtimes and
sizes on the SDSC Paragon parallel supercomputer, and leywckianged over a period of one
year. To emphasize the concentrations of sampling certdires in a restricted span of time, we
compare the given data with a scrambled version. The top tets pre the original ones. Some
prominent concentrations of values are marked with cirtdelselp guide the eye (but note that
there are many other concentrations too). The bottom pltets@ambled, or randomized. This
means that some random permutation was applied to the jabe iog (but keeping the original
arrival times, so the vertical streaks corresponding td hogads remain). As a result, jobs that



used to be next to each other may now be distant, and jobsrigatally were unrelated are now
next to each other.

The effect of scrambling on the scatter plots is that thelitycproperties are lost: at every
time, we now observe a random sample from the global (mdjgingtribution. In particular, the
concentrations of very many samples of related values aeadmut and create or contribute to
horizontal streaks (this is especially common for powersaaf in the size distribution). At the
same time, gaps in the original horizontal streaks are ndéedfih. The fact that this is different
from the original plots testifies to the fact that the oridgioaes exhibit locality of sampling. Such
phenomena are not unique to the SDSC Paragon machine. Ubieigdatasets from the Parallel
Workloads Archive leads to similar plots.

It should be noted that while locality of sampling can lead@tocorrelation, and it seems that
the two indeed go hand in hand in real datasets, these twepiepof the data are not equivalent
to each other. This is demonstrated by the simple synthatmsét shown in Fig. 3. The global
distribution of this data is uniform. But in each time slioaly two small sub-ranges are sampled,
leading to a strong locality (this is quantified in the nexitg®). The trick is that these sub-ranges
are symmetrically placed, thereby leading to essentialgutocorrelation at any positive lag.

Locality of sampling is also distinct from the well-knowngtomenon of self similarity (e.qg.
[19, 23]). Self similarity refers to structure in tiaerival processi.e. in the series of time instances
at which new work arrives; it refers to the fact that this sswpe is bursty at many different time
scales. Locality of sampling refers &dtributes of the arriving work items.e. to what arrives at
those time instances.

3 Quantifying Locality of Sampling

The essence of locality of sampling is that if we look at a shiore scale, we will only see part of
the global distribution. In other words, the distributidreashort time scale is different: it is less
diverse in the values that it contains, or in other wordss inore modal. Moreover, this is time
dependent: at different times we will observe differentesl.

The proposed metric for quantifying the degree of localitgampling tries to formalize this
intuition. This has to be done with care, because at extrestert time scales lack of diversity
is expected: a small number of samples cannot representtble wistribution. We will start by
dividing the time line into equal-duration slices, and fimglithe distributions of workload items
when considering each slice independently; we call tisése distributiondbecause they are lim-
ited to a slice of time. The metrics are then based on direesorement of the difference between
these slice distributions and the global distribution.

3.1 Step 1. Deviation of Slice Distributions

Fig. 4 shows example slice distributions for 3 selected weaj slices of the SDSC Paragon log.
Due to the locality of sampling, these distributions tendbé&different and much more modal
than the global distribution, as indicated by their morg4dike shape. For example, the data for
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Figure 4:The distributions of job runtimes and sizes on select weghg to be modal and different
from each other and from the distribution of the whole loge8ted weeks correspond to markings
in Fig. 2.

February 1-7 indicates a preponderance of 16-node jobsirgifor either a couple of minutes or
about one hour.

Based on this, we can propose an actual measure of the dwergé the weekly (or other
short-range) distributions from the global distributiofhis is inspired by a combination of two
tests for goodness of fit: the? test and the Kolmogorov-Smirnov test. The difference is hieae
we use the tests in reverse: we want to show that the didoisiare different from each other,
and quantify how different they are.

