Characterizing Software Maintenance Categories
Using the Linux Kernel

Ayelet Israeli

Dror G. Feitelson

Department of Computer Science
The Hebrew University, 91904 Jerusalem, Israel

Abstract—Software maintenance involves different categories arch and drivers directories to reflect adaptive maintenance

of activities: corrective, adaptive, perfective, and preentive.
However, research regarding these distinct activities is éimpered
by lack of empirical data that is labeled to identify the type of
maintenance being performed. A promising dataset is providd
by the more than 800 releases of the Linux kernel that have bee
made since 1994. The Linux release scheme differentiatestiveen
development versions (which may be expected to undergo ped-
tive maintenance) and production versions (probably domiated
by corrective maintenance). The structure of the codebaselso
distinguishes code involved in handling different architetures
and devices (where additions reflect adaptive maintenancdjom
the core of the system’s kernel. Assuming that these disséms of
the codebase indeed reflect different types of activity, weainon-
strate that corrective maintenance does not necessarily de to
code deterioration, that adaptive maintenance may improvesome
quality metrics, and that growth is largely the result of cortinued
development as part of perfective maintenance.

Index Terms—Perfective maintenance, Corrective mainte-
nance, Adaptive maintenance, Linux kernel

I. INTRODUCTION

(these mappings are explained in more detail below).

Thus, assuming one accepts this dissection of the code, we
can empirically characterize different types of maintergan
activities, and how they affect the body of software being
maintained. At the same time, we also note that the disgectio
cannot be pure, and sometimes one observes different types o
activity applied to the same version of the code. Nevertisle
the maintenance activities observed on different partshef t
code do indeed appear to be different in general, suggesting
that the dissection is robust enough to make general observa
tions about different maintenance activities.

Our results are naturally limited to these dissections of
the versions and code, and may not generalize to other
systems. However, Linux has served as a source of data for
multiple studies of software development, and is undoupted
interesting and important enough to be used as a case study.
Our results may also generalize to other open and even closed
source projects, but verifying this requires additionaldst

The organization of this paper is as follows. The next

growing recognition. To quote Parnas, “A sign that the Soffing how we relate them to the Linux kernel, as well as our
ware Engineering profession has matured will be that we |0ﬁﬁathodo|ogy. Section Ill presents our measurements of how
our preoccupation with the first release and focus on the lopggde metrics change with releases of the Linux kernel. This
term health of our products” [20]. The Linux kernel providegs then interpreted with regard to maintenance activities i
a large-scale example of software maintendntiewas first section IV. Section V presents threats to validity, and Bect
released in March 1994, and more than 800 releases have bgeRoncludes and suggests future work.

made since then in multiple branches. Moreover, Linux isope

source, and all the code of all the releases is freely aJailab I
on the Internet (fromwww.kernel.org and numerous mirrors). A. The Linux Kernel
This makes it suitable for a study of software maintenance atThe Linux operating system kernel was originally an-

a scale and level of detail that has not been done before. gynced on the Internet in August 1991. There follovedd
Software maintenance activities are commonly classifig@ars of development by a growing community or developers,
into four categories: corrective, adaptive, perfectived @re- and the first production version was released in March 1994.
ventive [26], [1]. To study these different activities, omeist A 3.digit system was used to identify releases. The firstés th
be able to classify commits of maintained code [8]. As amaltegeneration, which changed from 1 to 2 in 1996. The second
native, we make the observation that the first three categorjs the major kernel version number. Importantly, a distot
map naturally to different parts of the cumulative Linux eodywas made between even major numbers (1.0, 1.2, 2.0, 2.2,
releases, based on the Linux release scheme. In partiadar,and 2.4) which represent stable production versions, aud od
expect development versions to reflect perfective maime®ia major numbers (1.1, 1.3, 2.1, 2.3, and 2.5) which are devel-
production versions to reflect corrective maintenance,thed gpment versions used to test new features and drivers gadin
up to the next stable version. The third digit is the minor
kernel version number. Releases with new minor numbers
of production versions supposedly included only bug fixes
and security patches, whereas new releases of development

BACKGROUND

1At better term for at least part of this activity is “softwageolution”, but
in this paper we use “maintenance” in accordance with thencomusage in
the literature to describe the categorization of mainteaatctivities described
below.

versions included new (but not fully tested) functionalityook for isolated events in which many files are partitioned,
Importantly, several versions (one development and one removed, or moved, again mainly in development kernels.
more production) may be “current” at the same time.

The problem with this scheme was the long lag time unf- Software Metrics
new functionality (and new drivers) were released, as tis W Qur goal is to characterize the effect of maintenance on
supposed to happened only on the next major version releage. codebase of a large project. Therefore we need to be
The scheme was therefore changed with the 2.6 kerneldple to quantify various size and structure attributes @f th
December 2003. Initially, releases were simply managed at@de. We use the most common metrics, which are available
relatively high rate. Then, with version 2.6.11, a fourtmmher in practically all CASE tools [10], [17]:
was added.The Fh|rd number now indicates new.rel_eases W|tI1) Lines of code (LOC), including its related variants:
added functionality, whereas the fourth number indicateg b comment lines and total lines.

fixes a“O.' security patches.) . 2) Number of modules, as expressed by the number of
The Linux kernel sources are arranged in several major ~ icactories. files. and functions

subdirectories [21]. Two notable ones for our purposestae t 3) McCabe’s cyclomatic complexity (MCC), which is
arch anddrivers directories. These are practically external to equivalent to the number of conditional brarllches in each
the core of the kernel, and each specific kernel configuration ¢, on plus 1 [16], and its extended version (EMCC)

gfses only a small portion of these ?l;‘ectorcljes. I:lqulevesahe where one counts the actual conditions and not only the
irectories constitute a major part of the code, which groats conditional statements [18].

