
“We do not appreciate being experimented on”:
Developer and Researcher Views on the Ethics

of Experiments on Open-Source Projects
Dror G. Feitelson

Department of Computer Science
The Hebrew University of Jerusalem, 91904 Jerusalem, Israel

F

Abstract—A tenet of open source software development is to accept
contributions from users-developers (typically after appropriate vetting).
But should this also include interventions done as part of research on
open source development? Following an incident in which buggy code
was submitted to the Linux kernel to see whether it would be caught,
we conduct a survey among open source developers and empirical
software engineering researchers to see what behaviors they think are
acceptable. This covers two main issues: the use of publicly accessible
information, and conducting active experimentation. The survey had
224 respondents. The results indicate that open-source developers are
largely open to research, provided it is done transparently. In other
words, many would agree to experiments on open-source projects if the
subjects were notified and provided informed consent, and in special
cases also if only the project leaders agree. While researchers generally
hold similar opinions, they sometimes fail to appreciate certain nuances
that are important to developers. Examples include observing license
restrictions on publishing open-source code and safeguarding the code.
Conversely, researchers seem to be more concerned than developers
about privacy issues. Based on these results, it is recommended that
open source repositories and projects address use for research in their
access guidelines, and that researchers take care to ask permission
also when not formally required to do so. We note too that the open
source community wants to be heard, so professional societies and IRBs
should consult with them when formulating ethics codes.

Index Terms—Experiments; Ethics; Open source

That which is hateful to you do not do to another
– Hillel the Elder, Talmud Bavli, Shabbat 31:a

1 INTRODUCTION

The advent of open-source software development, and
moreover the creation of repositories where numerous open
source projects are hosted, has been a boon to empiri-
cal software engineering research. Large volumes of high-
quality code and related artifacts have become accessible
for analysis [29], [64]. The next step was to use the record of
changes to the code to also study the software development
process. A third step was to not only observe the code and
the process, but to also interact with them. For example,
many research projects aimed at building tools for code
improvement report on applying their tools on open source

Dror Feitelson holds the Berthold Badler chair in Computer Science. This
research was supported by the ISRAEL SCIENCE FOUNDATION (grant
no. 832/18).

projects, and then submitting the improvement suggestions
to the projects’ developers. The fraction of suggestions that
is accepted is then used as an indication regarding the
efficacy of the tool (e.g. [56], [40], [42]). While this practice
exploits the time of the developers to assess the tool, it is
considered acceptable as it conforms with the underlying
principles of being “open source”, which specifically include
openness to contributions from anyone.

But in April 2021 the maintainer of the Linux kernel,
Greg Kroah-Hartman, banned the University of Minnesota
(UMN) from making contributions to the Linux kernel (for a
detailed description of the whole affair, see e.g. [15]). He also
reverted previous contributions from the university, pend-
ing a check that they are valid contributions. The reason was
a research project from the Lu lab in the university, dubbed
the “hypocrite commits” (HC) study. In this study patches
that included bugs were intentionally submitted to kernel
developers to see whether they would be accepted, under
the pretext of demonstrating that open source development
is vulnerable to malicious contributors [69]. In the email an-
nouncing the ban, Kroah-Hartman wrote “Our community
does not appreciate being experimented on”1.

While many find this study clearly unethical, there
are many other situations that are not so clear cut. So
when exactly do such studies constitute an unacceptable
experiment? This is not an easy question to answer, and
there are myriad considerations including how exactly you
define “human subjects research” and in fact whether the
discussion should be limited to only “research” (e.g. [66]).
Rather than theorizing on the definitions and the ethics con-
siderations involved, we decided to elicit opinions straight
from the horse’s mouth. We therefore conducted a survey
among open source developers and asked about their re-
action to various experimental scenarios. For comparison,
we also sent the survey to researchers involved in empir-
ical software engineering research, and specifically those
who use open source projects and experimentation. As far
as we know such a survey was never conducted among
practitioners, and the last time a survey concerning ethics
in computer science was conducted among researchers (or
rather, university department heads) was 20 years ago [27].

1. lore.kernel.org/lkml/YH%2FfM%2FTsbmcZzwnX@kroah.com/

1



The goal of the survey was to answer two main research
questions:

1) What do developers care about in terms of ethics in
research?

2) To what degree do researchers appreciate what devel-
opers care about?

The survey started out by asking whether respondents knew
of the Linux-UMN incident. Subsequent questions asked
about 16 possible concerns, ranging from looking at code
without asking for permission to voicing an opinion about
the quality of the work of identified developers. The next
section outlined 16 development and research scenarios, and
asked respondents to judge the degree to which they were
acceptable. We collected responses from 168 developers and
56 researchers. The response rate was reasonable for this
type of survey: about 9% for the developers and 30% for the
researchers. This attests to an awareness of and interest in
ethics issues in such research, but also raises the danger of
a selection bias, where the respondents are predominantly
those with higher awareness and stronger opinions.

The results indicate that developers are quite open to
various types of activity, be it novices who want to build a
reputation, students who want to learn about open source,
or researchers who want to study open source projects.
However, they also tend to expect that freedoms associated
with the software and project be respected — both their
freedom to choose whether to participate in experiments,
and maintaining the freedom of the code in line with its
license. Researchers largely see things eye to eye with de-
velopers, but sometimes do not fully appreciate the nuances
of developers’ opinions. It is therefore recommended that
repositories and projects explicitly address research use in
their access guidelines, and that researchers approach them
to ask for permission even if not formally required to do so.

The rest of the paper is structured as follows. The next
section provides background on ethics in research, start-
ing with general ethics considerations and continuing with
how they are applied to on-line research and to software
engineering research. Section 3 then describes the survey
and how participants were recruited. Section 4 presents
the results of the survey, followed by a discussion and
recommendations in Section 5. Finally, Section 6 lists threats
to validity, and Section 7 presents the conclusions.

2 ETHICAL PERSPECTIVES IN SOFTWARE
ENGINEERING RESEARCH

Experimental research on open source projects exposes
some ethics considerations that have not been explored in
the literature on research ethics.

2.1 Background on Ethics in Research
Experiments involving software developers fall under the
regulations for ethical research involving human subjects.
The regulations covering such research were developed
primarily in the context of biomedical research [57]. While
each country naturally has its own precise regulations, the
most commonly cited are those of the U.S. Department of
Health and Human Services known as “45 CFR 46” (Code
of Federal Regulations, Title 45, Part 46) [60], which apply to

research conducted or supported by U.S. government agen-
cies. These regulations define research on human subjects as
“systematic investigation, including research development,
testing, and evaluation, designed to develop or contribute to
generalizable knowledge”, where “an investigator (whether
professional or student) conducting research: (i) Obtains
information or biospecimens through intervention or inter-
action with the individual, and uses, studies, or analyzes the
information or biospecimens; or (ii) Obtains, uses, studies,
analyzes, or generates identifiable private information or
identifiable biospecimens.”

Using the HC study as an example, Wu and Lu wrote
in their paper that “The IRB2 of University of Minnesota
reviewed the procedures of the experiment and determined
that this is not human research. We obtained a formal IRB-
exempt letter” [69]. More specifically, in a FAQ related
to the paper they wrote “This is not considered human
research. [...] We send the emails to the Linux community
and seek community feedback” [68]. However, a community
is composed of individuals, and in the end they did indeed
interact with individuals and obtained information about
their behavior. Moreover, they themselves note the need to
protect the identity of the Linux maintainers who handled
their patches, as being identified as having approved faulty
code may cause embarrassment or other inconvenience
[69]. In addition, they acknowledge the problem of wasting
maintainers’ time, which was the more important issue for
at least some of the Linux maintainers. It seems that the
ethics of a scenario of observing people perform their work,
and adding to that work as part of the experiment, has not
been specifically discussed in the literature.

The basic document on the ethical use of human subjects
in research is the Belmont Report from 1979 [57]. The Re-
port first makes a distinction between research and normal
practice, and states that if an activity contains any element
of research, it should undergo an ethics review. It then
identifies three basic ethics principles:

1) Respect for Persons, so experimental subjects should
be informed about the experiment and are entitled to
decide for themselves whether to participate in it;

2) Beneficence, comprised of the obligations to do no
harm and to maximize possible benefits; and

3) Justice, meaning that the benefits of the research as well
as its costs should be shared equally by all.

The HC study clearly fails the first, in that informed consent
was not sought. Moreover, a central tenet of open source
development is trust, based on reputation and a hacker ethic
of sharing [18], [19]. The report on the incident by the Linux
Foundation Technical Advisory Board specifically cites the
breach of trust that contributions to the kernel are well-
intended as a major offense, and in fact classifies the whole
affair as a “breach-of-trust incident” in its title [39]. One can
also argue that the HC study fails the second principle, as it
wasted maintainers time. This was aggravated by the trust
problem, as considerable work was needed to re-assess all
previous UMN contributions that had been reverted [39].
The study does seem to comply with the third principle,

2. Institutional Review Board, the committee charged with reviewing
research proposals to ensure they are ethical.

2



in that the maintainers who’s time was wasted were not
singled out for any particular reason.

Professional societies publish ethics codes for their mem-
bers which often mention the Belmont Report. One example
is The American Psychology Association Ethical Principles
of Psychologists and Code of Conduct. While the bulk of this
code concerns the professional conduct of psychologists,
it also includes a section about research, with a detailed
description of what should be included in informed consent,
and how to deal with cases where deception is necessary to
elicit spontaneous behavior [2].