The essence of the? test is to divide the range of possible values into sub-rangth equal
probabilities, and verify that the number of samples oleetia each are indeed nearly equal. Our
guantification will therefore be to divide the overall rang® subranges that have equal probabil-
ities according to the global distributigrand observe thmaximalprobability for a single range
according to the slice distributiong his measures a mode that is present in the slice disiitgiti
but not in the global one. We use the maximal deviation, abenkolmogorov-Smirnov test, as
we are interested in the deviation between the global and distributions.

In order to be meaningful, there should be at least a few sesnpleach subrange. This places
constraints on how the measurement is done. Assume the Vagotentains a total ofV samples
(e.g. parallel jobs). If the length of the logdsdays, there aré//d jobs per day on average. This
has to be large enough to apply th€test using enough subranges. If it is too small, we need to
consider a larger basic time unit. Using the 1995 SDSC Paréggpas an example, it contains
53,970 jobs (in the cleaned version) and spans a full yea@ricaverage of 147.9 jobs per day.
This should be enough for a resolution of more than 20 sulesngowever, due to fluctuations in
activity, some days will have much less jobs. It may therefoe better to use a somewhat longer
time unit, say 3 days.

Given that we have selected a slice size tine units and a resolution of dividing the range of
values intor bins, the calculation proceeds as follows.

1. Create a histogram of the complete (global) data, andiparit into  equally likely ranges.
This defines the boundary points of the ranges.

2. Partition the log intal/t successive slices oftime each (this need not be measured in days

7
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Figure 5:Fraction of slices found to be usable for different paramepdenbinations.

as in the above example — the time unit should match the typataf being considered).
3. For each of these slices of the log (indexed }ylo the following:

(a) Find the number of workload item¥; in this slice of the log.
(b) Create the slice histogram of theSgworkload items, and count how many of them fall
into each of the: ranges defined in step 1. Denote these observed counts by, o,.

(c) By construction, the expected number of items in eacgedassuming the global dis-
tribution) ise; = N;/r. We are interested in the deviations from this, and in paleic
in the maximal relative deviation. Therefore we compute

max {[o; — e}

Ni—ei

m; =

This is slightly different from the conventional expressiased in they? test. First,
we use the max rather than a sum, as is done in the Kolmogorom&v test. This
has the effect of being more sensitive to deviations, andhasiping the concentration
of values in a subrange. Second, we use the absolute vaher thtn the square to
ensure that the result is positive. This retains a linededoacomparison. Finally, we
divide by N; — e; rather than by;. This normalizes the result to the rangel], as

the maximal value for any, is N;, which occurs ifall the samples appear in thih
subrange.

4. Record then, values of the different slices.

An important question regarding the suggested procedtine ishoice of parameters. As noted
above, one of the considerations is data availability: wedrenough data items to populate every
subrange in each slice. Using a threshold of 5 items as themmaimequirement (as is common
for the y? method, e.g. [1]) we may expect that using a large numberlobsiges and short slices
will cause many of them to be unusable. An example of what @éappvith real data is given in
Fig. 5. This shows the fraction of slices of duratibdays that are usable when divided into
subranges, meaning that they contain enough jobs. The miditaie that only very short slices

8
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Figure 6: The values obtained by.; vary considerably in successive slices. As a result their
maximum attains widely fluctuating values even in succesqivarters. Their median is much
more stable.

create a problem. In particular, our default choice of 3-slayes and 24 subranges is in the middle
of the rim of the plateau, and utilizes 94% of the slices fa& 8DSC Paragon log and 100% for
the LANL CMS5 log.

3.2 Step 2: Reduction to a Single Number

Given a year’s worth of data, and using slices of 3 days, weugndith over 120 values of:; for
successive slices. The question then is how to best redaneitiio a single metric.