only due to improvements and addition of features, but also4 Metrics defined as part of Halstead's software science
due to the need to support additional processors and devices [7]. The building blocks used are the total number of
B. Categories of Software Maintenance operatorsN; and the number of unique operators,

“Maintenance” is used to describe whatever happens to as we!l ashthe tc:all opec;a(;]a;:séz an unique operands
a software product after the first release. According to the "2- USINg them, Halstead define

literature at least 50% of the effort invested in softwareg a The volumeHV = (N1 + N3)lg, (n1 + n2), i.e. the

perhaps 80% or even more, is dedicated to maintenance [15], total number of bits nec;\tfjed to write the program.
[11], [13]. Maintenance is classified into four categori2g]| The difficulty HD = o2

Correc?tive: corre_ction of discove_red probl_ems (fixing bugs). The effort HE — HV-HDT:LgsimpIy the product of the
Adaptive: adapting to changes in the environment. amount of code and the difficulty of producing it.

Perfective:improving performance or maintainability. In cases when the metrics are undefined (e.g. for an

Preventive:detection and correction of latent faults before empty functionn, = ny = 0) they were taken as O.
they becomg effective faults. L) This happened in around 1% of the functions.

The term “maintenance” by nature implies a preservationsy oman’s maintainability index (MI) [19], [29], which is

of the existing. However, software often undergoes further * 5 composite metric that attempts to fit empirical data

development after being released. To accommodate this, the om several software projects. Its definition is

addition of new features is usually included as part of per-

fective maintenance (albeit some authors suggest a separat MI=171—-5.2In(HV) - 0.23MCC
category of feature addition [8]). Preventive maintenarsce —16.2In(LOC) + 50sin(v/2.46pCM)

also sometimes bundled together with perfective mainteman _
Our goal is to use the versions of the Linux kernel to char- ~ Where X' denotes the average df over all modules,
acterize these four categories of maintenance. Based on the and pCM is the percentage of comment lines. However,

structure of Linux releases, we expect corrective mairteaa following Thomas [27], we interpret pCM as a fraction
to be reflected in successive minor releases of production (0 to 1) rather than a percentage (0 to 100) so that
versions (and 4th digit releases of 2.6). Perfective maanee, v/2.46pC'M has the range of 0 to approximately

on the other hand, especially as it pertains to the addition o 6) Files and directories handled (added/deleted/modified)
new features, is expected to be reflected in successive minof) The rate of releasing new versions.
releases of development kernels (and 3rd digit releases ofVe acknowledge that practically all of these code metrics
2.6). Adaptive maintenance is also reflected in developmdrave been challenged on both theoretical and experimental
versions, but specifically in therch and drivers directories, grounds [24], [30], [25], [6]. We nevertheless use them for
as this is the locus for code that handles interaction with titwo reasons. First, there are no metrics that are univgrsall
environment — where we use the interpretation that thigsefeaccepted, so we opt for those that have been used the most and
to the hardware environment, rather than to the users. over the longest period, despite their shortcomings. S&con
The identification of preventive maintenance is harder. Waost objections relate to the actual values that the metrics
assume that preventive maintenance is related to code rexmsign to code. We are not interested so much in the values,
ganization, and can therefore be identified, for example, but with how they change with time. By using a wide variety
changes in the number of directories [2]. We will thereforef metrics, which have all been used in empirical studies by

other researchers and are widely available in CASE tools, @wamnaintainer must consider all the different possible cdapi
hope to overcome their individual disadvantages and to ke abons, not just one of them. On the other hand, a maintairrer (o
to see the general picture. developer) can benefit from the cognitive simplificationatth

A notable omission from the above list is common couplingglome from using macros, especially when the final expanded
which has been used to assess the Linux code in sevae@de is very complex. Therefore we need to analyze the code
previous studies [22], [31], [27], [3]. However, all thogadies in its raw form, without pre-processing. In this we diffeorn
neglected to fully follow inter-procedural pointer denefieces, Thomas [27], who used a CASE tool which requires pre-
and thus potentially miss many instances of coupling. Awocessing, and thus only files and code sections in the pre-
this is an extremely difficult issue, we leave its resolution processed configuration were examined.
separate future work. The major problem with not performing pre-processing is

In plotting metric results, we use a simple visual inspectidhat the resulting code is not always legal. For examplena-fu
to comment on observed patterns. The alternative is to U may have different signatures in different configurai
statistical tests, as was done for example by Lawrence [12pd this can be expressed usitifef and #else. With pre-
However, the results of such statistical tests depend oteite processing, the compiler will only see the correct definitio
used, and on the precise metrics used — both of which aach time. But if we delete the pre-processing directives in
open to controversy. In addition we note that in many cases tbrder to analyze all the code, we will get two contradicting
overall observed behavior is erratic, sometimes inclutinge definitions of the same function, sharing the same function
discrete jumps. We therefore limit most of the conclusians body. This tends to break CASE tools that measure various

strong effects that are self-evident from the data. code metrics. We therefore developed our own tool, thatdcoul
handle nearly all of the codebase. Overall, less than 1.5% of
D. Methodology the source files were found to be so problematic that we had

)) to remove them from the analysis.
We examinedall the Linux releases from March 1994 t0 \yie ran our tool on all the: and.h files of all the versions. In

