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Abstract

The utilization of parallel computers depends on how jobs are packed together: if the jobs
are not packed tightly, resources are lost due to fragmentation. The problem is that the goal of
high utilization may conflict with goals of fairness or even progress for all jobs. The common
solution is to use backfilling, which combines a reservationfor the first job in the interest of
progress with packing of later jobs to fill in holes and increase utilization. However, backfilling
considers the queued jobs one at a time, and thus might miss better packing opportunities. We
propose the use of dynamic programming to find the best packing possible given the current
composition of the queue, thus maximizing the utilization on every scheduling step. Simula-
tions of this algorithm, called LOS (Lookahead Optimizing Scheduler), using trace files from
several IBM SP parallel systems, show that LOS indeed improves utilization, and thereby re-
duces the mean response time and mean slowdown of all jobs. Moreover, it is actually possible
to limit the lookahead depth to about 50 jobs and still achieve essentially the same results. Fi-
nally, we experimented with selecting among alternative sets of jobs that achieve the same
utilization. Surprising results indicate that choosing the set at the head of the queue does not
necessarily guarantee best performance. Instead, repeatedly selecting the set with the maxi-
mal overall expected slowdown boosts performance when compared to all other alternatives
checked.

1 Introduction

A parallel job is composed of a number of concurrently executing processes, which collectively
perform a certain computation. Arigid parallel job has a fixed number of processes (referred to as
the job’ssize) which does not change during execution [7]. To execute sucha parallel job, the job’s
processes are mapped to a set of processors using a one-to-one mapping. In a non-preemptive

∗A preliminary version of this work has appeared in the 9th Workshop on Job Scheduling Strategies for Parallel
Processing, June 2003 [23].
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regime, these processors are then dedicated to running thisjob until it terminates. The set of
processors dedicated to a certain job is called apartition of the machine. To increase utilization,
parallel machines are typically partitioned into several non-overlapping partitions, allocated to
different jobs running concurrently, a technique calledspace slicing.

To protect the machine resources and allow successful execution of jobs, users are not allowed
to directly access the machine. Instead, they submit their jobs to the machine’s scheduler — a
software component that is responsible for monitoring and managing the machine resources. The
scheduler typically maintains a queue of waiting jobs. The jobs in the queue are considered for
allocation whenever the state of the machine changes. Two such changes are the submission of a
new job (which changes the queue), and the termination of a running job (which frees an allocated
partition). Upon such events, so calledscheduling steps, the scheduler examines the waiting queue
and the machine resources and decides which jobs (if any) will be started at this time.

Allocating processors to jobs can be seen as packing jobs into the available space of free pro-
cessors: each job takes a partition, and we try to leave as fewidle processors as possible. The
goal is therefore to maximize the machine utilization. The lack of knowledge regarding future jobs
leads current on-line schedulers to use simple heuristics to perform the packing at each scheduling
step, as described in Section 2. These heuristics do not guarantee to minimize the machine’sfree
capacitywhich is the number of processors left unused.

We propose a new scheduling algorithm guaranteed to maximize utilization at each scheduling
step. Unlike current schedulers that consider the queued jobs one at a time, our scheduler bases its
scheduling decisions on the whole contents of the queue. Thus we named it LOS — an acronym
for “Lookahead Optimizing Scheduler”. LOS starts by examining only the first waiting job. If it
fits within the machine’s free capacity it is immediately started. Otherwise, a reservation is made
for this job so as to prevent the risk of starvation. The rest of the waiting queue is processed using
an efficient scheduling algorithm based on dynamic-programming. The algorithm chooses a set of
jobs which will maximize the machine utilization and will not violate the reservation for the first
waiting job.

In some cases, it is possible to achieve the same utilizationusing several alternative sets of jobs.
The initial algorithm respects the arrival order of the jobs, and uses the set of jobs that is closer to
the head of the queue. However, we show that performance can further improve if we disregard
the queue order and choose the set which contains the maximalnumber of jobs or the jobs with the
maximal overall slowdown.

Section 3 provides a detailed description of the algorithm,and of the different alternatives
when several job sets lead to the same utilization. It then presents a discussion on complexity.
While the problem of packing jobs is in general NP-complete,we show that this particular instance
is actually tractable using the dynamic programming pseudo-polynomial algorithm. Section 4
describes the simulation environment used in the evaluation and presents the experimental results
from the simulations in which LOS was tested using trace filesfrom real systems. It also presents
and compares LOS’s results when using alternative job sets.
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2 Scheduling with Backfilling

The First Come First Serve (FCFS) scheduling algorithm starts jobs in the same order in which
they arrive in the queue. If the machine’s free capacity cannot accommodate the first job, it will
not attempt to start any subsequent job. It is a fair scheduling policy which guarantees freedom
of starvation, since a job cannot be delayed by other jobs submitted at a later time. The problem
with FCFS is the resulting poor utilization of the machine, since small jobs which could utilize idle
processors are delayed until all jobs ahead of them are started.