Recall that we are looking to quantify the maximal divergen€ slice distributions from the
global distribution. This was the reason to defingbased on the range with the maximal deviation
from what was expected according to the global distributidéhwould therefore be natural to
continue with this approach, and define the final metric tdheentaximaln, value:

Mpax= 122?#{%}

The problem with using the maximum is that extremal valuedartheir very nature unstable.
An example is shown in Fig. 6. Obviously the valuesofin the different slices varies widely.
In a long log it may reach high values several times, but imvbeh are slices withn; values that
are considerably lower. As a result the outcome of the calmn is very sensitive to the period
being studied: if the log was shorter or longer, the maxinbsieoved value could be considerably
different.

Another demonstration of the volatility of results basedtmmmaximum of then;s is obtained
as follows. Recall that we are using slices of 3 days for tive slistributions. These can be defined
in three different ways, with shifts of one day relative tcleather. Re-calculating the metrics for
these different shifts leads to results like those showrainld 1: a shift of one day can change the
results by some 15%, or not at all.

The obvious alternative is to use the median of#he in the different slices. While this too
fluctuates to a certain degree, the fluctuations are mucHerttzdn for the maximum (Fig. 6 and



1A 1A
log M max med

LANL CM5 0.269 0.059
SDSC Paragon 0.429 0.098

_ shift CTCCP2 0.336 0.063
metric 0 1 2 KTH SP2 0.218 0.085
anax 0.3204 0.2692 0.2701 SDSC SP2 0.577 0.101
M?ned 0.0691 0.0698 0.0706 Blue Horizon 0.320 0.069

DataStar 0.419 0.085

Table 1: Effect of shifts of 1 or 2 days on the

metric results, for the SDSC Blue Horizon log. Table 2:Results of measuring the degree of lo-
cality of sampling for the runtime distributions
in dlf_ferent logs using thé/ ;n and M ;n ed
metrics.

ax

Table 1). We may therefore define our metric to be

Mmed= ™Mz

Applying the above to various logs of workloads from pailalgercomputers, when using 24
subranges and slices of 3 days, leads to the results shovable 2. For example, in the SDSC
DataStar log the maximum-based metric is 0.419. This meatsrt one of the slices, 44.3% of
the jobs were concentrated in a single subrange, rathetiiag equally dispersed among all 24
subranges. On the other hand, in the LANL CM5 log this metaswanly 0.269, implying that the
biggest concentration of jobs in one range was 29.9%. Theesalsing the median are of course
much lower. For example, the value of 0.085 for the SDSC Datd&g implies that for half of the
slices, 12.3% or more of the jobs were concentrated in ongeramhich is about 3 times higher
than would be expected by random sampling from the globaiiloigion.

The question regarding all these results is whether theweiteally significant. Obviously,
even if the slice distributions are identical to the globa¢psome deviations are to be expected in
a random sampling. We therefore need to compare our resuht®se that would be obtained via
random sampling from the global distribution. This will beng using the bootstrap method [8, 9].

The bootstrap method is very simple: we just repeat the meamnt a large number of times
(say a thousand), using random samplings from the globiilalison rather than the real slice dis-
tributions. In our case, each repetition creatésamples from the global distribution, partitions
them into groups with sizes dictated by thes, creates the histogram for each group, calculates
the m; based on the deviation between the group’s empirical Higion and the original global
distribution, and finally finds the maximum and median ofth&. Each repetition thus produces
a single data point for each metric (the valuesj\%ax and Méne valid for a specific sam-
pling from the global distribution. Repeating this a thaudémes allows us to approximate the
distribution of such results, that is, the distribution\d andM/_ . for random sampling.

We then check where the results for the real slice distamstifalls in this distribution of
results. If it is at the extreme end of the range (or beyoncetiat of the range), it is unlikely to
have occurred by chance. Examples of the outcome of follgwhis procedure are shown in Fig.