The IEEE Code of Ethics, in contradistinction, focuses
exclusively on professional conduct and does not mention
research at all [30]. The ACM Code of Ethics and Profes-
sional Conduct also does not address the issue of ethics
in research, except in saying that “The public good should
always be an explicit consideration when evaluating tasks
associated with research” and many other activities [4].
Informed consent is mentioned only in relation to respect-
ing privacy: as a computing professional, if you build a
system that collects data, you should ensure “individuals
understand what data is being collected and how it is being
used”. This is also the case for the IFIP Code of Ethics and
Professional Conduct, which is based on the ACM code [31].
However, the ACM recently approved a new “policy on
research involving human participants and subjects”, which
specifically includes minimization of potential harm and
adherence to informed consent and justice [1].

2.2 Ethics in Online Settings
Mining repositories of open source software, and in partic-
ular collecting data on software developers, is just a special
case of collecting social-science data about the behavior
of individuals in some context. In some cases this has
clear ethical implications, for example when studying the
consumption of porn [59], postings in support groups for
trauma victims [33], or an LGBT forum including discus-
sions of coming out [9]. But even if there are no clear
repercussions to divulging data about participants, there
is still the question of the expectation for privacy and the
boundary between “public” and “private” in an online
setting [58], [9]. Such expectations exist despite Google’s
search capabilities, which often allow the identification of
even short quotations from text (or code) which is openly
accessible [43], [24].

As the above examples imply, online ethics often ap-
ply to the users of software systems, especially web-based
systems. Facebook in particular provides several relevant
case studies with increasing severity. The first level is using
A/B testing to improve the product [22]. This means that
new features are added only after being tested with real
users in live action, unbeknownst to those users, to see that
they lead to a favorable response. This practice is widely
used in practically all web-based companies [34], [21], [37],
and Google even offers it as a free service on its marketing
platform3. However, it introduces two ethical difficulties.
First, there is no informed consent by the users to participate
in the experiment. This may be excused on the grounds
that users don’t know what version of the system they are

3. marketingplatform.google.com/about/optimize

using anyway, and this changes daily. But this leaves the
second issue, which is what the experiment is really trying
to optimize. It may be that the benefits are for the company
and not for the users, e.g. when the desired effect is to
improve the monetization from using the product, even if
this comes as the expense of the users in terms of expenses
(on ecommerce sites) or detrimental effects like addiction.

The second level is facilitating other research, which is
not directly related to improving the service to users [32].
For example, a much-cited research done using Facebook
data concerned the transmission of emotions among social
network users [35]. To do so, “the experiment manipulated
the extent to which people (N = 689,003) were exposed to
emotional expressions in their News Feed”. This manipu-
lation was justified by Facebook being a private company,
hence not bound by regulations on research supported by
the government, and by the fact that the analysis performed
“was consistent with Facebook’s Data Use Policy, to which
all users agree prior to creating an account on Facebook,
constituting informed consent for this research”. However,
this lenient interpretation of informed consent elicited an
expression of concern from the Editor-in-Chief of the journal
where the research was published [61].

The third level is facilitating direct manipulation of the
public, as in the infamous Cambridge Analytica affair (for
a detailed description of this affair, see e.g. [41]). On a
superficial level the ethical problem was that around 270,000
Facebook users gave informed consent to use their Facebook
data for psychological profiling, but using Facebook’s Open
Graph platform the profiling app actually collected data also
from their Facebook friends’ accounts, totaling 87 million
users. The more insidious problem was that Cambridge An-
alytica claimed to have used this data to manipulate voters
in the 2016 USA elections, which may have contributed to
the campaigns of Senator Ted Cruz and President Donald
Trump.

2.3 Application to Software engineering Research

Vinson and Singer attempt to adapt the Belmont principles
for the special case of experiments in software engineering
[63], [50]. They retain the first two principles, of informed
consent and beneficence, and add two more: maintaining
the confidentiality of all information shared by the experi-
mental subjects, and ensuring scientific value, in particular
by using established methodology.

The Menlo Report on Ethical Principles Guiding Infor-
mation and Communication Technology Research is also
based on the Belmont Report. It adopts the three original
principles, and adds Respect for Law and Public Inter-
est [6]. However, in doing so the Menlo Report actually
conflates ethics with legal issues and with safety. This is a
result of two factors. First, their focus is on security research,
including whitehat hacking and the study of malware.
Studying malware can be dangerous, but this is not an
ethical issue but a safety issue, just like studying explosives
in a chemistry lab or viruses in a biology lab are not ethical
issues but safety issues. Second, the law may indeed step
in when ethics standards fail. For example, the European
GDPR and the California CPA were both responses to lack
of respect for privacy and information security on the side of

3



Table 1
Potential ethics issues in studies using open source projects.

Study type Potential issues
Studying the code Use of the code not for the purpose for which it was opened

Harming a project by judging it or publishing its faults

Studying the developer community Violating developers’ privacy

Harming developers by exposing inappropriate practices

Interacting with a project’s development Harming the project by adding inappropriate code

Wasting the time of the projects’ original developers

high-tech companies. But while this may affect research, the
motivation was unrelated to research. And ethics is more
than just abiding by the law. In fact, ethics guidelines are
specifically an attempt to codify what is right or wrong
beyond what the law demands. So the Menlo Report is not so
much about the ethics of human subjects research, as about
all aspects of research with the potential to harm humans,
mainly by exposing data about humans.

Experimenting with software engineers can lead to vari-
ous ethical issues, including inconvenience due to frustra-
tion or boredom during the experiment, worrying about
it, and disapproval or stigmatization by co-workers due to
disclosed information [49]. There is also a growing body
of software engineering research that interacts with the
subjects directly, e.g. using fMRI or psychological tests [23],
[44], [25]. These are adequately covered by procedures used
in other fields which use such devices, e.g. cognitive science.

Additional vexing ethical questions may come up in the
context of collaborations between researchers and industry
[36]. For example, consider a company-based study where
developers are ranked based on a quality analysis of their
code. Should the researchers be loyal to the company, which
invited them to collaborate and may be financing them,
and would be harmed by keeping sub-par employees — or
to employee-subjects, who trust them with their data, and
might be fired? [62]. As it is hard to anticipate and regulate
all such potential conflict situations, they imply a need for
open discussions among the collaborators to map out the
issues and decide on how to deal with them.

A recurring subject in previous investigations on ethics
in software engineering research is the use of student sub-
jects in experiments. The risk here is that the researchers are
also the professors, and the situation might be perceived by
the students as coercive [38], [50], [49]. Thus at a minimum
one needs to uphold anonymity, and allow the option to opt
out, thereby negating the fear of influence on grades.

There has also been concern regarding harm to the
students’ academic progress. Therefore, especially when
experiments are carried out as part of compulsory classes,
they should have educational goals [50], [13], [11], [14].
Examples include the opportunity to learn or exercise some
technique or methodology, being exposed to cutting-edge
ideas and procedures, and more [55]. At the same time, one
should consider whether the students could have learned
the same things more efficiently in some other way, and
whether it is fair to grade them on their performance in an
experiment, especially if they were divided into groups that
used different treatments?

2.4 Considerations for Open Source

Most of the research using open source projects is based
on repository mining. In addition to the repositories them-
selves, Internet sites like OpenHub4 are devoted to the
tabulation and display of the activity by different devel-
opers in different projects, adding to their exposure. While
often thought to be benign, such exposure can in fact have
detrimental implications (Table 1) [24]. For example, Open-
Hub ranks developers by “kudos”, which is assigned by
members of the site to each other. Research may identify
“influential” or “core” developers, using measures of impact
usually based on levels of activity (e.g. [70], [71], [53]).
Such rankings may shame or offend those who receive a
low ranking. Even more harm can ensue if developers or
companies are ranked based on a quality analysis of their
code, or if intellectual property is revealed [62].

Open source projects are also vulnerable to situations
where researchers interact with the developers, as in the
HC study. The goal of the HC study (which led to the ban
on UMN contributions to the Linux kernel) was to raise
awareness of how vulnerabilities can be introduced to open-
source software on purpose by malicious agents [69]. The
idea was to analyze the code and create “hypocrite” patches
that added a missing condition for a vulnerability, thus
turning “immature vulnerabilities” into real vulnerabilities.
As a proof-of-concept, they prepared 3 patches that created
“use after free” bugs in Linux5. They claimed that this was
done safely, and that the buggy code was only exchanged
in emails, and indeed the 3 buggy patches were rejected
by Linux maintainers. But the main fault developers found
with the study was the lack of obtaining consent.

Other unique ethics issues with open source concern
whether and how the research interacts with the open
source philosophy. At the most basic level the issue is one of
openness and freedom. On the face of it there should not be
any problem. A well-known adage regarding free software
likens it to free speech as opposed to free beer. The impli-
cation is that anyone can do whatever they want with the
code [17], [67], and the problem is not in exposing it but only
when it is confined and restricted. Indeed, the hacker ethic
of free information justifies using systems in unintended
ways to uncover their inner working [17]. However, one
may question whether it is ethical to use public data for
purposes other than intended by its authors [20]. Opening

4. www.openhub.net.
5. In total it appears that 5 patches were submitted, but only 3 were

buggy [39].

4



source code is not done to facilitate research — it is done
to improve the code and benefit its users. So using it for
other purposes may require the consent of the authors. But
who do you ask for consent for using code from a long lived
project where developers come and go with time? [24]

The flip side of openness is the danger of compromising
privacy [74]. Vinson and Singer comment that developers
who identify themselves as authors of open-source code
cannot expect privacy, and therefore using their code — and
even identifying them — does not fall under the usual lim-
itations of human subjects research [63], [50]. But according
to Berry, the question is “Is the Internet a space in which em-
bodied human beings interact? Or is it a textual repository
where authors deposit work?” [12]. The difference brings
up considerations like copyright and fair use of artifacts,
not necessarily from the legal perspective, but from the
social perspective. For example, software published under
the GNU public license requires any derivative work to be
published under the same open license. Legally speaking,
quoting from such software in research probably falls under
fair use. But ethically, is it acceptable to republish even just
short pieces of code in copyrighted papers, given the specific
license provisions? [12].

