
Characterizing Software Maintenance Categories
Using the Linux Kernel

Ayelet Israeli Dror G. Feitelson
Department of Computer Science

The Hebrew University, 91904 Jerusalem, Israel

Abstract—Software maintenance involves different categories
of activities: corrective, adaptive, perfective, and preventive.
However, research regarding these distinct activities is hampered
by lack of empirical data that is labeled to identify the type of
maintenance being performed. A promising dataset is provided
by the more than 800 releases of the Linux kernel that have been
made since 1994. The Linux release scheme differentiates between
development versions (which may be expected to undergo perfec-
tive maintenance) and production versions (probably dominated
by corrective maintenance). The structure of the codebase also
distinguishes code involved in handling different architectures
and devices (where additions reflect adaptive maintenance)from
the core of the system’s kernel. Assuming that these dissections of
the codebase indeed reflect different types of activity, we demon-
strate that corrective maintenance does not necessarily lead to
code deterioration, that adaptive maintenance may improvesome
quality metrics, and that growth is largely the result of continued
development as part of perfective maintenance.

Index Terms—Perfective maintenance, Corrective mainte-
nance, Adaptive maintenance, Linux kernel

I. I NTRODUCTION

Software maintenance is an active field of research enjoying
growing recognition. To quote Parnas, “A sign that the Soft-
ware Engineering profession has matured will be that we lose
our preoccupation with the first release and focus on the long
term health of our products” [20]. The Linux kernel provides
a large-scale example of software maintenance1. It was first
released in March 1994, and more than 800 releases have been
made since then in multiple branches. Moreover, Linux is open
source, and all the code of all the releases is freely available
on the Internet (fromwww.kernel.org and numerous mirrors).
This makes it suitable for a study of software maintenance at
a scale and level of detail that has not been done before.

Software maintenance activities are commonly classified
into four categories: corrective, adaptive, perfective, and pre-
ventive [26], [1]. To study these different activities, onemust
be able to classify commits of maintained code [8]. As an alter-
native, we make the observation that the first three categories
map naturally to different parts of the cumulative Linux code
releases, based on the Linux release scheme. In particular,we
expect development versions to reflect perfective maintenance,
production versions to reflect corrective maintenance, andthe

1At better term for at least part of this activity is “softwareevolution”, but
in this paper we use “maintenance” in accordance with the common usage in
the literature to describe the categorization of maintenance activities described
below.

arch and drivers directories to reflect adaptive maintenance
(these mappings are explained in more detail below).

Thus, assuming one accepts this dissection of the code, we
can empirically characterize different types of maintenance
activities, and how they affect the body of software being
maintained. At the same time, we also note that the dissection
cannot be pure, and sometimes one observes different types of
activity applied to the same version of the code. Nevertheless,
the maintenance activities observed on different parts of the
code do indeed appear to be different in general, suggesting
that the dissection is robust enough to make general observa-
tions about different maintenance activities.

Our results are naturally limited to these dissections of
the versions and code, and may not generalize to other
systems. However, Linux has served as a source of data for
multiple studies of software development, and is undoubtedly
interesting and important enough to be used as a case study.
Our results may also generalize to other open and even closed
source projects, but verifying this requires additional study.

The organization of this paper is as follows. The next
section provides background regarding maintenance categories
and how we relate them to the Linux kernel, as well as our
methodology. Section III presents our measurements of how
code metrics change with releases of the Linux kernel. This
is then interpreted with regard to maintenance activities in
Section IV. Section V presents threats to validity, and Section
VI concludes and suggests future work.

II. BACKGROUND

A. The Linux Kernel

The Linux operating system kernel was originally an-
nounced on the Internet in August 1991. There followed2 1

2

years of development by a growing community or developers,
and the first production version was released in March 1994.
A 3-digit system was used to identify releases. The first is the
generation, which changed from 1 to 2 in 1996. The second
is the major kernel version number. Importantly, a distinction
was made between even major numbers (1.0, 1.2, 2.0, 2.2,
and 2.4) which represent stable production versions, and odd
major numbers (1.1, 1.3, 2.1, 2.3, and 2.5) which are devel-
opment versions used to test new features and drivers leading
up to the next stable version. The third digit is the minor
kernel version number. Releases with new minor numbers
of production versions supposedly included only bug fixes
and security patches, whereas new releases of development



versions included new (but not fully tested) functionality.
Importantly, several versions (one development and one or
more production) may be “current” at the same time.

The problem with this scheme was the long lag time until
new functionality (and new drivers) were released, as this was
supposed to happened only on the next major version release.
The scheme was therefore changed with the 2.6 kernel in
December 2003. Initially, releases were simply managed at a
relatively high rate. Then, with version 2.6.11, a fourth number
was added. The third number now indicates new releases with
added functionality, whereas the fourth number indicates bug
fixes and security patches.

The Linux kernel sources are arranged in several major
subdirectories [21]. Two notable ones for our purposes are the
arch and drivers directories. These are practically external to
the core of the kernel, and each specific kernel configuration
uses only a small portion of these directories. However, these
directories constitute a major part of the code, which growsnot
only due to improvements and addition of features, but also
due to the need to support additional processors and devices.

B. Categories of Software Maintenance

“Maintenance” is used to describe whatever happens to
a software product after the first release. According to the
literature at least 50% of the effort invested in software, and
perhaps 80% or even more, is dedicated to maintenance [15],
[11], [13]. Maintenance is classified into four categories [26]:
Corrective: correction of discovered problems (fixing bugs).
Adaptive: adapting to changes in the environment.
Perfective: improving performance or maintainability.
Preventive:detection and correction of latent faults before

they become effective faults.
The term “maintenance” by nature implies a preservation
of the existing. However, software often undergoes further
development after being released. To accommodate this, the
addition of new features is usually included as part of per-
fective maintenance (albeit some authors suggest a separate
category of feature addition [8]). Preventive maintenanceis
also sometimes bundled together with perfective maintenance.

Our goal is to use the versions of the Linux kernel to char-
acterize these four categories of maintenance. Based on the
structure of Linux releases, we expect corrective maintenance
to be reflected in successive minor releases of production
versions (and 4th digit releases of 2.6). Perfective maintenance,
on the other hand, especially as it pertains to the addition of
new features, is expected to be reflected in successive minor
releases of development kernels (and 3rd digit releases of
2.6). Adaptive maintenance is also reflected in development
versions, but specifically in thearch and drivers directories,
as this is the locus for code that handles interaction with the
environment — where we use the interpretation that this refers
to the hardware environment, rather than to the users.

The identification of preventive maintenance is harder. We
assume that preventive maintenance is related to code reor-
ganization, and can therefore be identified, for example, by
changes in the number of directories [2]. We will therefore

look for isolated events in which many files are partitioned,
removed, or moved, again mainly in development kernels.

C. Software Metrics

Our goal is to characterize the effect of maintenance on
the codebase of a large project. Therefore we need to be
able to quantify various size and structure attributes of the
code. We use the most common metrics, which are available
in practically all CASE tools [10], [17]:

1) Lines of code (LOC), including its related variants:
comment lines and total lines.

2) Number of modules, as expressed by the number of
directories, files, and functions.

3) McCabe’s cyclomatic complexity (MCC), which is
equivalent to the number of conditional branches in each
function plus 1 [16], and its extended version (EMCC)
where one counts the actual conditions and not only the
conditional statements [18].

4) Metrics defined as part of Halstead’s software science
[7]. The building blocks used are the total number of
operatorsN1 and the number of unique operatorsn1,
as well as the total operandsN2 and unique operands
n2. using them, Halstead defined

The volumeHV = (N1 + N2) lg
2
(n1 + n2), i.e. the

total number of bits needed to write the program.

The difficulty HD =
n1

2
·
N2

n2

.

The effortHE = HV ·HD: simply the product of the
amount of code and the difficulty of producing it.

In cases when the metrics are undefined (e.g. for an
empty functionn1 = n2 = 0) they were taken as 0.
This happened in around 1% of the functions.

5) Oman’s maintainability index (MI) [19], [29], which is
a composite metric that attempts to fit empirical data
from several software projects. Its definition is

MI = 171 − 5.2 ln(HV ) − 0.23MCC

−16.2 ln(LOC) + 50 sin(
√

2.46pCM)

whereX denotes the average ofX over all modules,
and pCM is the percentage of comment lines. However,
following Thomas [27], we interpret pCM as a fraction
(0 to 1) rather than a percentage (0 to 100) so that
√

2.46pCM has the range of 0 to approximatelyπ

2
.

6) Files and directories handled (added/deleted/modified).
7) The rate of releasing new versions.

We acknowledge that practically all of these code metrics
have been challenged on both theoretical and experimental
grounds [24], [30], [25], [6]. We nevertheless use them for
two reasons. First, there are no metrics that are universally
accepted, so we opt for those that have been used the most and
over the longest period, despite their shortcomings. Second,
most objections relate to the actual values that the metrics
assign to code. We are not interested so much in the values,
but with how they change with time. By using a wide variety
of metrics, which have all been used in empirical studies by



other researchers and are widely available in CASE tools, we
hope to overcome their individual disadvantages and to be able
to see the general picture.

A notable omission from the above list is common coupling,
which has been used to assess the Linux code in several
previous studies [22], [31], [27], [3]. However, all those studies
neglected to fully follow inter-procedural pointer dereferences,
and thus potentially miss many instances of coupling. As
this is an extremely difficult issue, we leave its resolutionto
separate future work.