10



SDSC Paragon LANL CM5

00 ~ 100 -
2 801 bootstrap M’'max 2 801 bootstrap M’'max
3 — 3 L
% 60 dat % 60 dat
5 median (M’'g) ’a a 5 median (M'g) ’a a
E 40 4 M’max E 40 4 M'max
2 20 Mmax 2 20 I Mmax R
0 ih‘\ T T T 0 VL T T T
0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3
maximal deviation maximal deviation
SDSC Paragon LANL CM5
600 600
@ 500 bootstrap M'med @ 500 bootstrap M'med
%] [ %]
2 400 - — 2 400 - e
kS i : data kS i : data
= 300 median (M’ = 300 median (M’
3 5 Rt 3 (M'Q) |\ proy
£ 200 - £ 200 -
2 Mmed 2 Mmed
100 - 100 -
0 T T Y, 0 T T
0 0.025 0.05 0075 0.1 0 0.02 0.04 0.06
median deviation median deviation

Figure 7: Results of 1000 random tests of the maximal/median deviadlisserved when sam-
ples come from the global distribution of runtimes, complai@ the maximal/median deviation
observed in the slice distributions.

log Mmax  Mmed
LANL CM5 0.221 0.039
SDSC Paragon 0.367 0.073

CTCCP2 0.302 0.046
KTH SP2 0.159 0.056
SDSC SP2 0.511 0.072
Blue Horizon 0.271 0.052
DataStar 0.376 0.068

Table 3: Results of measuring the degree of locality of sampling lfier tuntime distributions in
different logs using thé/! 5y andM e gmetrics.

7. Obviously, the actual results for the real slice data aag @ut of the scale of results that are
obtained by random sampling from the global distributiar, hoth the maximum and median-
based metrics. We can therefore claim that our results gtéyhsignificant.

The relatively narrow distributions dmna and even more so af/ ed obtained by random
sampling from the global distribution present an oppotiufor improving the metric of locality
of sampling. Instead of measuring the absolute valu&/6fis computed above, we can measure
the difference betweeM/’ and the value that would be obtained by chance. We definettiee ¢
the median of the distribution of results obtained by thetsivap method, because the median is

11
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both representative and much more stable than the mean oreawte this median value by .
Our final metric for locality of sampling is therefore

M=M M

applied to either the maxima of the; or to their medians. This is demonstrated in Fig. 7, and the
results are tabulated in Table 3.

The results shown in Fig. 6 indicate that the values fluctuate widely among slices. Some of
the values are very high, but many are actually quite low.s Taises the concern that they may
also be sensitive to the parameter values used in the measotr¢in our case, 3-day slices and
24 runtime ranges). To check this, we repeated the measuotgrioe a wide range of parameter
values. The results shown in Fig. 8 indicate th#g,, is indeed quite sensitive, and obtains
much higher values when the slice size and number of rangagduced. Thé/,cqmetric, by
contradistinction, is very stable. When combined with thevus results, this indicates that the
Mmegmetric should be preferred as a measure of locality of samgpli

4 Modeling L ocality of Sampling

Despite its importance, there has been relatively littlekaan introducing locality into workload
models. Early work on virtual memory primarily used the LRtdck model [28]. Thiébaut et
al. proposed a fractal model of memory traversal based omparhyglic law for the probability of
jumps with different sizes [31]. Wang et al. claim that thesra correlation between burstiness in
time (self similarity) and space (locality), and suggest@PRS model to capture it, in which time-
space is recursively divided into 4 and sampled with prdiggs p, ¢, , ands which sumto 1 [32].
Arlitt and Williamson used a stack model to investigate libigan Mosaic (WWW) conversations,
and concluded that there isn't much locality [3]. Inste&éytintroduced a parameter that specifies
the probability to repeat the last destination. A stack nhede also used by Almeida et al. [2].
Shi et al. combined this with simulated large flows to re@dht observed temporal locality in
web-traffic [25].
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Figure 9: Histograms of run lengths of similar jobs in production wiodds. Note the use of
logarithmic axes; the dashed line has a slope 2.