Moving beyond privacy, removing restrictions on using
open source data may lead to risks that developers may not
be aware of. One example of the need to keep information
confidential is when studying the development process, and
some employees do not follow prescribed practices [10]; ex-
posing this is part of the research goal, but if the employees
are identified they might be punished or even fired. As
this example shows the risk also depends on the style of
the research. There is a difference between actual reading
and analysis by human researchers and the publication
of specific identified quotes, and massive-scale automated
analysis using machine learning, where the end result is just
statistical observations. And indeed, developers are some-
times sensitive to their privacy, and even may disassociate
themselves from code they had written, as evidenced by the
existence of services like Gitmask6. This casts a shadow on
research practices such as analyzing developers’ emails [5].

A more philosophical level concerns the issue of contri-
bution. At the core of open source software development lies
the notion that anyone is invited to contribute to the project.
So the basic expectation is that people will give to the
project, especially if they also benefit from it. For example,
Grodzinsky et al. write about the ethical responsibilities of
open source developers, including the obligation of organi-
zations who use open source software to also contribute to
the community, and the obligation to produce high-quality
code [26]. Yu writes about the reciprocity in firms’ open
source policies, and how it contributes to their business
performance [72].

Finally, it is not clear that a legally or even ethically
centered discussion is the right approach. As Bakardjieva
and Feenberg write, “alienation, not privacy, is the actual
core of the ethical problems of virtual community research”
[7]. Our survey is specifically designed to obtain input from
the community itself about what really concerns them.

6. A project which facilitates anonymous contributions to open-
source projects, www.gitmask.com

3 SURVEY DESIGN AND EXECUTION

To the best of our knowledge the closest work to ours is a
superficial survey of department heads regarding awareness
and procedures for ethics approval of software engineering
experiments with human subjects, published by Hall and
Flynn twenty years ago [27]. We conducted a deeper survey
of the considerations involved, as seen by the researchers
themselves, and, more importantly, by the potential experi-
mental subjects.

3.1 Survey Structure
The survey contained four sections:

1) Questions about the Linux-UMN incident;
2) Questions on general ethical considerations when per-

forming research on open-source projects;
3) A list of short scenarios describing contributions to

open-source projects or research on such projects, ask-
ing for judgment on whether they constitute acceptable
behavior;

4) Demographic questions used to characterize and clas-
sify the respondents.

The questions are detailed below together with the results.
Each section ended with an option to provide general com-
ments.

In writing the questions about ethics considerations, we
used concrete questions rather than asking about abstract
principles. For example, instead of asking about the princi-
ple of not putting experimental subjects at risk, we asked
about voicing an opinion about the quality of developers’
work. Likewise, instead of asking about the principle of
maintaining privacy we asked about reading and analyzing
the text of communications between developers to better
understand their social interactions. The respondents were
asked to rank how much these actions are an ethical concern
on a 7-point scale.

The questions on acceptable behavior also used concrete
scenarios that may happen in the work on an open-source
project. Some of the scenarios focused on developers, for
example a developer who contributes code that was not
adequately tested. Other scenarios were about researchers,
for example identifying a project whose development they
had analyzed. The respondents were again asked to judge
whether they are acceptable behaviors on a 7-point scale.

The survey was implemented on the Google forms
platform. None of the questions were mandatory, and no
identifying information was collected.

3.2 Recruiting Subjects
The recruiting procedure and its outcome are summarized
in Table 2. Given the nature of the topic we aimed to
collect the opinions of more experienced developers and
researchers, rather than novices and students. To ensure
we had subjects of both types we employed separate pro-
cedures to recruit developers and researchers. However, the
distinction is not really binary, as researchers may also make
code contributions to open source projects, and developers
may participate in research. We therefore also asked the
subjects about how they identify themselves, and this was
used to adjust the final classification as described below.

5



Table 2
Summary of recruited participants.

Inclusion criteria In
vi

te
d

Bo
un

ce
d

R
es

po
nd

ed

R
es

p.
ra

te

Developers
≥ 20 commits since 2020 2000 17 180 9.08%
in project with ≥ 50 commits

Researchers
published on experiments or 151 3 44 29.7%
open source; H-index ≥ 10

For developers we wanted those who were involved
with the project and not just making a casual contribution.
We first selected active recent GitHub projects, identified
by a threshold of having at least 50 commits since 2020. To
ensure that they are software projects we used the CCP (cor-
rective commit probability) metric, and used only projects
where this was between 0 and 1 [3]. This excludes projects
which do not have commits that are identified as bug fixes.
From these projects we extracted developers who had public
emails and at least 20 commits since 2020. There were
16,559 such developers. From them we randomly selected
2000 and invited them to participate in the survey. The
invitations were made by personal emails. In most cases
these were addressed using the first name, after manual
checking. When the first name could not be identified the
email was addressed to “developer”. 17 emails bounced,
and 180 responded, leading to a response rate of just over
9%. This is significantly higher than the 2–4% reported by
Wagner et al. [65].

To identify relevant researchers we performed a Google
Scholar search with the query “"software development" ex-
periment "open source" github”. The query was restricted to
papers published in the last 5 years (since 2016). We then
verified that the paper is indeed on topic based on its title
(there were a few irrelevant ones, e.g. reporting on open-
source software developed to analyze a physics experiment)
and published in a leading software engineering venue.
From these papers we selected authors who have an H-
index of 10 or above. The first 150 papers returned by the
query yielded 48 usable papers and 102 authors. Some of
the papers were not used because all their above-threshold
authors had already been identified from previous papers.
The authors were again invited to participate using personal
emails, addressed to their first names.

To increase the number of research participants, we con-
ducted a second wave of invitations, based on the “empiri-
cal software engineering” label which researchers can attach
to their Google scholar profile. The top 100 researchers
with this label were scanned, and those with papers with
titles indicating work on experiments and open source in
either the first page or the last 5 years were identified.
There were 57 such researchers, but 8 of them had already
been identified in the previous round, so only 49 additional
invitations were sent. In total then 151 invitations were sent,
of which 3 bounced. 44 authors responded, leading to a
response rate of nearly 30%.

Participants in the survey were not paid or given any
other reward. The instructions indicated that advancing to
the questions constitutes consent to participate. The survey
and recruitment procedure were submitted to the ethics
committee for non-medical research on human subjects of
the faculty of science, and received approval. Due to rate
limitations on sending emails, the invitations were sent
over several weeks from the end of October to the end
of November 2021, about 6 months after the Linux-UMN
incident.

We are aware of the problems with sending unsolicited
emails to invite potential participants to a survey [8], [16].
The above procedure was meant to reduce the danger of
sending such emails to irrelevant people, and the relatively
high response rates indicate that indeed many recipients
found the survey relevant and important. Some even said so
explicitly and expressed interest in the results. This issue is
discussed further below, in the context of a survey question
that addressed it and in the recommendations.

3.3 The Survey Respondents

A total of 180 active GitHub users responded to the develop-
ers survey, and 44 Google Scholar authors to the researchers
survey. However, some of the developers identified them-
selves as also being researchers and reported having au-
thored multiple papers on empirical software engineering.
And some of the researchers reported significant activity
in open-source development. We eventually reclassified 12
respondents to the developers survey as researchers, as
they had self identified as researchers and not as paid
developers. Subjects who reported being both researchers
and developers were left in their original classification. All
the results presented below are after this reclassification.

Q437: Status (check all that apply):

0 20 40 60 80 100

Other

Student

Researcher

Management position

Program as a hobby (unpaid)

Professional developer (paid employee)

Freelance developer (paid per project)

Percents

Dev.
Res.

Interestingly, the distribution of years of development
experience was similar for developers and researchers, with
developers having only a slight edge. However there was
a large difference in the distribution of number of papers
published: 78% of developers had published none, and
the maximum was 10. Only 14% of researchers had not
published papers (or did not reply), and the median was
20. The distributions are shown as CDFs (cumulative distri-
bution functions). This enables an easy comparison of the
distribution of responses of developers and researchers. A

7. The question numbers indicate the order in which they were
presented to participants, which is different from the order used here.
In particular, the demographic questions originally appeared at the end.

6



CDF that is below and to the right of another implies a
distribution biased towards higher values.

0 10 20 30 40 50
0

20

40

60

80

100

C
um

ul
at

iv
e

pe
rc

en
t

Q39: Dev. experience years

Dev.
Res.

0 20 40 60 80 100
0

20

40

60

80

100

C
um

ul
at

iv
e

pe
rc

en
t

Q42: Papers published

Dev.
Res.

Regarding experience with open source projects, more
than 30% of researchers reported having none. And the
distributions of years of experience and number of projects
worked on by developers dominated the respective distri-
butions of researchers.

0 10 20 30 40
0

20

40

60

80

100

C
um

ul
at

iv
e

pe
rc

en
t

Q40: Open source years

Dev.
Res.

0 20 40 60 80 100
0

20

40

60

80

100

C
um

ul
at

iv
e

pe
rc

en
t

Q41: Open source projects

Dev.
Res.

4 SURVEY RESULTS

The results for the survey questions are shown as his-
tograms of the selected options. In most questions the
options form a scale. In these cases a CDF is shown too.

4.1 The Linux-UMN Incident

The first part of the survey concerned the Linux-UMN
incident. The first question was whether the survey par-
ticipants had heard about this incident. As shown below,
a substantive majority had heard about it, and most — and
even slightly more so among developers — had followed
it when it happened. In other words, this incident was an
important news story for our participants.