To improve utilization and other performance metrics, the queue may be considered in some
other order [12, 22]. TheShortest Job First(SJF) algorithm sorts the waiting jobs by increasing
estimated runtime and executes the jobs with the shortest runtime first. A job’s runtime can be
estimated through repeated executions of the job [6] or through compile-time analysis [20, 3]. The
opposite algorithm,Longest Job First, executes the jobs with the longest processing time first.
TheSmallest Job First[16] and the oppositeLargest Job Firstalgorithms sort the waiting jobs by
increasing and decreasing size respectively. The latter ismotivated by results in bin-packing that
indicate that a simple first-fit algorithm achieves better packing if the packed items are sorted in
decreasing size [5]. Finally, theSmallest Cumulative Demand First[16, 21] algorithm sorts the
jobs in an increasing order according to the product of theirsize and expected execution time, so
small short jobs get the highest priority.

The problem with all the above algorithms is that jobs may suffer from starvation, and process-
ing power is wasted if the first job cannot run. This problem issolved bybackfillingalgorithms,
which allow small jobs from the back of the queue to execute before larger jobs that arrived earlier,
thus utilizing the idle processors, while the latter are waiting for enough processors to be freed
[15]. Backfilling is known to greatly increase user satisfaction since small jobs tend to get through
faster, while bypassing large ones [11, 2]. Note that backfilling algorithms require the jobs’ run-
times to be known in advance. In real implementations, the users need to provide an estimate of
their job’s runtime, which in practice is often specified as aruntime upper-bound. Surprisingly, it
turns out that inaccurate estimates generally lead to better performance than accurate ones [17].

Backfilling was first implemented on a production system in the “EASY” scheduler devel-
oped by Lifka for the IBM SP1 parallel supercomputer [15], and later integrated with IBM’s
LoadLeveler product [24]. EASY implements an aggressive version of backfilling, in which any
job can be backfilled provided it does not delay the first job inthe queue. This means that star-
vation cannot occur since the queuing delay for the job at thehead of the queue depends only on
jobs that are already running, and these jobs will eventually either terminate or be terminated when
they exceed their estimated runtime. The problem is that jobs other than the first may be repeatedly
delayed by newly arriving jobs that skip them in the queue, which reduces predictability.

When predictability is required one can use “conservative”backfilling, which makes reserva-
tions forall queued jobs rather than only for the first one. In this version, backfilling is done subject
to checking that it does not delay any previous job in the queue, and thus the risk of starvation is
eliminated. The Maui scheduler [10] has a parameter that allows the system administrator to set the
number of reservations. Mu’alem and Feitelson [17] compared EASY backfilling to conservative
backfilling and show that for most cases the performance of the EASY backfilling algorithm was
better than that of conservative backfilling. Further analysis showed this to be the result of complex
interactions among the scheduler, the workload, and the metric used to evaluate the performance
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[8].
Another parameter of backfill algorithms is the order in which the queue is scanned. The Maui

scheduler allows a general priority function to be defined [10]. Chiang et al. show that prioritizing
jobs by estimated runtime (shortest first) or by expected slowdown (highest first) improves several
performance metrics [4]. Our results corroborate these findings in the context of selecting among
alternative job sets that achieve the same utilization.

Additional variants of backfilling allow the scheduler moreflexibility. Dynamic backfilling
allows the scheduler to overrule a previous reservation if introducing a slight delay will improve
utilization considerably [11]. Talby and Feitelson presentedslack based backfilling, an enhanced
backfill scheduler that supports priorities [26]. These priorities are used to assign each waiting
job a slack, which determines how long it may have to wait before running: important jobs will
have little slack in comparison with others. Backfilling is allowed only if the backfilled job does
not delay any other job by more than that job’s slack. Srinivasan et al. [25] have suggested a
strategy calledselective backfillingwhere reservations are provided selectively only to jobs whose
expected slowdown exceeds some threshold. This is in fact equivalent to slack-based backfilling,
where the slack is set to a value that will limit the slowdown to the desired threshold. Ward et al.
have suggested the use of arelaxed backfillstrategy, which is similar, except that the slack is a
constant factor and does not depend on priority [27].