Our approach to modeling locality of sampling is both geharal extremely simple. We
initially sample from the global distribution. But then,siead of using each variate once, we
repeat it a number of times. With enough repetitions we vatlgsequence of samples that exhibits
modal slice distributions. This approach is based on themwhtion that humans often repeat the
same commands over and over again. For example, when watidgypesetting this paper |
repeatedly execute th&lX command with only minor modifications to the input file, l@agito
a sequence of executions with a very similar profile. The shappens with compilations done
when developing code, or when running production simutetiof a set of related configurations.
But on another day the work at hand changes, and we see répaatewith a different profile.

Analyzing repetitions in workload logs leads to resultelthose shown in Fig. 9. In this
analysis, we scan the workload data and partition it intcassp streams of jobs submitted by
different users. We then look for runs of equivalent jobdirgel to be jobs that execute the same
application, and use the same number of nodes. The distnibat run lengths shows that many
jobs are independent or are part of a short run, but on the bdra&l, some runs are very long.

Repeating the sampled workload items is designed to repeoduch runs; the only consid-
eration is to correctly model the distribution of runlengthrhis intuition may be formalized as
follows. We are given a global distribution described by i f(-). In addition, we need the
distribution of repetitions, which will be denotef. ()

1. Sample a variat&’ = x with probability proportional tgf (). Note thatX may be a vector
in case we are considering workload items that have mulégitéoutes, as is the case with
parallel jobs, where two attributes are the runtime and size

2. Sample a variat® = r with probability proportional tof,., ().
3. Repeat theX variateR times. This distorts the distribution locally.

4. Return to step 1 until the desired number of samples hase penerated.
With a large enough number of samples, the number of times Wesee a value ofr will be
proportional tof(x), i.e. according to the global distribution, as desired. Betse samples will

come in bursts rather than being distributed evenly. Thgualitatively similar to the parameter
used to specify the probability to repeat the last samplggasted by Arlitt and Williamson [3].
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Figure 10:Results of modeling locality of sampling by repeating wodd items.

However, such independent repetitions would lead to a geanakstribution of runlengths, rather
than the power-law distribution suggested by the workloaiz d

As a concrete example, consider modeling the arrivals of jeith a certain distribution of
runtimes. The runlengths are taken from a Zipf-like disttibn with parameteé = 2.5, chosen
according to the data in Fig. 9. This means that the prolglofia runlength of- is proportional
to =2, This was generated by creating a table with normalizedegtunning up to a maximal
runlength of 1000.

Note that it is important to incorporate time in the modelpnder to correctly interleave the
generated sequences. Assume that each workload item assgowith an arrival time, and has
some duration (its runtime). We then sample items as abesgrang them arrival times according
to the model. But the repetitions of each item are assigneabtimes that are staggered according
to each one’s duration. Assuming the durations are largagincelative to the interarrival times,
the result will be to interleave different repeated seqaencThis interleaving leads to certain
distances between repetition instances, as in the stacklmod

The results of using this procedure are shown in Fig. 10, amib# essentially the same
behavior as our original workloads. In particular, apptythem; measure of locality of sampling
to the output of this model indicates that the dynamic bedrawer time of the model is similar to
that of real workloads, as shown in Fig. 6. The autocormaasitructure is also similar to that of
real workloads, as was shown in Fig. 1.

Additional improvements to the model are possible to makerdpetitions more realistic and
less deterministic. For example, we can add think times éetvihe repetitions instead of having
each one arrive immediately when the previous one ternsnateaddition, we can introduce some
variability between the repetitions, instead of makingihdentical. Naturally, such adjustments
should be based on an analysis of the repetitions found ikleaxl logs. This is currently left for
future research.

Fig. 11 shows that the degree of locality of sampling dependthe prevalence of long se-
guences of repetitions. This, in turn, depends on the pdaeamef the distribution of repetitions:
smalld lead to very long runlengths, while largércause the distribution of runlengths to decay
quickly, producing few repetitions if any.
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Figure 11: The measured locality of sampling as a function of the patameof the distribution
of repetitions.