August 2008. There are 810 releases in total (we only considgqer to aggregate the metrics at the kernel level, we used th
full releases, and ignore interim patches that were populdime approach used in other studies (such as Thomas [27]) and
mainly in 1.x versions). This includes 144 production vensi, 55 explained in the original metrics definitions. For exampl
429 development versions, and 237 versions of 2.6 (Up !¢, MccC, and EMCC are simply summed across all files
release 2.6.25.11). This represents a significant extrefio (note that files with no functions, such as some header files,
previous characterizations of Linux, such as the work gfii have an MCC of 0, because MCC is a function level
Godfrey qnd Tu [4] (their last versions were 2.2.14 and 2-3-3metric). In order to compare the different versions, destfie
released in January 2000, and even before that they used Qiition of new files or functions, we will sometimes look
a sample of releases). at the average metric values of the files and functions of the
We examined thentire source code of the Linux Kernel, kerne| rather than at the aggregate values. The same is true
including both.h and c files. In this we follow Godfrey and for the function-level Halstead metrics. Oman’s Ml is define
Tu [4] and Thomas [27], as opposed to Schach et al. [22] whg the file level. Since it has a 100-point scale we cannot

only included thec files. Given that we are interested in COd%lggregate the values. Instead, we will use only the average
maintenance rather than in execution, we take the developgryalues across all the files in the kernel.

point of view and consider the full code base. Schach et al.

[22] consider.ed only the&ernel sub(_jirectory, that contains but I1l. M EASUREMENTS OF THEL INUX

a small fraction of the most basic code. Thomas [27] spent K ERNEL

much effort on defining a consistent configuration that spans .)

versions 2.0 to 2.4, thus excluding much of the code (mainIy'” this section we present the results of the code measure-

spanning the full duration from 1.0 to 2.6. We ignore makefil®f maintenance categories. To observe the changes in metric

and configuration files, as was done by others. values from one version to the next, we typically graph the
In order to analyze our full dataset, we considered using@Sults for all 810 versions, distinguishing between gien

commercial CASE tool, but in the end developed a tool of o@nddrivers directories and the core of the kernel. TReaxis

own. The main problem with the CASE tools was handlintj these graphs represents the release date [28], and we make

conditional compilation. Linux is littered with pre-pragsor & distinction between the development versions (1.1, 11, 2

directives (such asifdef) that cause specific compilations to?-3 @nd 2.5), the production versions (1.0, 1.2, 2.0, 208, a

include or exclude certain blocks of code. In addition, ¢he-4), and the 2.6 series.

are macros such agdefine MAX(X,Y) (X>Y)?X:Y. If one is

interested in the behavior of the code as it runs, all these h

to be processed before the analysis starts. The size of a software system may be measured in different
In our work, however, we are interested in how the code vgays. For brevity, we’ll focus on lines of code (LOC), and

viewed by the maintainer. In case of conditional compilatio specifically non-comment non-blank lines of code. The tesul

&\ Total and Average Size

2e+006
1.8e+006 -
1.6e+006 |
1.4e+006 -
1.2e+006 |
1e+006
800000 |
600000
400000 -
200000

0

4e+006

3.5e+006 |
3e+006
2.5e+006 -
2e+006
1.5e+006
1e+006 |

500000

0 *’\ﬁ“flmjz

LOC - Other Directories

v13_

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08

LOC - Arch and Drivers Directories

V21 A

VL3, gl e v2.0

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08

Fig. 1. Evolution of LOC in Linux.

jumps are actually unrelated.

It is also worthwhile to notice the smaller jumps in 2.2
(mainly 2.2.18). These increases are due to many individual
changes, including improved USB support and the addition of
network drivers. Note that these features were added to 2.2
despite the fact that it is a production version.

Next, we calculated average LOC at the file and the function
level. The most obvious observation regarding the average
size of files (Fig. 2) is that they are somewhat volatile
and relatively large in tharch and drivers directories, but
much smaller and more stable in the other directories. Also,
within the arch and drivers directories production versions
tend to have higher values. This is due to a combination
of initial growth in these directories, which is larger than
contemporary development versions, and stability whilke th
values for subsequent development versions decline. Ttie en
result is that thearch and drivers directories in the 2.0, 2.2,
and 2.4 production versions have the highest average fis.siz

The LOC per function data (Fig. 3) presents a slightly
different picture. The average sizes of functions are simil
in all directories, but with some fluctuations and jumps. And
there is a distinctive downwards trend in 2.6, indicatingtth
the number of functions (but not files) is growing faster than

the LOC. There are also a couple of interesting singulatitie

especially in the “core” directories. One is the significdrdp
are shown in Fig. 1. Very similar results are obtained for the LOC per function in version 1.1. Another is the big jump
number of files or functions, or the Halstead volume. in version 2.2.16. This is en example of the effect of oustier

Obviously, Linux has grown considerably since its first reit was caused by the addition of only 4 files with 7 functions
lease. Most of the growth occurs in the development versiorgch to thes directory — but with total of over 54,000 LOC.
whereas the production versions are usually stable, exfoept
some increase at the beginning. This is especially notieeaB- Complexity and Maintainability
in 2.4, which continues to grow till 2.6 is released, indicgt ~ McCabe's Cyclomatic Complexity (MCC) quantifies com-
that much code was added. The 2.6 series demonstratgslexity as the number of linearly independent paths in the
combination of the development and production versionstogram’s control flow graph. We also examined the EMCC
for each minor version (third digit) the size is constant g&xtended MCC) and Halstead effort, but the results were
in production versions, but it grows between them as uualitatively very similar to those of the MCC, so we do not
development versions. discuss them. Our results (Fig. 4) show that MCC grows with

An interesting observation is that the pattern of growttim t time, and moreover that the pattern of growth is very similar
arch anddrivers directories can be different from the rest of theo that of LOC. This matches previous results that noted the
kernel, especially in select points [4]. For example, \ar€2.5 general correlation of MCC with LOC [24].
exhibits two large “jumps” in the core directories, only cofe Next, we looked at the average MCC per function, since
which exists inarch anddrivers, where it is much smaller. The MCC was originally proposed as a metric for independent code
first of these jumps is explained by the addition of #eend units. The results (Fig. 5) indicate a pronounced decrease o
subdirectory. In previous versions there was a much smaltene, especially in the core directories of early developtme
sound directory undeurivers, but generally the sound projectversions and in therch and drivers directories of all devel-
was developed separately. In 2.5.5 a reawnd directory was opment versions and 2.6. This gives the impression that with
created at the top level, and threlude directory was updated time the average complexity of the functions is decreasing,
with header files and also grew. Thiivers directory lost and thus maybe the quality of the kernel is improving — in
the old sound directory, but it did not shrink because othetontrast to other results using different metrics (but ajsite
unrelated additions were made. different methodology) [22], [28].