Q1: Did you hear of the Linux-UMN incident?

0 10 20 30 40 50 60

Did not hear of it

Heard but did not know details

Followed it when it happened

Percents

Dev.
Res.

Delving into the details, the majority of respondents
thought it was justified to ban UMN from contributing to
the Linux kernel. Nearly all the rest thought this response
was somewhat exaggerated8, and only a handful thought it
was wrong. In added comments, quite a few respondents
referred to the gap between the open source community
and academic researchers, some even using quite strong
language concerning researchers in their ivory towers. One
wrote: “If you wouldn’t perform the same experiment on
commercial developers without management consent, or on
academic colleagues without university consent, and you

8. This and some of the options in other questions are shown in
abbreviated form to fit in the available space.

didn’t get permission from project owners, don’t do it”. Par-
ticular ire was reserved for the perception that researchers
were using developers but then were not interested in
hearing their opinions and did not solicit feedback.

Q2: What do you think of the decision to ban UMN from
contributing to the Linux kernel?

0 20 40 60

Not justified and blown out of proportion

Somewhat exaggerated; more nuanced better

It was justified: such behavior is a big deal

Percents

Dev.
Res.

Responses were more evenly distributed concerning the
question whether the UMN IRB had erred in determining
that this is not human research. Around 13% of developers
and researchers thought they got it right. The rest of the
developers were evenly split between claiming they were
wrong and saying it is hard to tell; among researchers a
significant majority said they were wrong.

Q3: The UMN IRB (Institutional Review Board) had given
an exemption to this research based on the perception that
studying the kernel patch process is not human research.
Do you agree with this judgement?

0 10 20 30 40 50 60

Indeed not human research

Hard to tell

Definitely human research

Percents

Dev.
Res.

When asked to identify the worst offense in the UMN
study, the top spots were wasting the time of maintainers
(preferred by researchers) and the risk of distributing buggy
code (preferred by developers). Some explicitly cited the
lack of informed consent and violating trust; in the graph
these are included under “treating the Linux developers as
guinea pigs”. Others said all 3 offenses were equally bad;
they were counted as contributing 1

3 to each.

Q4: What was the worst offense in the UMN study?

0 10 20 30 40 50

Other

The study was fine: there was no offence

Risk of buggy code entering the distribution

Wasting the time of Linux maintainers

Treating Linux developers as guinea pigs

Percents

Dev.
Res.

Several comments made at the end of the survey can be
interpreted as alluding to this question. Some referred to the
special status of Linux as a major global resource, so any in-
terference with it is especially troubling. Another interesting
comment was: “The biggest sin of the research was that it
was done without cooperation with the community”. The
relationship between academic researchers and open source
developers figured in many other comments as well, and is
discussed in Section 5.

It is interesting to note that hardly anyone thought
the study was OK. This does not contradict the previous
question, where around 13% said it was not human research
at all, because of the option to find fault with the study for

7



reasons other than ethics — and specifically because of the
danger that buggy code would enter the distribution.

Finally, there was a wide range of opinions on whether
this study could have been executed in an ethical manner.
Specific interesting results were that many researchers and
not few developers thought it would be OK only if informed
consent was given, even though such consent may harm the
validity of the experiment. On the other hand many devel-
opers were also content with having the experiment cleared
with project leaders without explicit informed consent from
the affected maintainers.
Q5: With regard to Kroah-Hartman’s comment that "Our
community does not appreciate being experimented on",
is it at all possible to conduct an ethical experiment
on whether open-source maintainers detect buggy code
contributions?

0 10 20 30 40 50

Other

Experiment was OK; buggy code not distributed

OK if cleared in advance with project leaders

OK with dev’s who identify as willing to participate

OK with informed consent; risks harming validity

Experiment on buggy contributions not ethical

All experiments on developers are unethical

Percents

Dev.
Res.

In comments one developer cited the practices of white-
hat hackers to contact the security-focused maintainers of
a project to coordinate the scope of the research up front.
Others claimed the results could be obtained by other
means. In addition, several developers suggested that if
maintainers’ time was wasted by an experiment they should
be compensated, either directly or by a donation to the
project.

4.2 Ethics Concerns

The second part of the survey was about possible ethics con-
cerns in isolation. The respondents were asked to rate these
concerns on a 7-point scale, ranging from 1 = no concern to
7 = extreme concern. This directly reflects our first research
question, of what developers care about. The results also
pertain to the second research question by comparing the
answers of developers to those of researchers.

We present the results in separate subsections that each
contains a set of questions related to the same general
concern. Note that in the survey there was no such structure,
and in some cases the questions appeared in a different
order. The original order is given by the question numbers.

4.2.1 Inappropriate use of open source code
The first possible concern is about using open source code
in a manner different from the intentions of its developers.
One question asked about using code examples without
asking permission. A large majority of both developers and
researchers thought this was of little or no concern. The
second question was about quoting code in copyrighted
articles. In this case developers were consistently more
concerned than researchers. Quite a few added comments

about open source licenses prohibiting this, as they require
all derivatives of the code to remain free. Others commented
that in general one should learn about a project’s rules and
culture before using it in research, and respect these rules.

Q6: Using code examples
from the project without
asking permission

1 2 3 4 5 6 7
0

20

40

60

80

100

Pe
rc

en
ts

Dev.
Res.

Q7: Publishing open-source
code examples from the
project in a copyrighted
article

1 2 3 4 5 6 7
0

20

40

60

80

100

Pe
rc

en
ts

Dev.
Res.

4.2.2 Expectations for privacy and confidentiality
Several questions concerned the exposure of the developers.
A set of three questions were about using the texts written
by developers to communicate among themselves. Develop-
ers were very open to having such texts read when the goal
was to better understand technical issues; researchers were
slightly more reserved. Both developers and researchers
were somewhat more reserved when the goal was to un-
derstand social interactions.
Q8: Reading and analyzing
the text of communications
between developers of the
project to better understand
technical issues

1 2 3 4 5 6 7
0

20

40

60

80

100

Pe
rc

en
ts

Dev.
Res.

Q9: Reading and analyzing
the text of communications
between developers of the
project to better understand
the social interactions
between them

1 2 3 4 5 6 7
0

20

40

60

80

100
Pe

rc
en

ts

Dev.
Res.

Interestingly, developers were even more reserved about
the use of machine learning to analyze all the communica-
tions and derive a statistical characterization. One explained
in a comment that machine learning may not catch all
nuances of human communication and especially cases of
non-native-English speakers or jokes.

Q10: Using machine learning
to analyze the text of all
communications between
developers of the project and
derive statistical
characterizations (e.g. "73% of
comments were negative") 1 2 3 4 5 6 7

0

20

40

60

80

100

Pe
rc

en
ts

Dev.
Res.

A second set of questions concerned the identification
of developers in research reports. These questions elicited a
wide range of responses, from those who saw no problem
even with the version asking about researchers voicing an
opinion about the quality of work of identified developers,

8



to those who were gravely concerned with the version
that just asked about identifying developers who had con-
tributed to a project. Tellingly, there was much less concern
regarding voicing opinions on the project as a whole as
opposed to identifying individual developers.

Q18: Identifying developers
who contributed to the project
in a paper about the research

1 2 3 4 5 6 7
0

20

40

60

80

100

Pe
rc

en
ts

Dev.
Res.

Q19: Identifying developers
who wrote specific code or
comments that were quoted
in a paper about the research

1 2 3 4 5 6 7
0

20

40

60

80

100
Pe

rc
en

ts
Dev.
Res.

Q21: Voicing an opinion about
the quality of the work of
specific identified developers

1 2 3 4 5 6 7
0

20

40

60

80

100

Pe
rc

en
ts

Dev.
Res.

Q20: Voicing an opinion
about the quality of the work
on the project

1 2 3 4 5 6 7
0

20

40

60

80

100

Pe
rc

en
ts

Dev.
Res.

In all these four questions, researchers were significantly
more concerned than developers, perhaps due to recent
increased awareness of ethics issues in research. It could
also be a matter of culture: one developer commented that
in the open source culture criticism is welcome, but it should
be a constructive discussion on how to improve and not a
judgment after the fact. Another wrote “being a part of ex-
periment or being judged by some non-even-a-contributor
will probably lead to [...] ending any contributions”.

4.2.3 Interfering with developers’ work

A related issue is interacting with developers in a way that
might interfere with them. There was wide agreement that
asking developers about their work is of no or at most little
concern. However, the majority were opposed to engaging
developers without explaining that this is part of an exper-
iment and obtaining informed consent. In both questions,
researchers were marginally more concerned than develop-
ers. A third question about deceiving developers so as not to
affect their behavior elicited nearly uniform responses, with
slightly higher concern by developers.

Q11: Approaching developers
to ask them about their code
or the considerations which
guided its writing

1 2 3 4 5 6 7
0

20

40

60

80

100

Pe
rc

en
ts

Dev.
Res.

Q12: Engaging developers
without explaining that this is
part of an experiment and
obtaining informed consent to
participate

1 2 3 4 5 6 7
0

20

40

60

80

100

Pe
rc

en
ts

Dev.
Res.

Q13: Telling developers that
this is an experiment, but
deceiving them about the
details so as not to affect their
behavior

1 2 3 4 5 6 7
0

20

40

60

80

100

Pe
rc

en
ts

Dev.
Res.

The concern regarding interfering with developers may
be modulated by the merits of experiments. Questions about
this led to a wide range of responses. The majority were
concerned about the possibility of experiments with no
scientific value, but there was also a sizable minority who
thought this was of no concern. And there was a nearly uni-
form response to the possibility of using a new experimental
methodology, albeit with more respondents expressing no
concern than any other single option.