To characterize the effect 6fon MFned we used the model to create 10 independent sequences
of 100,000 jobs, and measuréqnedfor each one. This was repeated for 9 value8 bétween
2 and 6, and again for a model where repetitions are turnedoofipletely. As Fig. 11 shows,
values off) from 2 to 4 lead to values W{,n from 0.180 down to 0.038. The model default
of § = 2.5 produces arMFned in the range 0.078-0.098, of which the lower end is a bit high
given the data in Table 2. Different workloads are therefost modeled by different values in
the range) € [2.5, 3]. The data also show that whér> 4 this is essentially the same as having
no repetitions. In this CaSGMFned comes out at essentially the median value seen for random
sampling from the global distribution.

Modeling locality of sampling by using job repetitions aggasted above has two important
advantages: it is parsimonious, and it is generative.

Sampling with repetitions is as simple as a model can be,adyitrequires the distribution of
repetitions, which is described by a single parameter —lthyesof the histogram (Fig. 9). Other
models for locality are typically more complex. For exam@é&i et al. find that the best model
for a distribution of stack distances is a mixture of a Wdibidtribution and a Pareto distribution,
so five parameters are needed. Locality of sampling can asachieved by a user behavior
graph [11] or an HMM [24, 27]. However, this complicates thedal as we need to describe the
complete dynamics and what workload items correspond to®tate. For example, when using an
HMM we need to define the transition matrix among the statestlae output distribution for each
state; the number of required parameters is at least lingtdweinumber of states. Sampling with
repetitions is much simpler, albeit this simplicity may aat the price of not capturing potential
non-repetition sequencing properties.

The fact that the model is generative is even more importart parsimony. The alternative
to a generative model is a descriptive one. The differentgisdescriptive models just describe a
certain situation, without explaining its mechanics. Tthey do not provide any clues regarding
how the model should change under different conditions ekample, consider what may happen
when the load on a system changes. If a (descriptive) stadehi® used, the same stack depth
distribution would be used for all load conditions. But aetfions-based generative model shows
that this is probably wrong. When the load is extremely Idveré will be little if any overlap
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log max deviation
LANL CM5 0.043

parallel machines

SDSC Paragon 95 0.282
SDSC Paragon '96 0.135 LANL CM5
CTC CP2 0.071 2z - ggzg EZSZ
KTH SP2 0.113 2 - CTC SP?
SDSC SP2 0.055 ] ~~ KTH SP2
Blue Horizon 0.043 o gggg ;Zze
DataStar 0.040 o SDSC DS
:Ir. 16 160 10‘00 1(;K 10bK

Table 4: The maximal devia- runtime [s]

tions observed when compar-

ing each log with a global dis-  Figure 12: Runtime distributions on different parallel ma-

tribution composed from all of chines.

them.

between repeated sequences of jobs, so stack distancéd Bbamery small. But when the load is
high, more other jobs will intervene between repetitiorading to higher stack distances. With a
generative model we only need to create more sequences¢agacthe load, and the modification
of the locality follows automatically.

Note that our approach to modeling locality of sampling carviewed as a component in a
more general model that simulates the process that geadnate/orkload. Taking additional steps
in this direction can be expected to lead to even better nsdbat also exhibit locality of sampling.
In particular, it is desirable to combine job repetitionshwnechanisms that induce self-similarity.
At present such comprehensive modeling is left for futurekwo

5 Workload Diversity

Our exposition so far has focused on locality of samplinghie time domain, where the dis-
tributions of workload attributes during a limited slicetohe differ from the global distribution
observed over a much longer period. In this section we géretais idea, and show that the same
technique may be applied to the spatial domain, by quantiffie difference between workloads
of the same type that come from different sites.