In plotting metric results, we use a simple visual inspection
to comment on observed patterns. The alternative is to use
statistical tests, as was done for example by Lawrence [12].
However, the results of such statistical tests depend on thetest
used, and on the precise metrics used — both of which are
open to controversy. In addition we note that in many cases the
overall observed behavior is erratic, sometimes includinglarge
discrete jumps. We therefore limit most of the conclusions to
strong effects that are self-evident from the data.

D. Methodology

We examinedall the Linux releases from March 1994 to
August 2008. There are 810 releases in total (we only consider
full releases, and ignore interim patches that were popular
mainly in 1.x versions). This includes 144 production versions,
429 development versions, and 237 versions of 2.6 (up to
release 2.6.25.11). This represents a significant extension of
previous characterizations of Linux, such as the work of
Godfrey and Tu [4] (their last versions were 2.2.14 and 2.3.39,
released in January 2000, and even before that they used only
a sample of releases).

We examined theentire source code of the Linux Kernel,
including both.h and .c files. In this we follow Godfrey and
Tu [4] and Thomas [27], as opposed to Schach et al. [22] who
only included the.c files. Given that we are interested in code
maintenance rather than in execution, we take the developer
point of view and consider the full code base. Schach et al.
[22] considered only thekernel subdirectory, that contains but
a small fraction of the most basic code. Thomas [27] spent
much effort on defining a consistent configuration that spans
versions 2.0 to 2.4, thus excluding much of the code (mainly
drivers). In any case, such a consistent version cannot be found
spanning the full duration from 1.0 to 2.6. We ignore makefiles
and configuration files, as was done by others.

In order to analyze our full dataset, we considered using a
commercial CASE tool, but in the end developed a tool of our
own. The main problem with the CASE tools was handling
conditional compilation. Linux is littered with pre-processor
directives (such as#ifdef) that cause specific compilations to
include or exclude certain blocks of code. In addition, there
are macros such as#define MAX(X,Y) (X>Y)?X:Y. If one is
interested in the behavior of the code as it runs, all these have
to be processed before the analysis starts.

In our work, however, we are interested in how the code is
viewed by the maintainer. In case of conditional compilation,

a maintainer must consider all the different possible compila-
tions, not just one of them. On the other hand, a maintainer (or
developer) can benefit from the cognitive simplifications that
come from using macros, especially when the final expanded
code is very complex. Therefore we need to analyze the code
in its raw form, without pre-processing. In this we differ from
Thomas [27], who used a CASE tool which requires pre-
processing, and thus only files and code sections in the pre-
processed configuration were examined.

The major problem with not performing pre-processing is
that the resulting code is not always legal. For example, a func-
tion may have different signatures in different configuration,
and this can be expressed using#ifdef and #else. With pre-
processing, the compiler will only see the correct definition
each time. But if we delete the pre-processing directives in
order to analyze all the code, we will get two contradicting
definitions of the same function, sharing the same function
body. This tends to break CASE tools that measure various
code metrics. We therefore developed our own tool, that could
handle nearly all of the codebase. Overall, less than 1.5% of
the source files were found to be so problematic that we had
to remove them from the analysis.

We ran our tool on all the.c and.h files of all the versions. In
order to aggregate the metrics at the kernel level, we used the
same approach used in other studies (such as Thomas [27]) and
as explained in the original metrics definitions. For example,
LOC, MCC, and EMCC are simply summed across all files
(note that files with no functions, such as some header files,
will have an MCC of 0, because MCC is a function level
metric). In order to compare the different versions, despite the
addition of new files or functions, we will sometimes look
at the average metric values of the files and functions of the
kernel rather than at the aggregate values. The same is true
for the function-level Halstead metrics. Oman’s MI is defined
at the file level. Since it has a 100-point scale we cannot
aggregate the values. Instead, we will use only the average
MI values across all the files in the kernel.

III. M EASUREMENTS OF THEL INUX

KERNEL

In this section we present the results of the code measure-
ments; the next section will interpret these results in the light
of maintenance categories. To observe the changes in metric
values from one version to the next, we typically graph the
results for all 810 versions, distinguishing between thearch
anddrivers directories and the core of the kernel. TheX axis
in these graphs represents the release date [28], and we make
a distinction between the development versions (1.1, 1.3, 2.1,
2.3, and 2.5), the production versions (1.0, 1.2, 2.0, 2.2, and
2.4), and the 2.6 series.

A. Total and Average Size

The size of a software system may be measured in different
ways. For brevity, we’ll focus on lines of code (LOC), and
specifically non-comment non-blank lines of code. The results