Q14: Using the project for
research with no scientific
value

1 2 3 4 5 6 7
0

20

40

60

80

100

Pe
rc

en
ts

Dev.
Res.

Q15: Using the project to test
a new experimental
methodology

1 2 3 4 5 6 7
0

20

40

60

80

100

Pe
rc

en
ts

Dev.
Res.

4.2.4 Risk of harming the project

Finally, developers and researchers alike were very con-
cerned about conduct that may cause harm to a project.
There were two questions about this, one asking about
contributing buggy code and the other about wasting the
time of maintainers to review and reject code.

Q16: Contributing buggy
code to the project

1 2 3 4 5 6 7
0

20

40

60

80

100

Pe
rc

en
ts

Dev.
Res.

Q17: Wasting the time of
maintainers to review and
reject code

1 2 3 4 5 6 7
0

20

40

60

80

100

Pe
rc

en
ts

Dev.
Res.

9



4.3 Acceptance of Scenarios

The next part of the survey presented several scenarios and
asked whether they were acceptable. A 7-point scale was
used, as follows:

-3 criminal
-2 unacceptable
-1 preferably not done
0 I’m not sure
1 not great but tolerable
2 reasonable and acceptable
3 best practice

Respondents were asked to try and be categorical, using 2
and -2. As in the previous section, we present the scenarios
here in groups that do not necessarily correspond to the
order in which they were presented in the survey.

4.3.1 Contribution for self benefit

Three of the questions were about contributing to an open-
source project for self benefit, rather than to advance the
project. In essence this reflects the “scratch a personal itch”
motivation identified by Raymond [45]. The results show
that this is an acceptable or at least tolerable practice,
with only a small minority of respondents indicating that
preferably it would not be done.

Q23: A novice programmer
contributes beginner-quality
code in an attempt to build
up his or her reputation

−3 −2 −1 0 1 2 3
0

20

40

60

80

100

Pe
rc

en
ts

Dev.
Res.

Q29: A student contributes
code to learn how open
source development works

−3 −2 −1 0 1 2 3
0

20

40

60

80

100

Pe
rc

en
ts

Dev.
Res.

Q25: A developer contributes
code that caters to a specific
personal need

−3 −2 −1 0 1 2 3
0

20

40

60

80

100

Pe
rc

en
ts

Dev.
Res.

A special case of contributions that are not made just
to advance the project is when the contribution is part of
research on open source development (like the HC study
was). There was wide acceptance of the use of open source
projects to perform research about code and its develop-
ment, with many even calling it a best practice. At the same
time there was strong opposition to the idea of submitting
buggy code to see if it would be caught, and in the case of
security bugs many called such behavior criminal.

Q30: A researcher analyzes
open source code in research
on the use of certain
programming language
constructs

−3 −2 −1 0 1 2 3
0

20

40

60

80

100

Pe
rc

en
ts

Dev.
Res.

Q31: A researcher contributes
valid bug fixes to see how
long it takes to incorporate
them into the codebase

−3 −2 −1 0 1 2 3
0

20

40

60

80

100

Pe
rc

en
ts

Dev.
Res.

Q33: A researcher contributes
code with a minor bug to see
if it would be caught

−3 −2 −1 0 1 2 3
0

20

40

60

80

100

Pe
rc

en
ts

Dev.
Res.

Q34: A researcher contributes
code with a security bug to
see if it would be caught

−3 −2 −1 0 1 2 3
0

20

40

60

80

100

Pe
rc

en
ts

Dev.
Res.

4.3.2 Contributing potentially problematic code
One of the dangers with contributions made for self benefit
was that the submitted code may be sub-par. Making this
explicit, a pair of questions concerned the role of testing. The
responses indicate that contributing code that was tested is
acceptable even if it still contains a bug (which the tests
failed to uncover), while contributing code that was not
adequately tested was usually thought to be unacceptable or
at least something that should not be done, although some
also thought it was tolerable.

Q24: A developer contributes
reasonably tested code that
unknowingly still contains a
bug

−3 −2 −1 0 1 2 3
0

20

40

60

80

100

Pe
rc

en
ts

Dev.
Res.

Q26: A developer contributes
code that was not adequately
tested

−3 −2 −1 0 1 2 3
0

20

40

60

80

100

Pe
rc

en
ts Dev.

Res.

Continuing this sequence, three questions concerned
the contribution of code generated by an automatic tool.
Contributing such code after checking it manually was
generally considered acceptable. But contributing code from
an experimental tool to check whether it would be accepted,
thereby obtaining an evaluation of the tools quality, elicited
a wide range of less favorable responses. Interestingly,
the responses were somewhat more accommodating for
experimental tools by researchers than for novel tools by

10



developers. In comments, several respondents suggested
that automatically generated patches should be identified as
such. This would run the risk that developers are prejudiced
against tools [42]. And another comment was that only the
code is really important, and not who or what produced it.

Q27: A developer contributes
code based on an automatic
tool after verifying it
manually

−3 −2 −1 0 1 2 3
0

20

40

60

80

100

Pe
rc

en
ts

Dev.
Res.

Q28: A developer contributes
code generated by a novel
tool he or she is developing to
see if the tool’s output is good
enough already

−3 −2 −1 0 1 2 3
0

20

40

60

80

100
Pe

rc
en

ts
Dev.
Res.

Q32: A researcher contributes
code suggested by an
experimental tool he or she is
developing to assess the tool’s
possible contribution

−3 −2 −1 0 1 2 3
0

20

40

60

80

100

Pe
rc

en
ts

Dev.
Res.

4.3.3 Identification of developers
Reports of research on open source development may
identify the project and developers that were used in the
research. Identifying the project was generally viewed as
acceptable, but when the interactions among developers
were studied, there were slightly more developers who
thought that it should not be done. Identifying developers
who wrote specific commit messages met with significantly
stronger opposition, especially from researchers. This corre-
lates with researchers being more sensitive to privacy as we
saw above.
Q36: A researcher analyzes
the development trajectory of
the code in an open-source
project, and identifies the
project in the research report

−3 −2 −1 0 1 2 3
0

20

40

60

80

100

Pe
rc

en
ts

Dev.
Res.

Q37: A researcher analyzes
the interactions among
developers in a project, and
identifies the project in the
research report

−3 −2 −1 0 1 2 3
0

20

40

60

80

100

Pe
rc

en
ts

Dev.
Res.

Q38: A researcher analyzes
commit messages, and
includes examples with the
identity of the developers in
the research report

−3 −2 −1 0 1 2 3
0

20

40

60

80

100

Pe
rc

en
ts

Dev.
Res.

A special case of identification is sending surveys to the
emails of developers of open-source projects (like this sur-
vey was conducted). This was generally considered accept-

able or at least tolerable, although a non-negligible minority
said that preferably it would not be done. This result con-
tradicts Baltes and Diehl, who quote a developer who said
that such unsolicited surveys are “worse than spam” [8].
And the present survey also received one response equating
academic surveys to spam. But based on our results it may
be that only a small minority indeed view such practice as
unacceptable. However, if developers who are opposed to
such invitations refrained from answering the survey (as
the one we received said he does), this result is biased.
We have no way to know how many potential respondents
actually think that sending unsolicited questionnaires is
unacceptable, but then didn’t register this opinion for this
very reason.

Q35: A researcher sends a
questionnaire about open
source development to emails
of developers listed as
contributors to an open
source project

−3 −2 −1 0 1 2 3
0

20

40

60

80

100

Pe
rc

en
ts

Dev.
Res.

Wagner et al. report on a similar situation, where an
addressee of a survey approached GitHub to check on them
[65]. The result was a determination that they had not
violated GitHub’s terms of service, but a suggestion to check
beforehand in the future. GitHub documentation indicates
that current practice is to set new users’ emails to “private”
by default.

5 DISCUSSION AND RECOMMENDATIONS

From a perspective of over 40 years, and the vantage point
of software engineering research, it seems that the Belmont
report is perhaps not the best basis for discussing ethics. The
terminology of “respect for persons” and “beneficence” ob-
scures some of the real concerns of practitioners. Likewise,
using US government definitions as a basis for discussions
about what exactly constitutes “human research” is distract-
ing and unproductive.

Open source developers in particular seem to want to
promote good, which is what beneficence is all about. This
starts, of course, with the drive to create good and useful
software, and making it free for anyone to use. But it also
includes giving others a chance to interact with the commu-
nity and to develop professionally, as witnessed by the pos-
itive responses to our questions about a novice programmer
contributing beginner-quality code, or a student wanting
to learn how open-source works. A relevant example is
the response to one of the buggy patches submitted to the
Linux kernel as part of the HC study, where the maintainer
who handled it gave suggestions on what might be done
to improve it9, in an apparent attempt to mentor what
appeared to be a not-very-proficient junior contributor.

This openness and willingness to help naturally extends
to researchers. It is OK to use code examples without asking
permission. It is acceptable and even a best practice to
analyze the code and the project’s history. It is perfectly fine
to read communications between developers, and even to
approach them directly, in order to better understand the

9. lore.kernel.org/lkml/20200821081449.GI5493@kadam/

11



project. There is also no problem with contributing valid
code to the project to follow how it is treated.

At the same time, what developers care about is

• Maintain transparency: If your goal is research and
not contribution to the project, state this outright. Give
details of your research, obtain informed consent, and
take responsibility for your work. In general deception
and masquerading are frowned upon; however, when
justified by the nature of the research it may be accept-
able to coordinate the level of disclosure with project
leaders.

• Do not harm the project. In particular do not harm the
code or put it at risk. The whole ethos of open source
development is to improve the code; doing the opposite
puts you on a collision course with the community.