Using the metrics devised in Section 3 to measure “spatalier than “temporal” locality
means that the slices are not data from the same site aggitfiemes, but rather data from different
sites (possibly but not necessarily at the same time). Wenphfy this idea by comparing the
parallel system logs we have used throughout this study. Aedefine a global distribution that
includes the runtimes of jobs froall the logs, and then check the deviation between each log’s
distribution and this global average. The results of doimgue shown in Table 4; note that each
log is taken as a single slice, so the maximal deviation isrgi¥Dbviously the SDSC Paragon log
is the farthest from the average, especially in 1995. The KdgHs the second farthest. All the
rest are not so far, but still their distance is significahieaking what deviations we may expect to
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max deviation

cluster jobs jobwgt same wgt

bruce 20,629 0432  0.307 Sharcnet partitions

narwhal 269,902 0.067  0.078 19 e
tiger 152,950 0.109 0.110 0.8 narwhal
bull 68,108 0.111 0071 2 tiger
megaladon 7,998 0.103  0.066 % °°| " magatadon
dolphin 8,337 0.123  0.072 ‘é 04 1 -+ dolphin
requin 50,448 0.062 0.052 02 | © requin
whale 589,251 0.036  0.132 wrale
zebra 5749 0.101  0.084 O T 100 1000 10K 100k 1M - bala
bala 10,280 0.129 0.091 runtime [s]

Table 5: The maximal deviations ob-  pigyre 13: Runtime distributions on different
served when comparing each log with a syARCNET clusters.

global distribution composed from all of
them.

get due to random sampling led to results around 0.021 féogdl. The distributions themselves
are shown in Fig. 12 and support these findings. They inditetethe main divergence of the
Paragon and KTH distributions is at very short jobs of up tout30 seconds.

An especially interesting dataset for studying workloagedsity is provided by the SHAR-
CNET system. As opposed to the above workloads, which cooma tfifferent installations of
different architectures at different times, SHARCNET isdlextion of relatively new clusters
based on the same architecture and located in a group ofdedaademic institutions in Ontario,
Canada. Would such uniformity lead to more similar workksaés shown in Table 5 and Fig. 13,
the answer is no.

Looking at the runtime distributions shows that eight of tee clusters have similar distri-
butions, but two are different: bruce has sharp modes attdlfbn and 30—60m, and whale has
much fewer jobs shorter than 1h and many more in the range tf 188. However, when looking
at the divergence metric, whale has the lowest score! Tippdras because whale has a much
higher load than any of the other clusters, and represenirtyr&0% of all the jobs. As a result
the global distribution is heavily biased towards the distiion of jobs that ran on whale, making
whale appear closer and all the other clusters appear faivesy.

A possible solution to such a bias is to redefine the globadidigion. Instead of just tabulating
all the jobs from all the sources, we can resample each sthec@ame number of times. This puts
all the sources on an equal footing. The results, also shavwiable 5, indeed reflect a global
distribution that better represents the eight clustersafeamore similar to each other.
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6 Discussion and Conclusions

Locality of sampling refers to the fact that workloads oftisplay a specific internal structure:
successive samples are not independent of each other thet tand to be similar to each other.
This applies to all workload attributes, and not only to #htdsat denote location, such as memory
addresses. In terms of a model whereby the workload is sanfijgen a distribution, this implies
that successive samples be taken from the same part of thiwtisn.

A major contribution of this work is to suggest locality ofispling as a new way to look at
and quantify short-range dependence. This was done by corgpiae general distributions of the
workload attributes of interest with the distributionstthee observed during limited slices of time.
We also showed that locality of sampling is distinct fromishrange dependence and long-range
dependence: a workload may display locality of samplingzead autocorrelation at positive lags,
and even if the autocorrelation is non-zero, it does notssardy decay polynomially.