LOC − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

200000

400000

600000

800000

1e+006

1.2e+006

1.4e+006

1.6e+006

1.8e+006

2e+006

v1.0

LOC − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

200000

400000

600000

800000

1e+006

1.2e+006

1.4e+006

1.6e+006

1.8e+006

2e+006

v1.1

LOC − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

200000

400000

600000

800000

1e+006

1.2e+006

1.4e+006

1.6e+006

1.8e+006

2e+006

v1.2

LOC − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

200000

400000

600000

800000

1e+006

1.2e+006

1.4e+006

1.6e+006

1.8e+006

2e+006

v1.3

LOC − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

200000

400000

600000

800000

1e+006

1.2e+006

1.4e+006

1.6e+006

1.8e+006

2e+006

v2.0

LOC − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

200000

400000

600000

800000

1e+006

1.2e+006

1.4e+006

1.6e+006

1.8e+006

2e+006

v2.1

LOC − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

200000

400000

600000

800000

1e+006

1.2e+006

1.4e+006

1.6e+006

1.8e+006

2e+006

v2.2

LOC − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

200000

400000

600000

800000

1e+006

1.2e+006

1.4e+006

1.6e+006

1.8e+006

2e+006

v2.3

LOC − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

200000

400000

600000

800000

1e+006

1.2e+006

1.4e+006

1.6e+006

1.8e+006

2e+006

v2.4

LOC − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

200000

400000

600000

800000

1e+006

1.2e+006

1.4e+006

1.6e+006

1.8e+006

2e+006

v2.5

LOC − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

200000

400000

600000

800000

1e+006

1.2e+006

1.4e+006

1.6e+006

1.8e+006

2e+006

v2.6

LOC − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

200000

400000

600000

800000

1e+006

1.2e+006

1.4e+006

1.6e+006

1.8e+006

2e+006

11

LOC − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

200000

400000

600000

800000

1e+006

1.2e+006

1.4e+006

1.6e+006

1.8e+006

2e+006

12

LOC − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

200000

400000

600000

800000

1e+006

1.2e+006

1.4e+006

1.6e+006

1.8e+006

2e+006

13

LOC − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

200000

400000

600000

800000

1e+006

1.2e+006

1.4e+006

1.6e+006

1.8e+006

2e+006

14

LOC − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

200000

400000

600000

800000

1e+006

1.2e+006

1.4e+006

1.6e+006

1.8e+006

2e+006

15

LOC − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

200000

400000

600000

800000

1e+006

1.2e+006

1.4e+006

1.6e+006

1.8e+006

2e+006

16

LOC − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

200000

400000

600000

800000

1e+006

1.2e+006

1.4e+006

1.6e+006

1.8e+006

2e+006

17

LOC − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

200000

400000

600000

800000

1e+006

1.2e+006

1.4e+006

1.6e+006

1.8e+006

2e+006

18

LOC − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

200000

400000

600000

800000

1e+006

1.2e+006

1.4e+006

1.6e+006

1.8e+006

2e+006

19

LOC − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

200000

400000

600000

800000

1e+006

1.2e+006

1.4e+006

1.6e+006

1.8e+006

2e+006

20

LOC − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

200000

400000

600000

800000

1e+006

1.2e+006

1.4e+006

1.6e+006

1.8e+006

2e+006

21

LOC − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

200000

400000

600000

800000

1e+006

1.2e+006

1.4e+006

1.6e+006

1.8e+006

2e+006
22

LOC − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

200000

400000

600000

800000

1e+006

1.2e+006

1.4e+006

1.6e+006

1.8e+006

2e+006
23

LOC − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

200000

400000

600000

800000

1e+006

1.2e+006

1.4e+006

1.6e+006

1.8e+006

2e+006
24

LOC − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

200000

400000

600000

800000

1e+006

1.2e+006

1.4e+006

1.6e+006

1.8e+006

2e+006 25

LOC − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

500000

1e+006

1.5e+006

2e+006

2.5e+006

3e+006

3.5e+006

4e+006

v1.0

LOC − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

500000

1e+006

1.5e+006

2e+006

2.5e+006

3e+006

3.5e+006

4e+006

v1.1

LOC − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

500000

1e+006

1.5e+006

2e+006

2.5e+006

3e+006

3.5e+006

4e+006

v1.2

LOC − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

500000

1e+006

1.5e+006

2e+006

2.5e+006

3e+006

3.5e+006

4e+006

v1.3

LOC − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

500000

1e+006

1.5e+006

2e+006

2.5e+006

3e+006

3.5e+006

4e+006

v2.0

LOC − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

500000

1e+006

1.5e+006

2e+006

2.5e+006

3e+006

3.5e+006

4e+006

v2.1

LOC − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

500000

1e+006

1.5e+006

2e+006

2.5e+006

3e+006

3.5e+006

4e+006

v2.2

LOC − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

500000

1e+006

1.5e+006

2e+006

2.5e+006

3e+006

3.5e+006

4e+006

v2.3

LOC − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

500000

1e+006

1.5e+006

2e+006

2.5e+006

3e+006

3.5e+006

4e+006

v2.4

LOC − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

500000

1e+006

1.5e+006

2e+006

2.5e+006

3e+006

3.5e+006

4e+006

v2.5

LOC − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

500000

1e+006

1.5e+006

2e+006

2.5e+006

3e+006

3.5e+006

4e+006

v2.6

LOC − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

500000

1e+006

1.5e+006

2e+006

2.5e+006

3e+006

3.5e+006

4e+006

11

LOC − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

500000

1e+006

1.5e+006

2e+006

2.5e+006

3e+006

3.5e+006

4e+006

12

LOC − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

500000

1e+006

1.5e+006

2e+006

2.5e+006

3e+006

3.5e+006

4e+006

13

LOC − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

500000

1e+006

1.5e+006

2e+006

2.5e+006

3e+006

3.5e+006

4e+006

14

LOC − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

500000

1e+006

1.5e+006

2e+006

2.5e+006

3e+006

3.5e+006

4e+006

15

LOC − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

500000

1e+006

1.5e+006

2e+006

2.5e+006

3e+006

3.5e+006

4e+006

16

LOC − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

500000

1e+006

1.5e+006

2e+006

2.5e+006

3e+006

3.5e+006

4e+006

17

LOC − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

500000

1e+006

1.5e+006

2e+006

2.5e+006

3e+006

3.5e+006

4e+006

18

LOC − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

500000

1e+006

1.5e+006

2e+006

2.5e+006

3e+006

3.5e+006

4e+006

19

LOC − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

500000

1e+006

1.5e+006

2e+006

2.5e+006

3e+006

3.5e+006

4e+006

20

LOC − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

500000

1e+006

1.5e+006

2e+006

2.5e+006

3e+006

3.5e+006

4e+006

21

LOC − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

500000

1e+006

1.5e+006

2e+006

2.5e+006

3e+006

3.5e+006

4e+006

22

LOC − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

500000

1e+006

1.5e+006

2e+006

2.5e+006

3e+006

3.5e+006

4e+006

23

LOC − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

500000

1e+006

1.5e+006

2e+006

2.5e+006

3e+006

3.5e+006

4e+006

24

LOC − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

500000

1e+006

1.5e+006

2e+006

2.5e+006

3e+006

3.5e+006

4e+006
25

Fig. 1. Evolution of LOC in Linux.

are shown in Fig. 1. Very similar results are obtained for the
number of files or functions, or the Halstead volume.

Obviously, Linux has grown considerably since its first re-
lease. Most of the growth occurs in the development versions,
whereas the production versions are usually stable, exceptfor
some increase at the beginning. This is especially noticeable
in 2.4, which continues to grow till 2.6 is released, indicating
that much code was added. The 2.6 series demonstrates a
combination of the development and production versions:
for each minor version (third digit) the size is constant as
in production versions, but it grows between them as in
development versions.

An interesting observation is that the pattern of growth in the
arch anddrivers directories can be different from the rest of the
kernel, especially in select points [4]. For example, version 2.5
exhibits two large “jumps” in the core directories, only oneof
which exists inarch anddrivers, where it is much smaller. The
first of these jumps is explained by the addition of thesound
subdirectory. In previous versions there was a much smaller
sound directory underdrivers, but generally the sound project
was developed separately. In 2.5.5 a newsound directory was
created at the top level, and theinclude directory was updated
with header files and also grew. Thedrivers directory lost
the old sound directory, but it did not shrink because other
unrelated additions were made.

The second jump is actually a combination of two effects.
One is in thearch anddrivers directories, where improvements
and developments of thearch/um directory were made in
version 2.5.35. In the consecutive version (2.5.36) a new file
system support (xfs) was added, generating an increase in the
core kernel number of files. Thus the two seemingly correlated

jumps are actually unrelated.
It is also worthwhile to notice the smaller jumps in 2.2

(mainly 2.2.18). These increases are due to many individual
changes, including improved USB support and the addition of
network drivers. Note that these features were added to 2.2
despite the fact that it is a production version.

Next, we calculated average LOC at the file and the function
level. The most obvious observation regarding the average
size of files (Fig. 2) is that they are somewhat volatile
and relatively large in thearch and drivers directories, but
much smaller and more stable in the other directories. Also,
within the arch and drivers directories production versions
tend to have higher values. This is due to a combination
of initial growth in these directories, which is larger thanin
contemporary development versions, and stability while the
values for subsequent development versions decline. The end
result is that thearch and drivers directories in the 2.0, 2.2,
and 2.4 production versions have the highest average file sizes.

The LOC per function data (Fig. 3) presents a slightly
different picture. The average sizes of functions are similar
in all directories, but with some fluctuations and jumps. And
there is a distinctive downwards trend in 2.6, indicating that
the number of functions (but not files) is growing faster than
the LOC. There are also a couple of interesting singularities,
especially in the “core” directories. One is the significantdrop
in LOC per function in version 1.1. Another is the big jump
in version 2.2.16. This is en example of the effect of outliers:
it was caused by the addition of only 4 files with 7 functions
each to thefs directory — but with total of over 54,000 LOC.

B. Complexity and Maintainability

McCabe’s Cyclomatic Complexity (MCC) quantifies com-
plexity as the number of linearly independent paths in the
program’s control flow graph. We also examined the EMCC
(Extended MCC) and Halstead effort, but the results were
qualitatively very similar to those of the MCC, so we do not
discuss them. Our results (Fig. 4) show that MCC grows with
time, and moreover that the pattern of growth is very similar
to that of LOC. This matches previous results that noted the
general correlation of MCC with LOC [24].

Next, we looked at the average MCC per function, since
MCC was originally proposed as a metric for independent code
units. The results (Fig. 5) indicate a pronounced decrease over
time, especially in the core directories of early development
versions and in thearch and drivers directories of all devel-
opment versions and 2.6. This gives the impression that with
time the average complexity of the functions is decreasing,
and thus maybe the quality of the kernel is improving — in
contrast to other results using different metrics (but alsoquite
different methodology) [22], [28].

This conclusion remains also after a more extensive analysis
of the whole distribution of MCC values of all functions,
and how the distribution changes with time [9]. However, this
doesn’t say whether the improvement is in existing functions
(which can be interpreted as preventive maintenance) or simply
that new functions that are added have lower complexity.



Fig. 2. The average LOC per file.