• Do not clash with the developers and maintainers.
Many of a project’s developers and maintainers are
volunteers, and their time and good will are the scarcest
and most valuable resources at the disposal of the
project. Negative interactions may lead to frustration
and reduced willingness to contribute. In particular,
listen to the developers and do not pass judgment on
the project or on the activity without giving them a
chance to explain themselves. The goal should be to
learn and improve, never to blame.

• Follow the rules, such as license restrictions10 and
customs. Open source development is a community. If
you want to participate, you need to accept the com-
munity standards. For example, the fair use argument
for publishing code excerpts may be irrelevant, because
the developers do not see this as a legal issue but rather
as a core values issue.

Upon reflection, these considerations can be generalized and
summarized as requirements for maintaining and justify-
ing trust in the good intentions of the researchers. One re-
spondent explicitly wrote in a comment that “Some actions
may be worth forbidding even if they are not immoral be-
cause they damage the reputation of science as an institution
and limit future opportunities for cooperation”. Trust can
be further strengthened if the researchers reciprocate and
contribute to the projects they study.

One issue which suffers from a significant divergence
of opinions is privacy. This was especially apparent in the
questions about identifying developers. Interestingly, there
was no appreciable difference between general identifica-
tion of developers who contributed to a project, and specific
identification of developers whose work had been analyzed.
The divergent opinions are probably a result of the clash
between two ideals: that of openness and attribution, which
favors the identification of developers, and that of avoiding
harm, which may favor protecting their identity. Further
support for this conjecture is given by the fact that re-
searchers, who are probably less motivated by the ideal of
openness, tended to oppose the identification of developers
more than the developers themselves. A workable solution
is not to follow a predefined guideline but to ask those you
want to identify for their explicit preference and consent.

10. Regrettably this is not as simple as it sounds as there are so many
different variants [54], [73].

Table 3
Some recommendations for possible ethics guidelines.

• Public data, including code and communications,
can be used for research.

• Projects used in research should be identified; this
is based on the tacit assumption that the research
does not harm the project.

• When excerpts of public data are quoted, their
authors should be asked whether they prefer to
be identified (for attribution) or not (for privacy).

• Developers may be contacted about their work, but
the research setting must be disclosed.

• Experiments should be cleared with project leaders
and must obtain informed consent.

• Submitting code to open source projects must only
be done in good faith.

• Code patches generated by a tool, especially an
experimental one, should be noted as such.

• License terms should be respected; if this seems to
pose a problem, consult with project leaders.

• Unsolicited invitations to experiments and surveys
should be reduced by
– Targeting only potentially interested developers;
– Stopping if the response rate is low (indicating

lack of interest);
– Stopping when results stabilize (rather than try-

ing to reach a given number of respondents).

While our results indicate that researchers generally see
things eye to eye with developers, the HC study incident
shows that this is not always the case. It is therefore advis-
able for open source repositories and projects to draft and
publish explicit rules of conduct for researchers who wish
to perform research on them. However, one must remember
that regulations only work if there is good will. For example,
Sieber wrote about informed consent that “a signed consent
form is a bureaucratic and legal maneuver that better pro-
tects the researcher’s institution than it protects the subject”
[48]. So the real goal is to facilitate a culture of cooperation,
not just to draft regulations.

Some concrete recommendations are given in Table 3.
These can be used in three contexts. The first is research
guidelines in open source repositories. Having such guide-
lines would ensure better compliance, and avoid the need
for creative interpretation of general usage guidelines that
do not consider research explicitly (as suggested in [24]).
They would also enable large-scale studies on many thou-
sands of projects where it is impractical to verify the pref-
erences of the leaders of each project. The second is ethics
codes by professional societies such as the ACM and IEEE.
Such societies cater not only to practitioners but also to
researchers. They should therefore include research ethics
in their guidelines, and they should reach out to affected
communities for input about what to include in these
guidelines. Finally, a third context is ethics committees and
IRBs charged with approving experiments. Such committees
should consider not only the legal framework, but also the

12



emergent etiquette of the communities from which subjects
are recruited. Communities have opinions and want to be
heard. Our survey is an example of how such relevant
guidelines were obtained for the case of the open source
community.

A recurring problem is recruiting projects and develop-
ers to participate in research [16], [8]. Ideally this should
be based on an opt-in mechanism to avoid spamming, but
such a mechanism does not exist. The suggestion by Wagner
et al. that over 30,000 invitations should be sent to obtain
400 respondents for a survey seems excessive; with such
a low response rate they probably have a strong selection
bias which invalidates the statistical assumptions. And such
a large number of invitations implies that they are sent
over some period of time. This can be used to reduce the
spamming in two ways. First, if the response rate is found
to be very low, this implies that a wide gap exists between
what the researchers are interested in and think is important
and what invitees care about. Asking them about things
they don’t care about makes it spam. So if the response rate
is too low the survey should be stopped. Second, researchers
should analyze the results as they are collected, and dis-
continue data collection as soon as they appear to stabilize
enough for their needs. In addition, snowballing can be
encouraged: if participants agree to forward the invitation
to their contacts, this reflects an expectation that they will
be interested. Another idea is that informing invitees of
how their email was obtained would be courteous. Finally,
one respondent suggested that invitations should be posted
to development mailing list rather than approaching the
developers directly, which would be more in line with open
source development culture.

6 THREATS TO VALIDITY

Our survey, like any opinion survey, suffers from a poten-
tial threat to construct validity. Respondents spend only
a few seconds forming opinions on hypothetical scenarios
that they have not experienced. For example, developers
may not fully realize the risks they take when research
is performed on their code, e.g. if they are identified and
presented in a negative light. This should be kept in mind
especially with regard to privacy and confidentiality. In
addition, as some respondents noted in their comments,
survey questions cannot really fully describe a situation, and
therefore in many cases the actual answer is “it depends”.
We note, however, that the vast majority of respondents did
make selections from the given options and did not skip
questions or select “other”.

A bigger problem is the threat to external validity,
namely whether our results are representative of developers
and researchers in general. This has two facets: whether the
sample is big enough, and who is included in it. Regarding
the size of the sample we checked the results obtained from
only half our respondents, 88 developers and 22 researchers,
and found that the results for developers are essentially
the same, and for researchers very close, despite their low
number. It therefore seems that the sample size is not a
problem, and the results are representative for developers
and researchers who respond to such surveys.

However, external validity may still be compromised
due to a possible selection bias. Our participants reflect a
self-selection to accept the invitation and answer the survey.
It is reasonable to assume that practitioners who knew
about the Linux-UMN incident — and especially those
who have strong opinions about being experimented on —
had a higher tendency to participate. Indeed, some of the
respondents included rather emotional comments such as
“We are NOT computers” and “Consent. It’s a thing now.
Get it.” and even much stronger language. At the same time,
those who couldn’t care less about ethics most probably just
deleted the invitation email and did not participate. The
results may therefore not be representative of the whole
population of developers and researchers. Note, however,
that this implies that our results about acceptable behavior
may be conservative rather than being too lenient.

7 CONCLUSIONS

Both open source developers and software engineering re-
searchers come from a technical background. As such they
may have blind spots when it comes to social issues and
to ethics. As Harrison wrote, “Physicists don’t have to ask
an electron if they can measure it, nor are they obligated
to allow the electron to quit the experiment at any time”
[28]. And awareness of this often leads to a reliance on (and
confinement to) legal requirements and licenses [6], [24].
But the laws originate from a background of privacy issues,
and the licenses from a background of code distribution, so
their implications regarding ethics issues like consent are
incidental rather than intended.

Current ethics guidelines were defined in the context of
bio-medical research, and their application to software en-
gineering research requires some adjustments. For example,
issues that are not well covered include

• Using existing publicly accessible artifacts (code, devel-
opment history, documentation, and communications
among developers)

• Observational studies (watching people work)
• Interacting with developers workflows (contributing

code, contributing tools, collaborating in other ways)
One approach to reduce ethical friction is therefore to de-
velop guidelines that are better aligned with the practices
of software development. Some ideas along this line were
proposed above in Table 3.

Another possible approach is to join forces: instead of
imposing on the research subjects and potentially alienating
them, involve them as participants in the research [7]. Such
an approach is in line with the open source philosophy, and
may be expected to lead to better scientific results — results
that are more correct and more relevant, being based on the
developers’ point of view. A further step is this direction is
to use participatory research: given that many researchers
are also contributing developers, they can study the projects
they work on from within. This proactively returns to the
community [43], in a way that may be better appreciated
than the publication of an academic paper.

Yet another alternative is to try to use industrial collab-
oration [46]. Such collaborations naturally enjoy high rele-
vance, because they necessarily focus on real needs. In addi-
tion, for smaller research projects one can hire developers for

13



experiments [51], [52], or even use “human computation”
platforms like Mechanical Turk [47]. Like experiments on
open source projects, these approaches have the advantage
of having developers work in their normal environment.

Last, the reaction to ethics violations should be carefully
considered. Research like the HC study is important, and
should not be discounted outright. In this specific case, its
main contribution was to show how potential vulnerabilities
could be turned into real vulnerabilities, and suggest that
this could be hidden in innocent-looking patches. Another
unintended contribution was to show that the Linux vetting
procedure works, and in fact prevented these innocent-
looking commits from being accepted. But the study suf-
fered from a significant ethics blind spot. To be acceptable,
it should have been coordinated with the target project,
and performed in a manner they approve. To prevent such
incidents from repeating, we do not need to chastise UMN
— we need to develop procedures and mechanisms to
coordinate research on open-source projects.

Data Availability
The full responses to the survey are available on Zenodo
using DOI 10.5281/zenodo.5752053.