The second jump is actually a combination of two effects. This conclusion remains also after a more extensive arglysi
One is in thearch anddrivers directories, where improvementsof the whole distribution of MCC values of all functions,
and developments of therch/um directory were made in and how the distribution changes with time [9]. Howevers thi
version 2.5.35. In the consecutive version (2.5.36) a nea filloesn't say whether the improvement is in existing funcion
system support (xfs) was added, generating an increase in {ivhich can be interpreted as preventive maintenance) glgim
core kernel number of files. Thus the two seemingly corrdlatthat new functions that are added have lower complexity.

550 - LOC per File

450 - ‘/W
4001 //‘,1\& vi2
Lo

250

H’ES V261118415 17152055925

2001 oy oo g VORISR0 pmasngs
1sp | RSO AR T g

100 -

50 4

Fig. 2. The average LOC per file. 0 T T T T T T T T T T T T ' '
94 95 96 97 98 99 00 0L 02 03 04 05 06 07 08

45 - LOC per Func — Other Directories 220000 McCabe Cyclomatic Complexity — Other Directories
| 228

209000 -)
189000 -
169000 | 1112
149000 -
129000 -
109000 -

89000 | p—— v2.4
V3% 1152151718 69000 -|

49000
192,
%25 29000 - Vi3,

1
o goo0 kA
94 95 96 97 98 99 00 Ol 02 03 04 05 06 07 08 94 95 96 97 98 99 00 O1 02 03 04 05 06 07 08

45- LOC per Func — Arch and Drivers Directories 5l)g()(;\(/)ltﬁ:Cabe Cyclomatic Complexity — Arch and Drivers Directoriezs .
| 223
459000 é%g

409000 - a7 g
359000 et w24
309000 - ps

259000 | /

209000 - w3
s 159000 - g
1921_517 16 109000 -

1 59000 -
%232&5 vi.1l

9000 ‘w2
94 95 96 97 98 99 00 01 02 03 04 05 06 07 08

30

94 95 96 97 98 99 00 O1 02 03 04 05 06 07 08

Fig. 3. The average LOC per function. Fig. 4. Total McCabe'’s cyclomatic complexity (MCC).

We examined this directly by looking at the new files thaf version 1.1, and then a general decreasing trend (to droun
are added each year separately from the older files (Fig. 89%), where again the production version's values are more
focusing on development versions. This shows that new filg@nstant and higher. The trend in the core kernel directorie
have a decidedly lower complexity in thech and drivers is also a big increase in 1.1, but then it stays relatively, flat
directories, and most of the time also in the core direcsorie€Xcept for big jumps in 2.2 (upwards) and 2.5 (downwards).
Moving to maintainabi"ty' the percentage of comment lines Each of the previous metrics has a fO”OWing of researchers
gives some perspective on the relation between total ||nW§]O believe in it, while others criticize its deficienciesn@n’s
and those that actually contain code (Fig. 7). On averalyt@intainability Index (/I) is an attempt to pool them to-
comments comprise around 25% (Similar to the results 8€ther in a way that matches empirical data. Its value is on a
Godfrey and Tu who found that the percentage of commerg@ale from 25 to 125, where low values correspond to lower
and blank lines is almost constant at between 28-30% [4paintainability and high values to higher maintainability
with a general decreasing trend, and slightly higher valnes As M1 is measured per module (or in our case, function),
production kernels. Dissecting this behavior we find thahi the data used is average LOC, MCC, and HV per function.
arch anddrivers directories there is a big increase in commentss we saw above, these tend to decrease with time, thus

AMg. McCabe Cyclomatic Complexity per func — Other Directories 03 Ratio of Comments i:n Code - Other Igirectories

e V2
0 ; e T V2.4
5.5 e N25---v2.0
v o T B X AT
Ao | V361132
{ 0.25 vl-l»ﬁ"jlt_f W U5, aoeni®ts
451
?1/28'4 V1.0
“222%45
35 T T T T T T T T T T T T T T 0.2 T T T T T T T T T T T T T T
94 95 96 97 98 99 00 OL 02 03 04 05 06 07 08 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
Avg. McCabe Cyclomatic Complexity per func - Arch and Drivers Directories 0.3 Ratio of Comments in Code - Arch and Drivers Directories
ViR-v12
1.0
61 W e V2.0
0.25
5
4 0.2

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08

Fig. 5. Average MCC per function. Fig. 7. Percentage of comment lines.
7- Avg. MCC per Function - New VS Old Files — Other Directories 120 - Oman’s Maintainabilty Index — Other Directories
* old files
6.5 4 * allfiles 5
* new files
1151
Vil x:;éé B it
KV,
1101
‘ ., 105
35 * . . - V1.0
< Y
95 9 97 98 99 00 Ol 02 03 04 05 06 07 08 100

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
7. Avg. MCC per Function - New VS Old Files — Arch and Drivers Directories

2 o fles 1150man’s Maintainability Index — Arch and Drivers Directories
* new files
P85
1789
55 . V11445
- N e 3 _ v2.5
] S . R IM/J ,,,,,,,,,,,,,,,,,,,,,,,,, w24
45 AN 1101 523
) 0 | TR W
1 S e \V&\ﬂ et v2.2
. V1.2

95 96 97 98 99 00 01 02 03 04 05 06 07 08

105

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08
Fig. 6. Average MCC per function in new and old files each year.