LOC per File

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

50

100

150

200

250

300

350

400

450

500

550

v1.0

LOC per File

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

50

100

150

200

250

300

350

400

450

500

550

v1.1

LOC per File

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

50

100

150

200

250

300

350

400

450

500

550

v1.2

LOC per File

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

50

100

150

200

250

300

350

400

450

500

550

v1.3

LOC per File

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

50

100

150

200

250

300

350

400

450

500

550

v2.0

LOC per File

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

50

100

150

200

250

300

350

400

450

500

550

v2.1

LOC per File

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

50

100

150

200

250

300

350

400

450

500

550

v2.2

LOC per File

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

50

100

150

200

250

300

350

400

450

500

550

v2.3

LOC per File

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

50

100

150

200

250

300

350

400

450

500

550

v2.4

LOC per File

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

50

100

150

200

250

300

350

400

450

500

550

v2.5

LOC per File

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

50

100

150

200

250

300

350

400

450

500

550

v2.6

LOC per File

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

50

100

150

200

250

300

350

400

450

500

550

11

LOC per File

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

50

100

150

200

250

300

350

400

450

500

550

12

LOC per File

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

50

100

150

200

250

300

350

400

450

500

550

13

LOC per File

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

50

100

150

200

250

300

350

400

450

500

550

14

LOC per File

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

50

100

150

200

250

300

350

400

450

500

550

15

LOC per File

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

50

100

150

200

250

300

350

400

450

500

550

16

LOC per File

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

50

100

150

200

250

300

350

400

450

500

550

17

LOC per File

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

50

100

150

200

250

300

350

400

450

500

550

18

LOC per File

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

50

100

150

200

250

300

350

400

450

500

550

19

LOC per File

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

50

100

150

200

250

300

350

400

450

500

550

20

LOC per File

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

50

100

150

200

250

300

350

400

450

500

550

21

LOC per File

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

50

100

150

200

250

300

350

400

450

500

550

22

LOC per File

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

50

100

150

200

250

300

350

400

450

500

550

23

LOC per File

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

50

100

150

200

250

300

350

400

450

500

550

24

LOC per File

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

50

100

150

200

250

300

350

400

450

500

550

25

LOC per File

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

50

100

150

200

250

300

350

400

450

500

550

v1.0

LOC per File

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

50

100

150

200

250

300

350

400

450

500

550

v1.1

LOC per File

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

50

100

150

200

250

300

350

400

450

500

550

v1.2

LOC per File

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

50

100

150

200

250

300

350

400

450

500

550

v1.3

LOC per File

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

50

100

150

200

250

300

350

400

450

500

550

v2.0

LOC per File

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

50

100

150

200

250

300

350

400

450

500

550

v2.1

LOC per File

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

50

100

150

200

250

300

350

400

450

500

550

v2.2

LOC per File

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

50

100

150

200

250

300

350

400

450

500

550

v2.3

LOC per File

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

50

100

150

200

250

300

350

400

450

500

550

v2.4

LOC per File

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

50

100

150

200

250

300

350

400

450

500

550

v2.5

LOC per File

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

50

100

150

200

250

300

350

400

450

500

550

v2.6

LOC per File

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

50

100

150

200

250

300

350

400

450

500

550

11

LOC per File

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

50

100

150

200

250

300

350

400

450

500

550

12

LOC per File

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

50

100

150

200

250

300

350

400

450

500

550

13

LOC per File

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

50

100

150

200

250

300

350

400

450

500

550

14

LOC per File

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

50

100

150

200

250

300

350

400

450

500

550

15

LOC per File

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

50

100

150

200

250

300

350

400

450

500

550

16

LOC per File

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

50

100

150

200

250

300

350

400

450

500

550

17

LOC per File

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

50

100

150

200

250

300

350

400

450

500

550

18

LOC per File

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

50

100

150

200

250

300

350

400

450

500

550

19

LOC per File

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

50

100

150

200

250

300

350

400

450

500

550

20

LOC per File

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

50

100

150

200

250

300

350

400

450

500

550

21

LOC per File

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

50

100

150

200

250

300

350

400

450

500

550

22

LOC per File

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

50

100

150

200

250

300

350

400

450

500

550

23

LOC per File

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

50

100

150

200

250

300

350

400

450

500

550

24

LOC per File

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

50

100

150

200

250

300

350

400

450

500

550

25

Other Directories

Arch and Driver Directories

LOC per Func − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
30

35

40

45

v1.0

LOC per Func − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
30

35

40

45

v1.1

LOC per Func − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
30

35

40

45

v1.2

LOC per Func − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
30

35

40

45

v1.3

LOC per Func − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
30

35

40

45

v2.0

LOC per Func − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
30

35

40

45

v2.1

LOC per Func − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
30

35

40

45

v2.2

LOC per Func − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
30

35

40

45

v2.3

LOC per Func − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
30

35

40

45

v2.4

LOC per Func − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
30

35

40

45

v2.5

LOC per Func − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
30

35

40

45

v2.6

LOC per Func − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
30

35

40

45

11

LOC per Func − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
30

35

40

45

12

LOC per Func − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
30

35

40

45

13

LOC per Func − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
30

35

40

45

14

LOC per Func − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
30

35

40

45

15

LOC per Func − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
30

35

40

45

16

LOC per Func − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
30

35

40

45

17

LOC per Func − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
30

35

40

45

18

LOC per Func − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
30

35

40

45

19

LOC per Func − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
30

35

40

45

20

LOC per Func − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
30

35

40

45

21

LOC per Func − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
30

35

40

45

22

LOC per Func − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
30

35

40

45

23

LOC per Func − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
30

35

40

45

24

LOC per Func − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
30

35

40

45

25

LOC per Func − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
30

35

40

45

v1.0

LOC per Func − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
30

35

40

45

v1.1

LOC per Func − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
30

35

40

45

v1.2

LOC per Func − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
30

35

40

45

v1.3

LOC per Func − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
30

35

40

45

v2.0

LOC per Func − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
30

35

40

45

v2.1

LOC per Func − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
30

35

40

45

v2.2

LOC per Func − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
30

35

40

45

v2.3

LOC per Func − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
30

35

40

45

v2.4

LOC per Func − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
30

35

40

45

v2.5

LOC per Func − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
30

35

40

45

v2.6

LOC per Func − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
30

35

40

45

11

LOC per Func − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
30

35

40

45

12

LOC per Func − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
30

35

40

45

13

LOC per Func − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
30

35

40

45

14

LOC per Func − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
30

35

40

45

15

LOC per Func − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
30

35

40

45

16

LOC per Func − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
30

35

40

45

17

LOC per Func − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
30

35

40

45

18

LOC per Func − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
30

35

40

45

19

LOC per Func − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
30

35

40

45

20

LOC per Func − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
30

35

40

45

21

LOC per Func − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
30

35

40

45

22

LOC per Func − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
30

35

40

45

23

LOC per Func − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
30

35

40

45

24

LOC per Func − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
30

35

40

45

25

Fig. 3. The average LOC per function.

We examined this directly by looking at the new files that
are added each year separately from the older files (Fig. 6),
focusing on development versions. This shows that new files
have a decidedly lower complexity in thearch and drivers
directories, and most of the time also in the core directories.

Moving to maintainability, the percentage of comment lines
gives some perspective on the relation between total lines
and those that actually contain code (Fig. 7). On average
comments comprise around 25% (Similar to the results of
Godfrey and Tu who found that the percentage of comments
and blank lines is almost constant at between 28–30% [4]),
with a general decreasing trend, and slightly higher valuesin
production kernels. Dissecting this behavior we find that inthe
arch anddrivers directories there is a big increase in comments

McCabe Cyclomatic Complexity − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
9000

29000

49000

69000

89000

109000

129000

149000

169000

189000

209000

229000

v1.0

McCabe Cyclomatic Complexity − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
9000

29000

49000

69000

89000

109000

129000

149000

169000

189000

209000

229000

v1.1

McCabe Cyclomatic Complexity − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
9000

29000

49000

69000

89000

109000

129000

149000

169000

189000

209000

229000

v1.2

McCabe Cyclomatic Complexity − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
9000

29000

49000

69000

89000

109000

129000

149000

169000

189000

209000

229000

v1.3

McCabe Cyclomatic Complexity − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
9000

29000

49000

69000

89000

109000

129000

149000

169000

189000

209000

229000

v2.0

McCabe Cyclomatic Complexity − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
9000

29000

49000

69000

89000

109000

129000

149000

169000

189000

209000

229000

v2.1

McCabe Cyclomatic Complexity − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
9000

29000

49000

69000

89000

109000

129000

149000

169000

189000

209000

229000

v2.2

McCabe Cyclomatic Complexity − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
9000

29000

49000

69000

89000

109000

129000

149000

169000

189000

209000

229000

v2.3

McCabe Cyclomatic Complexity − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
9000

29000

49000

69000

89000

109000

129000

149000

169000

189000

209000

229000

v2.4

McCabe Cyclomatic Complexity − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
9000

29000

49000

69000

89000

109000

129000

149000

169000

189000

209000

229000

v2.5

McCabe Cyclomatic Complexity − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
9000

29000

49000

69000

89000

109000

129000

149000

169000

189000

209000

229000

v2.6

McCabe Cyclomatic Complexity − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
9000

29000

49000

69000

89000

109000

129000

149000

169000

189000

209000

229000

11

McCabe Cyclomatic Complexity − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
9000

29000

49000

69000

89000

109000

129000

149000

169000

189000

209000

229000

12

McCabe Cyclomatic Complexity − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
9000

29000

49000

69000

89000

109000

129000

149000

169000

189000

209000

229000

13

McCabe Cyclomatic Complexity − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
9000

29000

49000

69000

89000

109000

129000

149000

169000

189000

209000

229000

14

McCabe Cyclomatic Complexity − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
9000

29000

49000

69000

89000

109000

129000

149000

169000

189000

209000

229000

15

McCabe Cyclomatic Complexity − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
9000

29000

49000

69000

89000

109000

129000

149000

169000

189000

209000

229000

16

McCabe Cyclomatic Complexity − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
9000

29000

49000

69000

89000

109000

129000

149000

169000

189000

209000

229000

17

McCabe Cyclomatic Complexity − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
9000

29000

49000

69000

89000

109000

129000

149000

169000

189000

209000

229000

18

McCabe Cyclomatic Complexity − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
9000

29000

49000

69000

89000

109000

129000

149000

169000

189000

209000

229000

19

McCabe Cyclomatic Complexity − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
9000

29000

49000

69000

89000

109000

129000

149000

169000

189000

209000

229000

20

McCabe Cyclomatic Complexity − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
9000

29000

49000

69000

89000

109000

129000

149000

169000

189000

209000

229000
21

McCabe Cyclomatic Complexity − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
9000

29000

49000

69000

89000

109000

129000

149000

169000

189000

209000

229000
22

McCabe Cyclomatic Complexity − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
9000

29000

49000

69000

89000

109000

129000

149000

169000

189000

209000

229000
23

McCabe Cyclomatic Complexity − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
9000

29000

49000

69000

89000

109000

129000

149000

169000

189000

209000

229000
24

McCabe Cyclomatic Complexity − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
9000

29000

49000

69000

89000

109000

129000

149000

169000

189000

209000

229000 25

McCabe Cyclomatic Complexity − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
9000

59000

109000

159000

209000

259000

309000

359000

409000

459000

509000

v1.0

McCabe Cyclomatic Complexity − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
9000

59000

109000

159000

209000

259000

309000

359000

409000

459000

509000

v1.1

McCabe Cyclomatic Complexity − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
9000

59000

109000

159000

209000

259000

309000

359000

409000

459000

509000

v1.2

McCabe Cyclomatic Complexity − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
9000

59000

109000

159000

209000

259000

309000

359000

409000

459000

509000

v1.3

McCabe Cyclomatic Complexity − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
9000

59000

109000

159000

209000

259000

309000

359000

409000

459000

509000

v2.0

McCabe Cyclomatic Complexity − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
9000

59000

109000

159000

209000

259000

309000

359000

409000

459000

509000

v2.1

McCabe Cyclomatic Complexity − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
9000

59000

109000

159000

209000

259000

309000

359000

409000

459000

509000

v2.2

McCabe Cyclomatic Complexity − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
9000

59000

109000

159000

209000

259000

309000

359000

409000

459000

509000

v2.3

McCabe Cyclomatic Complexity − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
9000

59000

109000

159000

209000

259000

309000

359000

409000

459000

509000

v2.4

McCabe Cyclomatic Complexity − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
9000

59000

109000

159000

209000

259000

309000

359000

409000

459000

509000

v2.5

McCabe Cyclomatic Complexity − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
9000