Acknowledgments
Many thanks are due to all the survey participants, espe-
cially those who invested extra effort to write comments
and explain their positions.

REFERENCES

[1] ACM Publications Board, “ACM publications policy on
research involving human participants and subjects”. URL
https://www.acm.org/publications/policies/research-involving-
human-participants-and-subjects, 15 Aug 2021.

[2] American Psychological Association, “Ethical principles of psy-
chologists and code of conduct”. URL www.apa.org/ethics/code,
1 Jun 2003.

[3] I. Amit and D. G. Feitelson, “Corrective commit probability: A
measure of the effort invested in bug fixing”. Softw. Quality J. 29(4),
pp. 817–861, Dec 2021, DOI: 10.1007/s11219-021-09564-z.

[4] Association for Computing Machinery, “ACM code of ethics
and professional conduct”. URL https://www.acm.org/code-of-
ethics, 22 Jun 2018.

[5] A. Bacchelli, M. Lanza, and R. Robbes, “Linking e-mails and source
code artifacts”. In 32nd Intl. Conf. Softw. Eng., vol. 1, pp. 375–384,
May 2010, DOI: 10.1145/1806799.1806855.

[6] M. Bailey et al., “The Menlo report: Ethical principles guiding
information and communication technology research”. URL
https://www.dhs.gov/sites/default/files/publications/CSD-
MenloPrinciplesCORE-20120803_1.pdf, Aug 2012.

[7] M. Bakardjieva and A. Feenberg, “Involving the virtual sub-
ject”. Ethics & Inf. Tech. 2(4), pp. 233–240, Dec 2000, DOI:
10.1023/A:1011454606534.

[8] S. Baltes and S. Diehl, “Worse than spam: Issues in sampling
software developers”. In 10th Intl. Symp. Empirical Softw. Eng. &
Measurement, art. 52, Sep 2016, DOI: 10.1145/2961111.2962628.

[9] E. H. Bassett and K. O’Riordan, “Ethics of Internet research: Con-
testing the human subjects research model”. Ethics & Inf. Tech. 4(3),
pp. 233–247, Sep 2002, DOI: 10.1023/A:1021319125207.

[10] U. Becker-Kornstaedt, “Descriptive software process modeling—
how to deal with sensitive process information”. Empirical Softw.
Eng. 6(4), pp. 353–367, Dec 2001, DOI: 10.1023/A:1011986902298.

[11] P. Berander, “Using students as subjects in requirements prioritiza-
tion”. In Intl. Symp. Empirical Softw. Eng., pp. 167–176, Aug 2004,
DOI: 10.1109/ISESE.2004.1334904.

[12] D. M. Berry, “Internet research: Privacy, ethics, and alienation: An
open source approach”. Internet Res. 14(4), pp. 323–332, 2004, DOI:
10.1108/10662240410555333.

[13] J. Carver, L. Jaccheri, S. Morasca, and F. Shull, “Issues in using stu-
dents in empirical studies in software engineering education”. In
9th Softw. Metrics Symp., pp. 239–249, Sep 2003, DOI: 10.1109/MET-
RIC.2003.1232471.

[14] J. C. Carver, L. Jaccheri, S. Morasca, and F. Shull, “A checklist for
integrating student empirical studies with research and teaching
goals”. Empirical Softw. Eng. 15(1), pp. 35–59, Feb 2010, DOI:
10.1007/s10664-009-9109-9.

[15] M. Chin, “How a university got itself banned from
the Linux kernel”. The Verge 30 Apr 2021. URL
www.theverge.com/2021/4/30/22410164/linux-kernel-
university-of-minnesota-banned-open-source.

[16] H. Cho and R. LaRose, “Privacy issues in Internet surveys”.
Social Sci. Comput. Rev. 17(4), pp. 421–434, winter 1999, DOI:
10.1177/089443939901700402.

[17] S. Chopra and S. Dexter, “The freedoms of software and its eth-
ical uses”. Ethics & Inf. Tech. 11(4), pp. 287–297, Dec 2009, DOI:
10.1007/s10676-009-9191-0.

[18] P. B. de Laat, “How can contributors to open-source communi-
ties be trusted? on the assumption, inference, and substitution
of trust”. Ethics & Inf. Tech. 12(4), pp. 327–341, Dec 2010, DOI:
10.1007/s10676-010-9230-x.

[19] P. B. de Laat, “From open-source software to Wikipedia: ‘back-
grounding’ trust by collective monitoring and reputation track-
ing”. Ethics & Inf. Tech. 16(2), pp. 157–169, Jun 2014, DOI:
10.1007/s10676-014-9342-9.

[20] K. El-Emam, “Ethics and open source”. Empirical Softw. Eng. 6(4),
pp. 291–292, Dec 2001, DOI: 10.1023/A:1011962213685.

[21] A. Fabijan, P. Dmitriev, C. McFarland, L. Vermeer, H. Holm-
ström Olsson, and J. Bosch, “Experimentation growth: Evolving
trustworthy A/B testing capabilities in online software compa-
nies”. J. Softw.: Evolution & Process 30(12), art. e2113, Dec 2018,
DOI: 10.1002/smr.2113.

[22] D. G. Feitelson, E. Frachtenberg, and K. L. Beck, “Development
and deployment at Facebook”. IEEE Internet Comput. 17(4), pp. 8–
17, Jul-Aug 2013, DOI: 10.1109/MIC.2013.25.

[23] B. Floyd, T. Santander, and W. Weimer, “Decoding the represen-
tation of code in the brain: An fMRI study of code review and
expertise”. In 39th Intl. Conf. Softw. Eng., pp. 175–186, May 2017,
DOI: 10.1109/ICSE.2017.24.

[24] N. E. Gold and J. Krinke, “Ethics in the mining of software
repositories”. Empirical Softw. Eng. 27(1), art. 17, Jan 2022, DOI:
10.1007/s10664-021-10057-7.

[25] D. Graziotin, P. Lenberg, R. Feldt, and S. Wagner, “Psychometrics
in behavioral software engineering: A methodological introduc-
tion with guidelines”. ACM Trans. Softw. Eng. & Methodology 31(1),
art. 7, Jan 2022, DOI: 10.1145/3469888.

[26] F. S. Grodzinsky, K.Miller, and M. J. Wolf, “Ethical issues in open
source software”. J. Information Communication & Ethics in Society
1(4), pp. 193–205, 2003, DOI: 10.1108/14779960380000235.

[27] T. Hall and V. Flynn, “Ethical issues in software engineering re-
search: A survey of current practice”. Empirical Softw. Eng. 6(4),
pp. 305–317, Dec 2001, DOI: 10.1023/A:1011922615502.

[28] W. Harrison, “An issue of ethics: Responsibilities and obligations
of empirical software engineering researchers”. Empirical Softw.
Eng. 5(1), pp. 7–9, Mar 2000, DOI: 10.1023/A:1009870532419.

[29] W. Harrison, “Open source and empirical software engineer-
ing”. Empirical Softw. Eng. 6(3), pp. 193–194, Sep 2001, DOI:
doi.org/10.1023/A:1017379030770.

[30] IEEE, “IEEE code of ethics”. URL www.ieee.org/
about/corporate/governance/p7-8.html, Jun 2020.

[31] Intl. Federation for Information Processing, “IFIP code of ethics
and professional conduct”. URL www.ipthree.org/ifip-code-of-
ethics, 2021.

[32] J. L. King, “Humans in computing: Growing responsibilities for
researchers”. Comm. ACM 58(3), pp. 31–33, Mar 2015, DOI:
10.1145/2723675.

[33] S. A. King, “Researching Internet communities: Proposed ethical
guidelines for the reporting of results”. The Information Society
12(2), pp. 119–128, 1996, DOI: 10.1080/713856145.

[34] R. Kohavi, R. Longbotham, D. Sommerfield, and R. M. Henne,
“Controlled experiments on the web: Survey and practical guide”.
Data Mining & Knowledge Discovery 18(1), pp. 140–181, Feb 2009,
DOI: 10.1007/s10618-008-0114-1.

[35] A. D. I. Kramer, J. E. Guillory, and J. T. Hancock, “Experimental
evidence of massive-scale emotional contagion through social net-
works”. Proc. Natl. Acad. Sci. U.S.A. 111(24), pp. 8788–8790, 17 Jun

14



2014, DOI: 10.1073/pnas.1320040111.
[36] T. C. Lethbridge, “Mixing software engineering research and

development—what needs ethical review and what does not?”
Empirical Softw. Eng. 6(4), pp. 319–321, Dec 2001, DOI:
10.1023/A:1011974632340.

[37] P. L. Li et al., “Evolving software to be ML-driven utilizing real-
world A/B testing: Experiences, insights, challenges”. In 43rd Intl.
Conf. Softw. Eng., pp. 170–179, May 2021, DOI: 10.1109/ICSE-
SEIP52600.2021.00026. (SEIP track).

[38] G. Liebel and S. Chakraborty, “Ethical issues in empirical studies
using student subjects: Re-visiting practices and perceptions”. Em-
pirical Softw. Eng. 26(3), art. 40, May 2021, DOI: 10.1007/s10664-
021-09958-4.

[39] Linux Foundation Technical Advisory Board, “Report on
University of Minnesota breach-of-trust incident”. URL
https://lore.kernel.org/lkml/202105051005.49BFABCE@keescook/,
5 May 2021.

[40] C. Liu, J. Yang, L. Tan, and M. Hafiz, “R2Fix: Automatically
generating bug fixes from bug reports”. In 6th Intl. Conf. Softw.
Testing, Verification & Validation, pp. 282–291, Mar 2013, DOI:
10.1109/ICST.2013.24.