A second contribution was to suggest interleaved sequeigeb repetitions as a generative
model that can produce locality of sampling. This has twoartgnt advantages. First, it provides
control over the degree of locality of sampling, by modifyihe distribution of the number of rep-
etitions used. Second, by virtue of being a generative moddhpts correctly when the workload
as a whole is modified, e.g. when the load is increased. Otepother models are also possible.

Locality of sampling in general, the job repetitions in partar, imply that on short time scales
workloads display much less diversity than on long time esaleading to a much more modal
distribution. This lack of diversity on short time scalesais important phenomenon, as it may
be exploited by systems that benefit from regularity in theklead. In particular, it is conjec-
tured that such effects are required for the success ofragdteat adapt dynamically to workload
conditions. If the workload were totally random, trying tegt to the workload would be futile.

To date, job repetitions and localized deviations in woaklalistributions have received little
if any attention. We contend that these important phenondessarve to be taken into account
and used as components of a more general workload modelifi§ac job repetitions should
be a component of workload generation, alongside other sneacreate trends, correlations, and
long-range dependence (an example of this is the work of @b who combine repetitions
with a Markovian model [27]). And our metrics for locality eampling should be used both to
characterize real workloads and to verify that synthetidae@ads posses the desired attributes.

Our results also highlight the diversity observed in pataystem workloads, both along time
in the same workload, and between workloads from differgstesns. This diversity implies that
extreme care must be taken when trying to generalize pediocmresults. Performance should
always be evaluated for many different workloads, esplgdiabse that are known to be different
from each other. Moreover, it might make sense to separate giorkloads into shorter segments
(that are each relatively homogeneous but different frooh @ther) and consider the performance
observed for each such segment. Such an analysis may alseeuribe dependence of observed
performance on specific workload features.

As locality of sampling is a newly identified phenomenon, imtemains to be done. Directions
for further research include the following. First, thereaiseed for a deeper exploration of the
phenomenon itself, including the development of alteugamnetrics to measure it. For example,
it may be necessary to consider other metrics when studyieggmena at very fine time scales.
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log file proc’s duration jobs
LANL-CM5-1994-3.1-cln 1024 10/1994-9/1996 122,055

SDSC-Par-1995-2.1-cln 400 1/1995-12/1995 53,970
SDSC-Par-1996-2.1-cln 400 1/1996-12/1996 32,135
CTC-SP2-1996-2.1-cln 430 6/1996-5/1997 77,222
KTH-SP2-1996-2 100 9/1996-8/1997 28,489

SDSC-SP2-1998-3.1-cIn 128 4/1998-4/2000 59,725
SDSC-BLUE-2000-3.1-cln 1152 4/2000-1/2003 243,314
SDSC-DS-2004-1 1664 3/2004-4/2005 96,089
SHARCNET-2005-1 6828 12/2005-1/2007 1,195,242

Table 6:Main data logs used in this paper (available from the Pdr&ltekloads Archive).

Second, there is a need to integrate locality of sampling wiher workload attributes, such as
self similarity, as comprehensive workload models shon@brporate all known features of real
workloads. Finally, we are just beginning to investigate #ffects of locality of sampling on
system behavior, and the opportunities for exploiting igilsavior to improve system performance.
In this context, it is also interesting to conduct a thoroaghmparison of locality of sampling and
other models for locality, such as autoregressive, mowegage, and stack models.
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Appendix: Data Usage

The data analyzed in this paper comes from the Parallel \Wadsd Archivé. This contains ac-
counting logs describing the activity on large scale proidngoarallel supercomputers for periods
of up to 2% years. The logs used are described in Table 6. The cleanswngiof the logs were
used when available, which means that flurries of activitpiging to single users were removed
[10], as well as other non-representative data such asdeadrsite-specific automatic cleanup
scripts that are fired up at the same time each day. This iffis@mt as such singular activities
tend to be repetitive and may therefore make a significarttibomion to metrics aimed at measur-
ing locality of sampling.

2http://lwww.cs.huiji.ac.il/labs/parallel/workload/
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