59000

109000

159000

209000

259000

309000

359000

409000

459000

509000

v2.6

McCabe Cyclomatic Complexity − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
9000

59000

109000

159000

209000

259000

309000

359000

409000

459000

509000

11

McCabe Cyclomatic Complexity − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
9000

59000

109000

159000

209000

259000

309000

359000

409000

459000

509000

12

McCabe Cyclomatic Complexity − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
9000

59000

109000

159000

209000

259000

309000

359000

409000

459000

509000

13

McCabe Cyclomatic Complexity − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
9000

59000

109000

159000

209000

259000

309000

359000

409000

459000

509000

14

McCabe Cyclomatic Complexity − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
9000

59000

109000

159000

209000

259000

309000

359000

409000

459000

509000

15

McCabe Cyclomatic Complexity − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
9000

59000

109000

159000

209000

259000

309000

359000

409000

459000

509000

16

McCabe Cyclomatic Complexity − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
9000

59000

109000

159000

209000

259000

309000

359000

409000

459000

509000

17

McCabe Cyclomatic Complexity − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
9000

59000

109000

159000

209000

259000

309000

359000

409000

459000

509000

18

McCabe Cyclomatic Complexity − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
9000

59000

109000

159000

209000

259000

309000

359000

409000

459000

509000

19

McCabe Cyclomatic Complexity − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
9000

59000

109000

159000

209000

259000

309000

359000

409000

459000

509000

20

McCabe Cyclomatic Complexity − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
9000

59000

109000

159000

209000

259000

309000

359000

409000

459000

509000

21

McCabe Cyclomatic Complexity − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
9000

59000

109000

159000

209000

259000

309000

359000

409000

459000

509000

22

McCabe Cyclomatic Complexity − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
9000

59000

109000

159000

209000

259000

309000

359000

409000

459000

509000
23

McCabe Cyclomatic Complexity − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
9000

59000

109000

159000

209000

259000

309000

359000

409000

459000

509000
24

McCabe Cyclomatic Complexity − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
9000

59000

109000

159000

209000

259000

309000

359000

409000

459000

509000 25

Fig. 4. Total McCabe’s cyclomatic complexity (MCC).

in version 1.1, and then a general decreasing trend (to around
20%), where again the production version’s values are more
constant and higher. The trend in the core kernel directories
is also a big increase in 1.1, but then it stays relatively flat,
except for big jumps in 2.2 (upwards) and 2.5 (downwards).

Each of the previous metrics has a following of researchers
who believe in it, while others criticize its deficiencies. Oman’s
Maintainability Index (MI) is an attempt to pool them to-
gether in a way that matches empirical data. Its value is on a
scale from 25 to 125, where low values correspond to lower
maintainability and high values to higher maintainability.

As MI is measured per module (or in our case, function),
the data used is average LOC, MCC, and HV per function.
As we saw above, these tend to decrease with time, thus



Avg. McCabe Cyclomatic Complexity per func − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
3.5

4.5

5.5

6.5

v1.0

Avg. McCabe Cyclomatic Complexity per func − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
3.5

4.5

5.5

6.5

v1.1

Avg. McCabe Cyclomatic Complexity per func − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
3.5

4.5

5.5

6.5

v1.2

Avg. McCabe Cyclomatic Complexity per func − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
3.5

4.5

5.5

6.5

v1.3

Avg. McCabe Cyclomatic Complexity per func − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
3.5

4.5

5.5

6.5

v2.0

Avg. McCabe Cyclomatic Complexity per func − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
3.5

4.5

5.5

6.5

v2.1

Avg. McCabe Cyclomatic Complexity per func − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
3.5

4.5

5.5

6.5

v2.2

Avg. McCabe Cyclomatic Complexity per func − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
3.5

4.5

5.5

6.5

v2.3

Avg. McCabe Cyclomatic Complexity per func − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
3.5

4.5

5.5

6.5

v2.4

Avg. McCabe Cyclomatic Complexity per func − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
3.5

4.5

5.5

6.5

v2.5

Avg. McCabe Cyclomatic Complexity per func − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
3.5

4.5

5.5

6.5

v2.6

Avg. McCabe Cyclomatic Complexity per func − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
3.5

4.5

5.5

6.5

11

Avg. McCabe Cyclomatic Complexity per func − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
3.5

4.5

5.5

6.5

12

Avg. McCabe Cyclomatic Complexity per func − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
3.5

4.5

5.5

6.5

13

Avg. McCabe Cyclomatic Complexity per func − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
3.5

4.5

5.5

6.5

14

Avg. McCabe Cyclomatic Complexity per func − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
3.5

4.5

5.5

6.5

15

Avg. McCabe Cyclomatic Complexity per func − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
3.5

4.5

5.5

6.5

16

Avg. McCabe Cyclomatic Complexity per func − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
3.5

4.5

5.5

6.5

17

Avg. McCabe Cyclomatic Complexity per func − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
3.5

4.5

5.5

6.5

18

Avg. McCabe Cyclomatic Complexity per func − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
3.5

4.5

5.5

6.5

19

Avg. McCabe Cyclomatic Complexity per func − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
3.5

4.5

5.5

6.5

20

Avg. McCabe Cyclomatic Complexity per func − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
3.5

4.5

5.5

6.5

21

Avg. McCabe Cyclomatic Complexity per func − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
3.5

4.5

5.5

6.5

22

Avg. McCabe Cyclomatic Complexity per func − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
3.5

4.5

5.5

6.5

23

Avg. McCabe Cyclomatic Complexity per func − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
3.5

4.5

5.5

6.5

24

Avg. McCabe Cyclomatic Complexity per func − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
3.5

4.5

5.5

6.5

25

Avg. McCabe Cyclomatic Complexity per func − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
4

5

6

7

v1.0

Avg. McCabe Cyclomatic Complexity per func − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
4

5

6

7

v1.1

Avg. McCabe Cyclomatic Complexity per func − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
4

5

6

7

v1.2

Avg. McCabe Cyclomatic Complexity per func − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
4

5

6

7

v1.3

Avg. McCabe Cyclomatic Complexity per func − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
4

5

6

7

v2.0

Avg. McCabe Cyclomatic Complexity per func − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
4

5

6

7

v2.1

Avg. McCabe Cyclomatic Complexity per func − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
4

5

6

7

v2.2

Avg. McCabe Cyclomatic Complexity per func − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
4

5

6

7

v2.3

Avg. McCabe Cyclomatic Complexity per func − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
4

5

6

7

v2.4

Avg. McCabe Cyclomatic Complexity per func − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
4

5

6

7

v2.5

Avg. McCabe Cyclomatic Complexity per func − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
4

5

6

7

v2.6

Avg. McCabe Cyclomatic Complexity per func − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
4

5

6

7

11

Avg. McCabe Cyclomatic Complexity per func − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
4

5

6

7

12

Avg. McCabe Cyclomatic Complexity per func − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
4

5

6

7

13

Avg. McCabe Cyclomatic Complexity per func − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
4

5

6

7

14

Avg. McCabe Cyclomatic Complexity per func − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
4

5

6

7

15

Avg. McCabe Cyclomatic Complexity per func − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
4

5

6

7

16

Avg. McCabe Cyclomatic Complexity per func − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
4

5

6

7

17

Avg. McCabe Cyclomatic Complexity per func − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
4

5

6

7

18

Avg. McCabe Cyclomatic Complexity per func − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
4

5

6

7

19

Avg. McCabe Cyclomatic Complexity per func − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
4

5

6

7

20

Avg. McCabe Cyclomatic Complexity per func − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
4

5

6

7

21

Avg. McCabe Cyclomatic Complexity per func − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
4

5

6

7

22

Avg. McCabe Cyclomatic Complexity per func − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
4

5

6

7

23

Avg. McCabe Cyclomatic Complexity per func − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
4

5

6

7

24

Avg. McCabe Cyclomatic Complexity per func − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
4

5

6

7

25

Fig. 5. Average MCC per function.

Avg. MCC per Function − New VS Old Files − Other Directories

95 96 97 98 99 00 01 02 03 04 05 06 07 08
3

3.5

4

4.5

5

5.5

6

6.5

7
old files
all files
new files

Avg. MCC per Function − New VS Old Files − Arch and Drivers Directories

95 96 97 98 99 00 01 02 03 04 05 06 07 08
3

3.5

4

4.5

5

5.5

6

6.5

7
old files
all files
new files

Fig. 6. Average MCC per function in new and old files each year.

contributing to a higherMI. The percentage of comment
lines, however, has a slight downwards tendency. However the
change is small, so we do not expect it to have a large negative
effect. Indeed the general result is a slight increasing trend of
MI, as shown in Fig. 8.