Fig. 8. Oman’s maintainability index.

contributing to a higherMI. The percentage of comment

lines, however, has a slight downwards tendency. Howewer o the core directories. Subsequent slower improvements ap

change is small, so we do not expect it to have a large negatigar more in tharch anddrivers directories. The lower values

effect. Indeed the general result is a slight increasingdtief attributed to production versions are also due to these two

M1, as shown in Fig. 8. directories. Another interesting point is that since thaliy
Dissecting the general results according to directories, walues for the core kernel directories are typically betitem

observe the sharp initial improvementin 1.1 which is corfinghose ofarch anddrivers (i.e. less LOC, lower values for HV

and MCC, and slightly more comments), we also see that tBe Perfective Maintenance
M7 for these directories is higher — meaning that the core
has “better quality” thararch anddrivers. However,arch and
drivers are showing a larger improvement with time.

We analyze perfective maintenance as reflected in succes-

sive versions of development kernels, since according ¢o th

structure of the Linux versions, the main motivation for new
IV. ANALYSIS OF MAINTENANCE ACTIVITIES development versions is to improve and add functionality.

We now use the above results to reflect on the four Our results show that the different metrics for successive
categories of maintenance activities: corrective, péiflec versions in development kernels usually change more than fo
adaptive, and preventive. production kernels, with strong growth when the full kernel
is considered. However, this is not always the case when only

o i)) the core kernel is considered. Also, average values display
As indicated previously, we analyze corrective mainteRang,nsiderable volatility.

as reflected in successive versions of production kernelsOn one hand,
since changes in successive versions of production keanels «
usually corrective, due to the structure of the releasesnot.
As we have seen in the results, for each of the differe
metrics calculated — number of files, number of function
LOC, MCC, Halstead’s metrics, and Oman’s maintainabili

A. Corrective Maintenance

it seems like less work is being done to
maintain” the code in development kernels. For example, th
ratio of comments tends to be slightly lower for development
Dersions relative to production versions. On the other hand
When comparing metrics such as average MCC per function,
: i) . Bhe values for development kernels are lower and exhibit a
index N the metric val_ue_s for the production versions ar(?ecreasing trend. As a consequence, the Ml is higher for the
essentially constant. This is seen in 1.2, 2.0, 2.2, andahd, development kernels, possibly indicating that the funtion

alsl—?olvr\]/e?/?e(;htr?; trzzt?(;r:/c;rll}/(aesrsilrlonfozzagn kernels do Chandevelopment kernels are on average less complex and more
' P intainable than in production kernels.

in two cases. One is the large “jumps” seen in versions 2.2 an : . . .
: . ; : he trend of improved average metrics over time in de-
2.4. These are explained by changes in functionality, where

A . : : . velopment kernels has two possible interpretations: etfte
significant new functionality was propagated into a proaurct . : L o
. :)) : . .~ code in development versions is indeed being improved, or
version, but without calling this a new major version. Thémma

examples are the improved USB support and additional &ivgrlse many small files and functions are simply being added

that were added to the 2.2.18 kernel, and the introduction g’\t;earahlgshiaiﬁtii :E:n dg:ieracl))\lleergi“ref:?ig]r?le())(g)rl rgerso:;{;,c:nzzi the
the xfs file system to the 2.4.25 kernel. Thus these jum 9)

; : . . RRat both effects indeed occur. For example, by considering
testify that the assumption that production versions rege .
onlv corrective maintenance is not alwavs correct. They A&V functions separately from older ones, we showed that
y . . . ys ' Y cEl(ﬁ)e new functions added each year had better metric values.
not contradict the finding that corrective maintenance ooz Likewise, we have seen specific examples of improvements to
induce large changes to metric values. code complexity and structure of functions with high MCC

The other metric change observed in production versions 1S : -
g P values [9]. Moreover, these improvements were limited ® th

that both size and complexity metrics tend to grow initiall)éI . . - .
L evelopment versions. Thus we indeed have preliminary evi-
and only then become constant. This initial growth may seein

N . ! . dence for activity that improves code structure in develepm
to indicate that corrective maintenance — and specificakdy t X CLT .
- . . . versions. This is discussed further below when we deal with
combination of extensive testing and attempting to resgond

. . . eventive maintenance.
user bug reports regarding new production versions — teny$

to add code and complexity to the existing structure, withou Another aspect of perfective maintenance is the quest to

a commensurate investment in restructuring and refaa‘:);orirJ1mpr0Ve maintainability. Such activity may be expecteckiad

However, it may also be just another case of creeping functiotod"j_ln |tmpr:)hvetment in Coldi quahty ”_‘el”'cs' ;ths con5|der5:t| b
ality updates, especially considering that most of the ¢ino n |ca.eﬁ a .}’_ers"t)F‘ =~ 1S spei[qat,has der.e tsheeims o be
often occurs in therch anddrivers directories. Note also that ESPECIa!ly signiticant improvement in the code In that versi

e fraction of comments grew, and all the complexity metric

the average size and complexity per function do not grow,)
indicating that the overall growth is a result of added fiorcs (C?C’ Halstead) _decregsed considerably. Or_1e may therefore
conjecture that this version saw much perfective mainteaan

and not changes to existing code. Resolving this will rezjair being the first . frep L ¢ devel ‘1
detailed analysis of the actual modifications done in thigaini €ing the Tirst version aftek; years of development irom
the initial announcement in August 1991 to the first release

part of production versions. . o . : . .
One can thus tentatively conclude that corrective mainﬂé‘-'vl""rch 1994. Verifying this conjecture will require ddéal

nance does not have a strong effect on the different kindsﬁﬁrminy of Fhe code to assess the reasons for the improemen
metrics. If at all, there may be a mild degradation initiall)}n the metric values.