[41] S. Meredith, “Facebook-Cambridge Analytica: A timeline
of the data hijacking scandal”. CNBC 10 Apr 2018. URL
www.cnbc.com/2018/04/10/facebook-cambridge-analytica-a-
timeline-of-the-data-hijacking-scandal.html.

[42] M. Monperrus, S. Urli, T. Durieux, M. Martinez, B. Baudry, and
L. Seinturier, “Repairnator patches programs automatically”. Ubiq-
uity art. 2, Jul 2019, DOI: 10.1145/3349589.

[43] C. Oezbek, “Research ethics for studying open source projects”. In
Research Room at FOSDEM, Feb 2008.

[44] N. Peitek, J. Siegmund, S. Apel, C. Kästner, C. Parnin, A. Beth-
mann, T. Leich, G. Saake, and A. Brechmann, “A look into pro-
grammer’s heads”. IEEE Trans. Softw. Eng. 46(4), pp. 442–462, Apr
2020, DOI: 10.1109/TSE.2018.2863303.

[45] E. S. Raymond, “The cathedral and the bazaar”. URL www.
catb.org/˜esr/writings/cathedral-bazaar/cathedral-bazaar, 2000.

[46] S. Rico, E. Bjarnason, E. Engström, M. Höst, and P. Runeson, “A
case study of industry-academia communication in a joint software
engineering research project”. J. Softw.: Evolution & Process 33(10),
art. e2372, Oct 2021, DOI: 10.1002/smr.2372.

[47] M. Sabou, D. Winkler, and S. Biffl, “Empirical software engi-
neering experimentation with human computation”. In Contem-
porary Empirical Methods in Software Engineering, M. Felderer and
G. H. Travassos (eds.), pp. 173–215, Springer Nature, 2020, DOI:
10.1007/978-3-030-32489-6_7.

[48] J. E. Sieber, “Not your ordinary research”. Empirical Softw. Eng.
6(4), pp. 323–327, Dec 2001, DOI: 10.1023/A:1011926716411.

[49] J. E. Sieber, “Protecting research subjects, employees and re-
searchers: Implications for software engineering”. Empirical Softw.
Eng. 6(4), pp. 329–341, Dec 2001, DOI: 10.1023/A:1011978700481.

[50] J. Singer and N. G. Vinson, “Ethical issues in empirical studies of
software engineering”. IEEE Trans. Softw. Eng. 28(12), pp. 1171–
1180, Dec 2002, DOI: 10.1109/TSE.2002.1158289.

[51] D. I. K. Sjøberg, B. Anda, E. Arisholm, T. Dybå, M. Jørgensen,
A. Karahasanovic, E. F. Koren, and M. Vokác, “Conducting
realistic experiments in software engineering”. In Intl. Symp.
Empirical Softw. Eng., pp. 17–26, Oct 2002, DOI: 10.1109/IS-
ESE.2002.1166921.

[52] D. I. K. Sjøberg, B. Anda, E. Arisholm, T. Dybå, M. Jørgensen,
A. Karahasanović, and M. Vokáč, “Challenges and recommen-
dations when increasing the realism of controlled software engi-
neering experiments”. In Empirical Methods and Studies in Software
Engineering: Experiences from ESERNET, R. Conradi and A. I. Wang
(eds.), pp. 24–38, Springer-Verlag, 2003, DOI: 10.1007/978-3-540-
45143-3_3. Lect. Notes Comput. Sci. vol. 2765.

[53] Y. Song, T. Wang, Y. Shen, and J. Chang, “A new method for
evaluating core developers in open source software”. In 13th
Intl. Conf. Softw. Eng. & Service Sci., pp. 48–53, Oct 2022, DOI:
10.1109/ICSESS54813.2022.9930230.

[54] A. M. St. Laurent, Understanding Open Source and Free Software
Licensing. O’Reilly Media, 2004.

[55] M. Staron, “Using students as subjects in experiments – a quan-
titative analysis of the influence of experimentation on students’
learning process”. In 20th Conf. Softw. Eng. Education & Training,
pp. 221–228, Jul 2007, DOI: 10.1109/CSEET.2007.56.

[56] R. Tartler, J. Sincero, C. Dietrich, W. Schröder-Preikschat, and
D. Lohmann, “Revealing and repairing configuration inconsisten-

cies in large-scale system software”. Intl. J. Softw. Tools for Tech.
Transfer 14(5), pp. 531–551, Oct 2012, DOI: 10.1007/s10009-012-
0225-2.

[57] The National Commission for the Protection of Human Sub-
jects of Biomedical and Behavioral Research, “The Belmont re-
port”, Apr 1979. URL https://www.hhs.gov/ohrp/regulations-
and-policy/belmont-report/read-the-belmont-report/index.html.

[58] J. Thomas, “Introduction: A debate about the ethics of fair practices
for collecting social science data in cyberspace”. The Information
Society 12(2), pp. 107–118, 1996, DOI: 10.1080/713856137.

[59] J. Thomas, “When cyberresearch goes awry: The ethics of the
Rimm “cyberporn” study”. The Information Society 12(2), pp. 189–
198, 1996, DOI: 10.1080/713856140.

[60] U.S. Dept. Health & Human Services, “Regulations 45 CFR
46”, 2018. URL https://www.hhs.gov/ohrp/regulations-and-
policy/regulations/45-cfr-46/index.html.

[61] I. M. Verma, “Editorial expression of concern: Experimental ev-
idence of massivescale emotional contagion through social net-
works”. Proc. Natl. Acad. Sci. U.S.A. 111(29), p. 10779, 22 Jul 2014,
DOI: 10.1073/pnas.1412469111.

[62] N. Vinson and J. Singer, “Getting to the source of ethical is-
sues”. Empirical Softw. Eng. 6(4), pp. 293–297, Dec 2001, DOI:
10.1023/A:1011966430523.

[63] N. G. Vinson and J. Singer, “A practical guide to ethical research
involving humans”. In Guide to Advanced Empirical Software En-
gineering, F. Shull, J. Singer, and D. I. K. Sjøberg (eds.), chap. 9,
Springer-Verlag, 2008, DOI: 10.1007/978-1-84800-044-5_9.

[64] G. von Krogh and E. von Hippel, “The promise of research on
open source software”. Management Sci. 52(7), pp. 975–983, Jul
2006, DOI: 10.1287/mnsc.1060.0560.

[65] S. Wagner, D. Mendez, M. Felderer, D. Graziotin, and M. Kali-
nowski, “Challenges in survey research”. In Contemporary Empiri-
cal Methods in Software Engineering, M. Felderer and G. H. Travas-
sos (eds.), pp. 93–125, Springer Nature, 2020, DOI: 10.1007/978-3-
030-32489-6_4.

[66] R. D. Watts and A. O. Brightman, “Crossing the line: When does
the involvement of human subjects in testing of engineering cap-
stone design projects require oversight by an IRB?” In ASEE Ann.
Conf. & Expo., art. 19741, Jun 2017, DOI: 10.18260/1-2–28091.

[67] M. J. Wolf, K. W. Miller, and F. S. Grodzinsky, “On the meaning
of free software”. Ethics & Inf. Tech. 11(4), pp. 279–286, Dec 2009,
DOI: 10.1007/s10676-009-9207-9.

[68] Q. Wu and K. Lu, “Clarifications on the “hypocrite
commit” work (FAQ)”, Dec 2020. URL https://www-
users.cse.umn.edu/˜kjlu/papers/clarifications-hc.pdf.

[69] Q. Wu and K. Lu, “On the feasibility of stealthily introducing
vulnerabilities in open-source software via hypocrite commits”,
2020. Accepted (with a slightly different title) to the 42nd IEEE
Symp. Security & Privacy 2021, but withdrawn.

[70] Z. Wu, J. Li, C. Fu, Q. Xuan, and Y. Xiang, “Network-based
ranking for open source software developer prediction”. Intl. J.
Softw. Eng. & Knowledge Eng. 28(6), pp. 845–868, Jun 2018, DOI:
10.1142/S0218194018500250.

[71] D. Yan, B. Qi, Y. Zhang, and Z. Shao, “M-BiRank: Co-ranking
developers and projects using multiple developer-project interac-
tions in open source software community”. EURASIP J. Wireless
Commun. & Netw. 2020, art. 215, Oct 2020, DOI: 10.1186/s13638-
020-01820-3.

[72] Y. Yu, “Role of reciprocity in firm’s open source strategies”. Baltic J.
Management 15(5), pp. 797–815, 2020, DOI: 10.1108/BJM-12-2019-
0408.

[73] S. Zacchiroli, “A large-scale dataset of (open source) license text
variants”. In 19th Working Conf. Mining Softw. Repositories, pp. 757–
761, May 2022, DOI: 10.1145/3524842.3528491.

[74] M. Zimmer, ““But the data is already public”: On the ethics of
research in Facebook”. Ethics & Inf. Tech. 12(4), pp. 313–325, Dec
2010, DOI: 10.1007/s10676-010-9227-5.

15


	Introduction
	Ethical Perspectives in Software Engineering Research
	Background on Ethics in Research
	Ethics in Online Settings
	Application to Software engineering Research
	Considerations for Open Source

	Survey Design and Execution
	Survey Structure
	Recruiting Subjects
	The Survey Respondents

	Survey Results
	The Linux-UMN Incident
	Ethics Concerns
	Inappropriate use of open source code
	Expectations for privacy and confidentiality
	Interfering with developers' work
	Risk of harming the project

	Acceptance of Scenarios
	Contribution for self benefit
	Contributing potentially problematic code
	Identification of developers


	Discussion and Recommendations
	Threats to Validity
	Conclusions
	References