Dissecting the general results according to directories, we
observe the sharp initial improvement in 1.1 which is confined

Ratio of Comments in Code − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0.2

0.25

0.3

v1.0

Ratio of Comments in Code − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0.2

0.25

0.3

v1.1

Ratio of Comments in Code − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0.2

0.25

0.3

v1.2

Ratio of Comments in Code − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0.2

0.25

0.3

v1.3

Ratio of Comments in Code − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0.2

0.25

0.3

v2.0

Ratio of Comments in Code − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0.2

0.25

0.3

v2.1

Ratio of Comments in Code − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0.2

0.25

0.3 v2.2
Ratio of Comments in Code − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0.2

0.25

0.3

v2.3

Ratio of Comments in Code − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0.2

0.25

0.3

v2.4

Ratio of Comments in Code − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0.2

0.25

0.3

v2.5

Ratio of Comments in Code − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0.2

0.25

0.3

v2.6

Ratio of Comments in Code − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0.2

0.25

0.3

11

Ratio of Comments in Code − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0.2

0.25

0.3

12

Ratio of Comments in Code − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0.2

0.25

0.3

13

Ratio of Comments in Code − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0.2

0.25

0.3

14

Ratio of Comments in Code − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0.2

0.25

0.3

15

Ratio of Comments in Code − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0.2

0.25

0.3

16

Ratio of Comments in Code − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0.2

0.25

0.3

17

Ratio of Comments in Code − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0.2

0.25

0.3

18

Ratio of Comments in Code − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0.2

0.25

0.3

19

Ratio of Comments in Code − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0.2

0.25

0.3

20

Ratio of Comments in Code − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0.2

0.25

0.3

21

Ratio of Comments in Code − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0.2

0.25

0.3

22

Ratio of Comments in Code − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0.2

0.25

0.3

23

Ratio of Comments in Code − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0.2

0.25

0.3

24

Ratio of Comments in Code − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0.2

0.25

0.3

25

Ratio of Comments in Code − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0.2

0.25

0.3

v1.0

Ratio of Comments in Code − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0.2

0.25

0.3

v1.1

Ratio of Comments in Code − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0.2

0.25

0.3

v1.2

Ratio of Comments in Code − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0.2

0.25

0.3

v1.3

Ratio of Comments in Code − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0.2

0.25

0.3

v2.0

Ratio of Comments in Code − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0.2

0.25

0.3

v2.1

Ratio of Comments in Code − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0.2

0.25

0.3

v2.2

Ratio of Comments in Code − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0.2

0.25

0.3

v2.3

Ratio of Comments in Code − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0.2

0.25

0.3

v2.4

Ratio of Comments in Code − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0.2

0.25

0.3

v2.5

Ratio of Comments in Code − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0.2

0.25

0.3

v2.6

Ratio of Comments in Code − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0.2

0.25

0.3

11

Ratio of Comments in Code − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0.2

0.25

0.3

12

Ratio of Comments in Code − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0.2

0.25

0.3

13

Ratio of Comments in Code − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0.2

0.25

0.3

14

Ratio of Comments in Code − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0.2

0.25

0.3

15

Ratio of Comments in Code − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0.2

0.25

0.3

16

Ratio of Comments in Code − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0.2

0.25

0.3

17

Ratio of Comments in Code − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0.2

0.25

0.3

18

Ratio of Comments in Code − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0.2

0.25

0.3

19

Ratio of Comments in Code − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0.2

0.25

0.3

20

Ratio of Comments in Code − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0.2

0.25

0.3

21

Ratio of Comments in Code − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0.2

0.25

0.3

22

Ratio of Comments in Code − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0.2

0.25

0.3

23

Ratio of Comments in Code − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0.2

0.25

0.3

24

Ratio of Comments in Code − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0.2

0.25

0.3

25

Fig. 7. Percentage of comment lines.

Oman’s Maintainabilty Index − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
100

105

110

115

120

v1.0

Oman’s Maintainabilty Index − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
100

105

110

115

120

v1.1

Oman’s Maintainabilty Index − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
100

105

110

115

120

v1.2

Oman’s Maintainabilty Index − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
100

105

110

115

120

v1.3

Oman’s Maintainabilty Index − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
100

105

110

115

120

v2.0

Oman’s Maintainabilty Index − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
100

105

110

115

120

v2.1

Oman’s Maintainabilty Index − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
100

105

110

115

120

v2.2

Oman’s Maintainabilty Index − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
100

105

110

115

120

v2.3

Oman’s Maintainabilty Index − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
100

105

110

115

120

v2.4

Oman’s Maintainabilty Index − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
100

105

110

115

120

v2.5

Oman’s Maintainabilty Index − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
100

105

110

115

120

v2.6

Oman’s Maintainabilty Index − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
100

105

110

115

120

11

Oman’s Maintainabilty Index − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
100

105

110

115

120

12

Oman’s Maintainabilty Index − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
100

105

110

115

120

13

Oman’s Maintainabilty Index − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
100

105

110

115

120

14

Oman’s Maintainabilty Index − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
100

105

110

115

120

15

Oman’s Maintainabilty Index − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
100

105

110

115

120

16

Oman’s Maintainabilty Index − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
100

105

110

115

120

17

Oman’s Maintainabilty Index − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
100

105

110

115

120

18

Oman’s Maintainabilty Index − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
100

105

110

115

120

19

Oman’s Maintainabilty Index − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
100

105

110

115

120

20

Oman’s Maintainabilty Index − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
100

105

110

115

120

21

Oman’s Maintainabilty Index − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
100

105

110

115

120

22

Oman’s Maintainabilty Index − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
100

105

110

115

120

23

Oman’s Maintainabilty Index − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
100

105

110

115

120

24

Oman’s Maintainabilty Index − Other Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
100

105

110

115

120

25

Oman’s Maintainability Index − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
105

110

115

v1.0

Oman’s Maintainability Index − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
105

110

115

v1.1

Oman’s Maintainability Index − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
105

110

115

v1.2

Oman’s Maintainability Index − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
105

110

115

v1.3

Oman’s Maintainability Index − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
105

110

115

v2.0

Oman’s Maintainability Index − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
105

110

115

v2.1

Oman’s Maintainability Index − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
105

110

115

v2.2

Oman’s Maintainability Index − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
105

110

115

v2.3

Oman’s Maintainability Index − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
105

110

115

v2.4

Oman’s Maintainability Index − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
105

110

115

v2.5

Oman’s Maintainability Index − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
105

110

115

v2.6

Oman’s Maintainability Index − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
105

110

115

11

Oman’s Maintainability Index − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
105

110

115

12

Oman’s Maintainability Index − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
105

110

115

13

Oman’s Maintainability Index − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
105

110

115

14

Oman’s Maintainability Index − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
105

110

115

15

Oman’s Maintainability Index − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
105

110

115

16

Oman’s Maintainability Index − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
105

110

115

17

Oman’s Maintainability Index − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
105

110

115

18

Oman’s Maintainability Index − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
105

110

115

19

Oman’s Maintainability Index − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
105

110

115

20

Oman’s Maintainability Index − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
105

110

115

21

Oman’s Maintainability Index − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
105

110

115

22

Oman’s Maintainability Index − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
105

110

115

23

Oman’s Maintainability Index − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
105

110

115

24

Oman’s Maintainability Index − Arch and Drivers Directories

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
105

110

115

25

Fig. 8. Oman’s maintainability index.

to the core directories. Subsequent slower improvements ap-
pear more in thearch anddrivers directories. The lower values
attributed to production versions are also due to these two
directories. Another interesting point is that since the quality
values for the core kernel directories are typically betterthan
those ofarch anddrivers (i.e. less LOC, lower values for HV



and MCC, and slightly more comments), we also see that the
MI for these directories is higher — meaning that the core
has “better quality” thanarch anddrivers. However,arch and
drivers are showing a larger improvement with time.

IV. A NALYSIS OF MAINTENANCE ACTIVITIES

We now use the above results to reflect on the four
categories of maintenance activities: corrective, perfective,
adaptive, and preventive.

A. Corrective Maintenance

As indicated previously, we analyze corrective maintenance
as reflected in successive versions of production kernels,
since changes in successive versions of production kernelsare
usually corrective, due to the structure of the releases in Linux.

As we have seen in the results, for each of the different
metrics calculated — number of files, number of functions,
LOC, MCC, Halstead’s metrics, and Oman’s maintainability
index — the metric values for the production versions are
essentially constant. This is seen in 1.2, 2.0, 2.2, and 2.4,and
also in each of the minor versions of 2.6.

However, the metric values in production kernels do change
in two cases. One is the large “jumps” seen in versions 2.2 and
2.4. These are explained by changes in functionality, where
significant new functionality was propagated into a production
version, but without calling this a new major version. The main
examples are the improved USB support and additional drivers
that were added to the 2.2.18 kernel, and the introduction of
the xfs file system to the 2.4.25 kernel. Thus these jumps
testify that the assumption that production versions represent
only corrective maintenance is not always correct. They do
not contradict the finding that corrective maintenance doesnot
induce large changes to metric values.

The other metric change observed in production versions is
that both size and complexity metrics tend to grow initially
and only then become constant. This initial growth may seem
to indicate that corrective maintenance — and specifically the
combination of extensive testing and attempting to respondto
user bug reports regarding new production versions — tends
to add code and complexity to the existing structure, without
a commensurate investment in restructuring and refactoring.
However, it may also be just another case of creeping function-
ality updates, especially considering that most of the growth
often occurs in thearch anddrivers directories. Note also that
the average size and complexity per function do not grow,
indicating that the overall growth is a result of added functions
and not changes to existing code. Resolving this will require a
detailed analysis of the actual modifications done in the initial
part of production versions.

One can thus tentatively conclude that corrective mainte-
nance does not have a strong effect on the different kinds of
metrics. If at all, there may be a mild degradation initially,
but then the values of the metrics are constant. We can also
state that corrective maintenance is much less frequent than
the others, as the releases of production versions are much
less frequent. This may have implications regarding the total
effort invested in corrective maintenance [15], [23].

B. Perfective Maintenance

We analyze perfective maintenance as reflected in succes-
sive versions of development kernels, since according to the
structure of the Linux versions, the main motivation for new
development versions is to improve and add functionality.