but then the values of the metrics are constant. We can a
state that corrective maintenance is much less frequent th
the others, as the releases of production versions are muckiVe analyze adaptive maintenance as reflected inatbie

less frequent. This may have implications regarding thal tonddrivers directories (especially in the development kernels),
effort invested in corrective maintenance [15], [23]. since they best reflect the adaptation to changes in the envi-

0 . .
. Adaptive Maintenance

ronment — the addition of new architectures and new devices 1200 - Files Added

that need to be supported. _ _ 10001111 s lven 23
As we have seen above, tleech and drivers directories 2 800 1 | ‘ ‘ |
usually have the same trends as the rest of the kernel, glthou = 5 !

many times with higher magnitude (for example, the LOC in 200! " 3
thearch anddrivers directories is higher and grows faster than e

i
1
sl L thwm$

in other directories — possibly due to significant code algni Momomoeo s m

[5]). However, there are differences. For example, the ghan 450 - | ‘ ‘ Files Deleted

in LOC and number of files in 2.5 are more noticeable in the 30071 vi1 ‘viz |ve1 23 vealves
core kernel, whereas in 2.2 they are more noticeable in the 337 | ‘ ‘ ‘ P
arch anddrivers directories. =01

When looking at average LOC and MCC (and other metrics) 201! 3 3 o bl w‘
per function, the observed trends are quite different in the gy or ey T A
different directories: in thearch and drivers directories they
exhibit a steady decline throughout the development vessio so000 - | | L
whereas in other directories the values are more volatile or 25007 ivi1 ivi3 (w1 V23 w24 ives
constant. This seems to indicate that adaptive maintenances’eo | | ‘ ‘ j P
as reflected in therch and drivers directories, leads to an 1000 | ‘ 1 §
improvement in code quality. S e it i, bl
9 00

R X - i . i 0 y l\l‘l n\HHw
An especially interesting observation is the apparent in- 94 95 9 97 98 9
teraction between adaptive and corrective maintenance. In

Files Grew

. . . . Files Shrunk
practically all the average metrics, the production versio]! ! ! ! P
have consistently higher values than contemporary develop .., |i"** **° ¥2* V28 vaaves
ment versions when only tharch anddrivers directories are émoo,
considered. This leads to somewhat lowétd values for the 500 | : : 3
production versions, as seen in Fig. 8. 0 debotebsntem bbbl im\.\mw

94 95 96 97 98 99 00
D. Preventive maintenance

Preventive maintenance is conjectured to be related to cdde 9 Files added, deleted, grown, or shrunk among developmesions.
churn [6], that is the partitioning, moving, or deletion afde.
In particular, we can look for isolated events where a large
churn is observed [2]. i)

We focused on changes between successive developn?érﬁhange IS pretty constant bgtween_consecutlve developme
versions (including version 2.4, since it seems to haveeskry VErsions. These results are slightly different from thazenti

at least in the first year, for development; see below). Cban{y Lehman [14], yvho claimed that the percentage of add_ed
were quantified by looking at the number of files which wer les tends to decline, and that the percentage of changed file

changed (i.e. added, deleted, grown, or shrunk; Fig. 9)il&im tends to grow.
results were obtained for directories. The “deleted” group The graphs include only a few discrete peaks of activity. For
are files that were removed, and “added” is the differenexample, in version 2.5 we see a large number of files deleted
between the versions plus the number deleted (thus countaxgund November 2002. This is the result of replacing the
all additions to the second version). “Grown” and “shrunktonfiguration system in version 2.5.45: the old configuratio
refer to the sizes of the files. The comparison for each fides Config.help andConfig.in were deleted in many directories
continuous, i.e. we compared minor versions within the saraad were replaced by a singkonfig file. We also see a
major version, and also the first release of a major versioglatively large amount of directories added and deletedraa
and the previous release on which it is based. Thus versigiarch of 2002. This is due to changes in the structure in
1.3.0 was compared to version 1.2.10, version 2.1.0 to 2,0.2he arch and drivers directories at that time and also the
version 2.3.0 to 2.2.8, and version 2.5.0 to 2.4.15. Versiaudition of thesound subdirectory to the kernel. Except for
2.4.0 was compared with the last 2.3 version (2.3.99-prethese events, however, preventive maintenance as reflected
as it emerged from that version. The last comparison in edsi code churn in Linux seems to be continuous rather than
graph is between the last version in 2.5 (2.5.75) and the firgincentrated in isolated events, as opposed to the finding of
in 2.6 (2.6.0). The spaces between the bars are times with @apiluppi for the ARLA system [2]. However, this may also
development versions. be interpreted as resulting from the fact that Linux is ireeff
The results indicate that the number of files changed groas agglomeration of numerous subsystems: it may be that
with time. But if we normalize this by the number of files inpreventive maintenance is applied to subsystems in descret
the system, we find that the fraction of files changed appeanssents, but this is masked by the rest of the system which is
to be constant or maybe even slightly decreasing. Thus the maot subject to such activity at the same time.

V. THREATS TOVALIDITY First, the roles of other parts of the code appear to be velsti
clear. And even regarding the production versions, most of

~ Our analysis of the four categories of maintenance a@witi,,r conclusions regarding corrective maintenance reféneo
is based on our dissection of the versions and directories Qf e period beyond the initial growth.