Our results show that the different metrics for successive
versions in development kernels usually change more than for
production kernels, with strong growth when the full kernel
is considered. However, this is not always the case when only
the core kernel is considered. Also, average values display
considerable volatility.

On one hand, it seems like less work is being done to
“maintain” the code in development kernels. For example, the
ratio of comments tends to be slightly lower for development
versions relative to production versions. On the other hand,
when comparing metrics such as average MCC per function,
the values for development kernels are lower and exhibit a
decreasing trend. As a consequence, the MI is higher for the
development kernels, possibly indicating that the functions in
development kernels are on average less complex and more
maintainable than in production kernels.

The trend of improved average metrics over time in de-
velopment kernels has two possible interpretations: either the
code in development versions is indeed being improved, or
else many small files and functions are simply being added
at a higher rate than the overall complexity grows, so the
averages shift in the desirable direction. Our results indicate
that both effects indeed occur. For example, by considering
new functions separately from older ones, we showed that
the new functions added each year had better metric values.
Likewise, we have seen specific examples of improvements to
code complexity and structure of functions with high MCC
values [9]. Moreover, these improvements were limited to the
development versions. Thus we indeed have preliminary evi-
dence for activity that improves code structure in development
versions. This is discussed further below when we deal with
preventive maintenance.

Another aspect of perfective maintenance is the quest to
improve maintainability. Such activity may be expected to lead
to an improvement in code quality metrics. This consideration
indicates that version 1.1 is special, as there seems to be
especially significant improvement in the code in that version:
the fraction of comments grew, and all the complexity metrics
(MCC, Halstead) decreased considerably. One may therefore
conjecture that this version saw much perfective maintenance,
being the first version after2 1

2
years of development from

the initial announcement in August 1991 to the first release
in March 1994. Verifying this conjecture will require detailed
scrutiny of the code to assess the reasons for the improvement
in the metric values.

C. Adaptive Maintenance

We analyze adaptive maintenance as reflected in thearch
anddrivers directories (especially in the development kernels),
since they best reflect the adaptation to changes in the envi-



ronment — the addition of new architectures and new devices
that need to be supported.

As we have seen above, thearch and drivers directories
usually have the same trends as the rest of the kernel, although
many times with higher magnitude (for example, the LOC in
thearch anddrivers directories is higher and grows faster than
in other directories — possibly due to significant code cloning
[5]). However, there are differences. For example, the changes
in LOC and number of files in 2.5 are more noticeable in the
core kernel, whereas in 2.2 they are more noticeable in the
arch anddrivers directories.

When looking at average LOC and MCC (and other metrics)
per function, the observed trends are quite different in the
different directories: in thearch and drivers directories they
exhibit a steady decline throughout the development versions,
whereas in other directories the values are more volatile or
constant. This seems to indicate that adaptive maintenance,
as reflected in thearch and drivers directories, leads to an
improvement in code quality.

An especially interesting observation is the apparent in-
teraction between adaptive and corrective maintenance. In
practically all the average metrics, the production versions
have consistently higher values than contemporary develop-
ment versions when only thearch and drivers directories are
considered. This leads to somewhat lowerMI values for the
production versions, as seen in Fig. 8.

D. Preventive maintenance

Preventive maintenance is conjectured to be related to code
churn [6], that is the partitioning, moving, or deletion of code.
In particular, we can look for isolated events where a large
churn is observed [2].

We focused on changes between successive development
versions (including version 2.4, since it seems to have served,
at least in the first year, for development; see below). Changes
were quantified by looking at the number of files which were
changed (i.e. added, deleted, grown, or shrunk; Fig. 9). Similar
results were obtained for directories. The “deleted” group
are files that were removed, and “added” is the difference
between the versions plus the number deleted (thus counting
all additions to the second version). “Grown” and “shrunk”
refer to the sizes of the files. The comparison for each is
continuous, i.e. we compared minor versions within the same
major version, and also the first release of a major version
and the previous release on which it is based. Thus version
1.3.0 was compared to version 1.2.10, version 2.1.0 to 2.0.21,
version 2.3.0 to 2.2.8, and version 2.5.0 to 2.4.15. Version
2.4.0 was compared with the last 2.3 version (2.3.99-pre9),
as it emerged from that version. The last comparison in each
graph is between the last version in 2.5 (2.5.75) and the first
in 2.6 (2.6.0). The spaces between the bars are times with no
development versions.

The results indicate that the number of files changed grows
with time. But if we normalize this by the number of files in
the system, we find that the fraction of files changed appears
to be constant or maybe even slightly decreasing. Thus the rate

Files Deleted

94 95 96 97 98 99 00 01 02 03

fil
es

0
50

100
150
200
250
300
350
400
450

v1.1 v1.3 v2.1 v2.3 v2.4 v2.5

Files Shrunk

94 95 96 97 98 99 00 01 02 03

fil
es

0

500

1000

1500

2000
v1.1 v1.3 v2.1 v2.3 v2.4 v2.5

Files Grew

94 95 96 97 98 99 00 01 02 03

fil
es

0

500

1000

1500

2000

2500

3000

v1.1 v1.3 v2.1 v2.3 v2.4 v2.5

Files Added

94 95 96 97 98 99 00 01 02 03

fil
es

0

200

400

600

800

1000

1200

v1.1 v1.3 v2.1 v2.3 v2.4 v2.5

Fig. 9. Files added, deleted, grown, or shrunk among development versions.

of change is pretty constant between consecutive development
versions. These results are slightly different from those found
by Lehman [14], who claimed that the percentage of added
files tends to decline, and that the percentage of changed files
tends to grow.

The graphs include only a few discrete peaks of activity. For
example, in version 2.5 we see a large number of files deleted
around November 2002. This is the result of replacing the
configuration system in version 2.5.45: the old configuration
filesConfig.help andConfig.in were deleted in many directories
and were replaced by a singleKconfig file. We also see a
relatively large amount of directories added and deleted around
March of 2002. This is due to changes in the structure in
the arch and drivers directories at that time and also the
addition of thesound subdirectory to the kernel. Except for
these events, however, preventive maintenance as reflected
by code churn in Linux seems to be continuous rather than
concentrated in isolated events, as opposed to the finding of
Capiluppi for the ARLA system [2]. However, this may also
be interpreted as resulting from the fact that Linux is in effect
an agglomeration of numerous subsystems: it may be that
preventive maintenance is applied to subsystems in discrete
events, but this is masked by the rest of the system which is
not subject to such activity at the same time.



V. THREATS TOVALIDITY

Our analysis of the four categories of maintenance activities
is based on our dissection of the versions and directories of
Linux. This is justified by the fact that the different branches
and directories have well-defined purposes, which match our
needs. In addition, the different branches and directoriesare
indeed obviously different from each other, as reflected by
several of our measurements.

However, the question remains whether practice completely
complies with the prescriptions. Regrettably, it may be sus-
pected that in some cases, especially in the initial period of
production versions, the roles are “mixed”. The most extreme
example of such mixing occurs at the beginning of 2.4. The
last version of 2.3 was released on 24 May 2000. The first
version of 2.4 was only released on 5 January 2001, and the
first version of 2.5 only on 23 November 2001. Thus there
is a gap of some18 monthsbetween successive development
versions. However, it seems that the initial part of 2.4 served
for development (or at least reflected development activity
that was being done without officially being released in a
development version), as all our graphs indicate development-
like growth and that 2.5 branched out of 2.4. The remaining
gap between 2.3 and 2.4 may have been filled at least partially
by 2.2. Specifically, 2.2 exhibits strong growth in this period,
especially in thearch and drivers directories, which matches
the difference in size between the end of 2.3 and the beginning
of 2.4.

In addition to large-scale events like those listed above, there
have been specific instances of “feature creep” from develop-
ment to production versions. The main reason for this appears
to be the desire to reduce the delay until new functionality
becomes available in production releases — the same force
that later led to the 2.6 release scheme. An additional reason
is the contribution of reasonably stable code from third parties
[4], for example the incorporation of thexfs file system in
2.4.25 (in parallel to its addition to 2.5.36). Luckily, such
events are easy to identify as jumps in the graphs, and they
do not have a significant effect on our conclusions.

A related question is whether perfective and corrective
maintenance are completely separable activities. In this we
do not mean that there are cases when the two activities are
interleaved, e.g. when a commit includes both the correction
of a bug and an addition of a feature. Rather, we refer to
the situation surrounding a release. Fig. 10 shows the the
times at which minor releases are made within each major
version. The steeper the line, the higher the release rate [28].
Development versions exhibit a steady high rate, whereas
production versions tend to start with a similar high rate and
then taper off when the next development version is started.
The question is whether the initial phase may serve as part
of the development path, or maybe this is just continued
activity to stabilizing the code, and should therefore indeed
be considered to be corrective in nature [28].

Note that despite the possible debate regarding the nature of
production versions, this has little impact on our conclusions.

First, the roles of other parts of the code appear to be relatively
clear. And even regarding the production versions, most of
our conclusions regarding corrective maintenance refer tothe
stable period beyond the initial growth.

The main external threat to validity is that our work is
limited to Linux — both due to its unique evolution, and
due to our interpretation of the roles of different parts of the
code. Additional research is required to determine whetherour
observations generalizes to other systems as well.

VI. CONCLUSIONS ANDFUTURE WORK

The Linux kernel is one of the most successful open-
source software projects in the world. It has been maintained
continuously over the last 14 years in order to satisfy the needs
of its users. We have presented a detailed characterizationof
this process, including over 800 releases which represent new
developments, major production releases, and minor updates.
Many interesting phenomena are only seen at this fine res-
olution, and would be lost if using the traditional approach
of studying only major production releases. Our results areof
course specific to Linux, but some observations may generalize
to other software systems as well.