Linux. This is justified by the fact that the different braesh 110 'main external threat to validity is that our work is
and directories have well-defined purposes, which match qifited to Linux — both due to its unique evolution, and
needs. In addition, the different branches and directares due to our interpretation of the roles of different parts lof t

indeed obviously different from each other, as reflected Ry,ye additional research is required to determine whedber

several of our measurements. _ observations generalizes to other systems as well.
However, the question remains whether practice completely

complies with the prescriptions. Regrettably, it may be-sus
pected that in some cases, especially in the initial period o
production versions, the roles are “mixed”. The most exeem The Linux kernel is one of the most successful open-
example of such mixing occurs at the beginning of 2.4. Treource software projects in the world. It has been maintaine
last version of 2.3 was released on 24 May 2000. The firsbntinuously over the last 14 years in order to satisfy tredse
version of 2.4 was only released on 5 January 2001, and thfeits users. We have presented a detailed characterization
first version of 2.5 only on 23 November 2001. Thus themhis process, including over 800 releases which represamt n
is a gap of somé8 monthshetween successive developmerdevelopments, major production releases, and minor update
versions. However, it seems that the initial part of 2.4 edrv Many interesting phenomena are only seen at this fine res-
for development (or at least reflected development activityution, and would be lost if using the traditional approach
that was being done without officially being released in af studying only major production releases. Our resultscdire
development version), as all our graphs indicate developmecourse specific to Linux, but some observations may gezerali
like growth and that 2.5 branched out of 2.4. The remainirtg other software systems as well.
gap between 2.3 and 2.4 may have been filled at least partiallywe exploited the branches and structure of Linux to dis-
by 2.2. Specifically, 2.2 exhibits strong growth in this peli sect different categories of maintenance activities. lioglat
especially in thearch anddrivers directories, which matches development versions, we found, as expected, that Linux is
the difference in size between the end of 2.3 and the beginnigrowing strongly. However, the average LOC per function is
of 2.4. decreasing, so the number of functions is growing fastem tha
In addition to large-scale events like those listed abdwerg the LOC. A similar pattern is seen for metrics such as MCC
have been specific instances of “feature creep” from develand the Halstead metrics. This appears to be at least partly d
ment to production versions. The main reason for this ajgpeatso to real improvements and preventive maintenance. As a
to be the desire to reduce the delay until new functionalitgsult, Oman’s maintainability index was generally inciag.
becomes available in production releases — the same foAcespecial case of this is version 1.1, which had improved
that later led to the 2.6 release scheme. An additional reasignificantly over time, perhaps since there was much effort
is the contribution of reasonably stable code from thirdipar on preventive and perfective maintenance.
[4], for example the incorporation of thefs file system in In the production versions the various metrics usually sta-
2.4.25 (in parallel to its addition to 2.5.36). Luckily, $uc bilized at a constant level after a while. They typically den
events are easy to identify as jumps in the graphs, and theysuffer some initial degradation before stabilizing,siag
do not have a significant effect on our conclusions. the question of whether there are distinct phases of careect
A related question is whether perfective and correctivativity: first intensive corrections needed to stabilize tode
maintenance are completely separable activities. In thés \after a major new release, and then more relaxed correction o
do not mean that there are cases when the two activities &ent bugs that show up. We also found specific cases where
interleaved, e.g. when a commit includes both the correctiproduction versions include perfective maintenance and no
of a bug and an addition of a feature. Rather, we refer tmly corrective maintenance, contradicting our presuonpti
the situation surrounding a release. Fig. 10 shows the t8ach cases where the different versions did not follow the
times at which minor releases are made within each majgeneral trend were analyzed and explained in detail. These
version. The steeper the line, the higher the release r8le [2vere usually instances of adding a large module that was
Development versions exhibit a steady high rate, wheredsveloped elsewhere into the kernel.
production versions tend to start with a similar high ratd an As for the distinction between thech anddrivers directo-
then taper off when the next development version is starteibs and the core kernel, we found tlaath anddrivers usually
The question is whether the initial phase may serve as pdigplayed more persistent trends, but still had “worsetgal
of the development path, or maybe this is just continugd.g. higher LOC and MCC, and lower MI). Thus it seems
activity to stabilizing the code, and should therefore Edle that these directories originally suffered from relatwvgoor
be considered to be corrective in nature [28]. code, but that adaptive maintenance is improving them with
Note that despite the possible debate regarding the naturdime. It remains to be seen whether they will reach or even
production versions, this has little impact on our conauasi surpass the quality of code in the core directories.

VI. CONCLUSIONS ANDFUTURE WORK

Fig. 10. Minor number as a function of
time, such that the slope of the line indicate
the release rate.

Kernels Release Dates

16v2.4

%y

25
24

17

2611
v 13415 18 21

06 07 08

Some of our results indicate that a globally observed behdws] S. H. Kan, Metrics and Models in Software Quality Engineering
ior may be attributed to a very local change in the codebase, Addison Wesley, 2nd ed., 2004.
In particular, it may be that various subsystems, not onéy t
arch anddrivers directories, exhibit distinct behaviors [4]. This
suggests that in future work we should look more closely?
at distinct subsystems. This is interesting in the contdxt A3
understanding the evolution of Linux [4], but is not expeldie
shed light on the comparison between maintenance acsivitig4!

Another direction for future work is to try and glean the
amount of work invested in different maintenance actigitie [15]
For example, a survey of maintenance managers Yyielded
the result that 17.4 percent of maintenance is corrective [ig;

nature [15], but a study that analyzed changes to source code

obtained a figure more than three times larger [23]. It would”]
be interesting to try to figure out proportions for Linux byg
qguantifying work done on different versions.

Acknowledgments

[19]

This work was supported by the Dr. Edgar Levin Endowi20]
ment Fund.

(1]

REFERENCES

ISO/IEC 14764:2006 software engineering — software lifecley
processes — maintenancewww.iso.org/iso/isocatalogue/catalogue
tc/cataloguedetail.htm?csnumber=39064, Aug 2006.

[21]
[22]

[23]

[2] A. Capiluppi, M. Morisio, and J. F. Ramil, Structural evolution of [24]

(3]

(4]
(5]

(6]
[7]

an open source system: A case study 12th IEEE Intl. Workshop
Program Comprehensiompp. 172-182, Jun 2004.

D. G. Feitelson, T. O. S. Adeshiyan, D. BalasubramanidnEtsion,
G. Madl, E. P. Osses, S. Singh, K. Suwanmongkol, M. Xia, an®.S.
Schach, Fine-grain analysis of common coupling and its applicaton
a Linux case study J. Syst. & Softw80(8), pp. 12391255, Aug 2007.
M. W. Godfrey and Q. Tu, Evolution in open source software: A case
study'. In 16th Intl. Conf. Softw. Maintenancep. 131-142, Oct 2000.
M. W. Godfrey, D. Svetinovic, and Q. Tu,Evolution, growth, and
cloning in Linux: A case study In CASCON workshop on Detecting
Duplicated and Near Duplicated Structures in Large Sofev8ystems:
Methods and Applications2000.

[25]
26

[27]

(28]

G. A. Hall and J. C. Munson, Software evolution: Code delta and code[zg]

churrt. J. Syst. & Softws4(2), pp. 111-118, Oct 2000.
M. Halstead,Elements of Software Sciendélsevier Science Inc., 1977.

[8] A. Hindle, D. M. German, M. W. Godfrey, and R. C. HoltAtitomatic

classification of large changes into maintenance categjorla 17th
IEEE Intl. Conf. Program Comprehensiopp. 30—39, May 2009.

[9] A. Israeli and D. G. Feitelson, The Linux kernel as a case study in

software evolutioh J. Syst. & Softw83(3), pp. 485-501, Mar 2010.

[30]

[31]

C. F. Kemerer and S. SlaughterAri empirical approach to studying
software evolutioh |EEE Trans. Softw. Eng25(4) pp. 493-509,
Jul/Aug 1999.

M. J. Lawrence, An examination of evolution dynamitsin 6th Intl.
Conf. Softw. Eng.pp. 188-196, Sep 1982.

M. M. Lehman, ‘Programs, life cycles, and laws of software evoltition
Proc. IEEE68(9), pp. 1060-1076, Sep 1980.

M. M. Lehman, D. E. Perry, and J. F. Ramilpriplications of evolution
metrics on software maintenaricdn 14th Intl. Conf. Softw. Mainte-
nance pp. 208-217, Nov 1998.

B. P. Lientz, E. B. Swanson, and G. E. Tompkin§Haracteristics of
application software maintenariceComm. ACM21(6), pp. 466-471,
Jun 1978.

T. McCabe, A complexity measure |IEEE Trans. Softw. En@(4), pp.
308-320, Dec 1976.

E. Mills, Software MetricsTech. Rep. Curriculum Module SEI-CM-12-
1.1, Software Engineering Institute, December 1988.

G. J. Myers, An extension to the cyclomatic measure of program
complexity. SIGPLAN Noticesl2(10) pp. 61-64, Oct 1977.

P. Oman and J. HagemeisteCdnstruction and testing of polynomials
predicting software maintainability J. Syst. & Softw24(3), pp. 251—
266, Mar 1994.

D. L. Parnas, Software aging In 16th Intl. Conf. Softw. Eng.pp.
279-287, May 1994.

D. A. Rusling, “The Linux kernel. URL tldp.org/LDP/tlk/.

S. R. Schach, B. Jin, D. R. Wright, G. Z. Heller, and A. Jfu@,
“Maintainability of the Linux kernél 1EE Proc.-Softw.149(2) pp. 18—
23, 2002.

S. R. Schach, B. Jin, L. Yu, G. Z. Heller, and J. OffutDetermining
the distribution of maintenance categories: Survey vensegsuremeht
Empirical Softw. Eng8(4), pp. 351-365, Dec 2003.

M. Shepperd, A critique of cyclomatic complexity as a software metric
Software Engineering B(2), pp. 30-36, Mar 1988.

M. Shepperd and D. C. InceA“critique of three metrics J. Syst. &
Softw.26(3), pp. 197-210, Sep 1994.

E. B. Swanson, The dimensions of maintenaricdn 2nd Intl. Conf.
Softw. Eng.pp. 492-497, Oct 1976.

L. ThomasAn Analysis of Software Quality and Maintainability Mefric
with an Application to a Longitudinal Study of the Linux KeknPh.D.
thesis, Vanderbilt University, 2008.

L. G. Thomas, S. R. Schach, G. Z. Heller, and J. Offutinpact
of release intervals on empirical research into softwa@ugion, with
applications to the maintainability of LinUx IET Softw.3(1), pp. 58—
66, Feb 2008.

E. VanDoren,Maintainability Index Technique for Measuring Program
Maintainability. Tech. rep., Software Engineering Institute, Mar 2002.
E. J. Weyuker, Evaluating software complexity measurelEEEE Trans.
Softw. Eng14(9), pp. 1357-1365, Sep 1988.

L. Yu, S. R. Schach, K. Chen, and J. OffutGé4tegorization of common
coupling and its application to the maintainability of thelx kerner.
IEEE Trans. Softw. Eng30(10) pp. 694-706, Oct 2004.