We exploited the branches and structure of Linux to dis-
sect different categories of maintenance activities. Looking at
development versions, we found, as expected, that Linux is
growing strongly. However, the average LOC per function is
decreasing, so the number of functions is growing faster than
the LOC. A similar pattern is seen for metrics such as MCC
and the Halstead metrics. This appears to be at least partly due
also to real improvements and preventive maintenance. As a
result, Oman’s maintainability index was generally increasing.
A special case of this is version 1.1, which had improved
significantly over time, perhaps since there was much effort
on preventive and perfective maintenance.

In the production versions the various metrics usually sta-
bilized at a constant level after a while. They typically tend
to suffer some initial degradation before stabilizing, raising
the question of whether there are distinct phases of corrective
activity: first intensive corrections needed to stabilize the code
after a major new release, and then more relaxed correction of
latent bugs that show up. We also found specific cases where
production versions include perfective maintenance and not
only corrective maintenance, contradicting our presumption.
Such cases where the different versions did not follow the
general trend were analyzed and explained in detail. These
were usually instances of adding a large module that was
developed elsewhere into the kernel.

As for the distinction between thearch anddrivers directo-
ries and the core kernel, we found thatarch anddrivers usually
displayed more persistent trends, but still had “worse” values
(e.g. higher LOC and MCC, and lower MI). Thus it seems
that these directories originally suffered from relatively poor
code, but that adaptive maintenance is improving them with
time. It remains to be seen whether they will reach or even
surpass the quality of code in the core directories.



Fig. 10. Minor number as a function of
time, such that the slope of the line indicates
the release rate.

Kernels Release Dates

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08

M
in

or
 R

el
ea

se
 S

eq
ue

nc
e 

N
um

be
r

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

v1.0

Kernels Release Dates

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

v1.1

Kernels Release Dates

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

v1.2

Kernels Release Dates

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

v1.3

Kernels Release Dates

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

v2.0

Kernels Release Dates

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150
v2.1

Kernels Release Dates

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

v2.2

Kernels Release Dates

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

v2.3

Kernels Release Dates

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

v2.4

Kernels Release Dates

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

v2.5

Kernels Release Dates

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

v2.6

Kernels Release Dates

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

11

Kernels Release Dates

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

12

Kernels Release Dates

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

13

Kernels Release Dates

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

14

Kernels Release Dates

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

15

Kernels Release Dates

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

16

Kernels Release Dates

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

17

Kernels Release Dates

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

18

Kernels Release Dates

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

19

Kernels Release Dates

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

20

Kernels Release Dates

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

21

Kernels Release Dates

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

22

Kernels Release Dates

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

23

Kernels Release Dates

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

24

Kernels Release Dates

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

25

Some of our results indicate that a globally observed behav-
ior may be attributed to a very local change in the codebase.
In particular, it may be that various subsystems, not only the
arch anddrivers directories, exhibit distinct behaviors [4]. This
suggests that in future work we should look more closely
at distinct subsystems. This is interesting in the context of
understanding the evolution of Linux [4], but is not expected to
shed light on the comparison between maintenance activities.

Another direction for future work is to try and glean the
amount of work invested in different maintenance activities.
For example, a survey of maintenance managers yielded
the result that 17.4 percent of maintenance is corrective in
nature [15], but a study that analyzed changes to source code
obtained a figure more than three times larger [23]. It would
be interesting to try to figure out proportions for Linux by
quantifying work done on different versions.

Acknowledgments

This work was supported by the Dr. Edgar Levin Endow-
ment Fund.

REFERENCES

[1] ISO/IEC 14764:2006 software engineering – software life cycle
processes – maintenance. www.iso.org/iso/isocatalogue/catalogue
tc/cataloguedetail.htm?csnumber=39064, Aug 2006.

[2] A. Capiluppi, M. Morisio, and J. F. Ramil, “Structural evolution of
an open source system: A case study”. In 12th IEEE Intl. Workshop
Program Comprehension, pp. 172–182, Jun 2004.

[3] D. G. Feitelson, T. O. S. Adeshiyan, D. Balasubramanian,Y. Etsion,
G. Madl, E. P. Osses, S. Singh, K. Suwanmongkol, M. Xia, and S.R.
Schach, “Fine-grain analysis of common coupling and its applicationto
a Linux case study”. J. Syst. & Softw.80(8), pp. 1239–1255, Aug 2007.

[4] M. W. Godfrey and Q. Tu, “Evolution in open source software: A case
study”. In 16th Intl. Conf. Softw. Maintenance, pp. 131–142, Oct 2000.

[5] M. W. Godfrey, D. Svetinovic, and Q. Tu, “Evolution, growth, and
cloning in Linux: A case study”. In CASCON workshop on Detecting
Duplicated and Near Duplicated Structures in Large Software Systems:
Methods and Applications, 2000.

[6] G. A. Hall and J. C. Munson, “Software evolution: Code delta and code
churn”. J. Syst. & Softw.54(2), pp. 111–118, Oct 2000.

[7] M. Halstead,Elements of Software Science. Elsevier Science Inc., 1977.
[8] A. Hindle, D. M. German, M. W. Godfrey, and R. C. Holt, “Automatic

classification of large changes into maintenance categories”. In 17th
IEEE Intl. Conf. Program Comprehension, pp. 30–39, May 2009.

[9] A. Israeli and D. G. Feitelson, “The Linux kernel as a case study in
software evolution”. J. Syst. & Softw.83(3), pp. 485–501, Mar 2010.

[10] S. H. Kan, Metrics and Models in Software Quality Engineering.
Addison Wesley, 2nd ed., 2004.

[11] C. F. Kemerer and S. Slaughter, “An empirical approach to studying
software evolution”. IEEE Trans. Softw. Eng.25(4), pp. 493–509,
Jul/Aug 1999.

[12] M. J. Lawrence, “An examination of evolution dynamics”. In 6th Intl.
Conf. Softw. Eng., pp. 188–196, Sep 1982.

[13] M. M. Lehman, “Programs, life cycles, and laws of software evolution”.
Proc. IEEE68(9), pp. 1060–1076, Sep 1980.

[14] M. M. Lehman, D. E. Perry, and J. F. Ramil, “Implications of evolution
metrics on software maintenance”. In 14th Intl. Conf. Softw. Mainte-
nance, pp. 208–217, Nov 1998.

[15] B. P. Lientz, E. B. Swanson, and G. E. Tompkins, “Characteristics of
application software maintenance”. Comm. ACM21(6), pp. 466–471,
Jun 1978.

[16] T. McCabe, “A complexity measure”. IEEE Trans. Softw. Eng.2(4), pp.
308–320, Dec 1976.

[17] E. Mills, Software Metrics. Tech. Rep. Curriculum Module SEI-CM-12-
1.1, Software Engineering Institute, December 1988.

[18] G. J. Myers, “An extension to the cyclomatic measure of program
complexity”. SIGPLAN Notices12(10), pp. 61–64, Oct 1977.

[19] P. Oman and J. Hagemeister, “Construction and testing of polynomials
predicting software maintainability”. J. Syst. & Softw.24(3), pp. 251–
266, Mar 1994.

[20] D. L. Parnas, “Software aging”. In 16th Intl. Conf. Softw. Eng., pp.
279–287, May 1994.

[21] D. A. Rusling, “The Linux kernel”. URL tldp.org/LDP/tlk/.
[22] S. R. Schach, B. Jin, D. R. Wright, G. Z. Heller, and A. J. Offutt,

“Maintainability of the Linux kernel”. IEE Proc.-Softw.149(2), pp. 18–
23, 2002.

[23] S. R. Schach, B. Jin, L. Yu, G. Z. Heller, and J. Offutt, “Determining
the distribution of maintenance categories: Survey versusmeasurement”.
Empirical Softw. Eng.8(4), pp. 351–365, Dec 2003.

[24] M. Shepperd, “A critique of cyclomatic complexity as a software metric”.
Software Engineering J.3(2), pp. 30–36, Mar 1988.

[25] M. Shepperd and D. C. Ince, “A critique of three metrics”. J. Syst. &
Softw.26(3), pp. 197–210, Sep 1994.

[26] E. B. Swanson, “The dimensions of maintenance”. In 2nd Intl. Conf.
Softw. Eng., pp. 492–497, Oct 1976.

[27] L. Thomas,An Analysis of Software Quality and Maintainability Metrics
with an Application to a Longitudinal Study of the Linux Kernel. Ph.D.
thesis, Vanderbilt University, 2008.

[28] L. G. Thomas, S. R. Schach, G. Z. Heller, and J. Offutt, “Impact
of release intervals on empirical research into software evolution, with
applications to the maintainability of Linux”. IET Softw.3(1), pp. 58–
66, Feb 2008.

[29] E. VanDoren,Maintainability Index Technique for Measuring Program
Maintainability. Tech. rep., Software Engineering Institute, Mar 2002.

[30] E. J. Weyuker, “Evaluating software complexity measures”. IEEE Trans.
Softw. Eng.14(9), pp. 1357–1365, Sep 1988.

[31] L. Yu, S. R. Schach, K. Chen, and J. Offutt, “Categorization of common
coupling and its application to the maintainability of the Linux kernel”.
IEEE Trans. Softw. Eng.30(10), pp. 694–706, Oct 2004.