Lawson and Smirni presented amultiple-queue backfillingapproach in which each job is as-
signed to a queue according to its expected execution time, and each queue is assigned to a disjoint
partition of the parallel system on which only jobs from thisqueue can be executed [14]. Their
simulation results indicate a performance gain compared toa single-queue backfilling, resulting
from the fact that the multiple-queue policy reduces the likelihood that short jobs get delayed in
the queue behind long jobs. Good results were also obtained by Chiang et al. when simulating a
cluster of eight Origin 2000 machines, which effectively work like a multi-server queue [4].

One feature that all previous backfilling algorithms have incommon is that they use heuristics
that attempt to improve utilization and other performance metrics, but do not guarantee optimality.
Our main contribution is to show that optimal utilization can in fact be achieved in this context,
despite the NP-completeness of packing in general. This is due to the relatively limited repertoire
of sizes provided by realistic machines, as shown in Section3.4. However, this is still only optimal
for each scheduling step; it is not optimal in the global sense as could be achieved by an off-line
algorithm with knowledge of the future.

3 The LOS Scheduling Algorithm

The LOS scheduling algorithm examines all the jobs in the queue in order to maximize the current
system utilization. Instead of scanning the queue in some order, and starting any job that is small
enough not to violate prior reservations, LOS tries to find a combination of jobs that together
maximize utilization. This is done using dynamic programming. Note that this is still a greedy on-
line algorithm, and therefore the result is a local optimum,but not necessarily a global optimum. A
globally optimal schedule might choose to leave processorsidle in anticipation of future arrivals.

To ease the exposition, Section 3.1 first presents the basic algorithm, showing how to find a set
of jobs that together maximize utilization. Section 3.2 then extends this by showing how to also
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symbol meaning

N machine size
n free capacity
rji running job numberi
R the set of all running jobs
wji waiting job numberi
WQ the set of all waiting jobs
S the set of jobs selected for scheduling

Table 1: Summary of notation.

respect a reservation for the first queued job. Section 3.3 examines selection among alternative
sets of jobs that achieve the same utilization value, in the interest of improving other performance
metrics. Section 3.4 analyzes the complexity of the algorithm.

The notation we will use is summarized in Table 1. The machinesize isN . At the time that
the scheduler is called, denoted byt, the machine runs a set of jobsR = {rj1, rj2, ..., rjr}, each
with two attributes: itssize, and its estimated remaining execution time,rem. For convenience,R
is sorted by increasingrem values. The machine’s free capacity isn = N −

∑r
i=1 rji.size. The

queue contains a set of waiting jobsWQ = {wj1, wj2, .., wjq}, which also have two attributes: a
size requirement and a user estimated runtime,time. The task of the scheduling algorithm is to
select a subsetS ⊆ WQ of jobs, referred to as theselected jobset, which maximizes the machine
utilization. These jobs are removed from the queue and started immediately. The selected jobset is
safeif it does not impose a risk of starvation.

To provide an intuitive feel of the algorithms, the description includes an on-going scheduling
example. Paragraphs describing the example are marked by♣.

3.1 The Basic Algorithm

3.1.1 A Two Dimensional Matrix

Our goal is to find a set of jobs that will maximize utilization. To do so, the waiting queue,WQ,
is processed using a dynamic-programming algorithm. Intermediate results are stored in a two
dimensional matrix denotedM of size(|WQ| + 1) × (n + 1). Each cellmi,j contains an integer
valueutil, and a boolean flagselected. util holds the maximal achievable utilization at this time,
if the machine’s free capacity isj and only waiting jobs{1..i} are considered for scheduling. Note
thatutil is not the machine’s average utilization; rather, it is a momentary utilization value which
represents the maximal number of processors that can be utilized by the considered waiting jobs.
Theselected flag, if set, indicates thatwji was chosen for execution (wji ∈ S); when the algorithm
finishes calculatingM , it will be used to trace the jobs which constructS. For convenience, the
i = 0 row andj = 0 column are initialized with zero values. Such padding eliminates the need of
handling end cases.
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Algorithm 1 ConstructingM

for j = 0 to n
m0,j .util ← 0 // init top row

for i = 1 to |WQ| // outer loop on rows (jobs)
mi,0.util ← 0 // init first column

for j = 1 to n // inner loop on columns (free processors)
mi,j.util ← mi−1,j .util // default: don’t use this job
mi,j.selected← False

if wji.size ≤ j // job is a potential candidate

util′ ← mi−1,j−wji.size.util + wji.size // find achievable utilization with it

if util′ > mi−1,j .util // improves utilization
mi,j.util ← util′ // so use it
mi,j.selected← True

3.1.2 Filling M

M is filled from left to right, top to bottom, as indicated in Algorithm 1. The values of each cell
are calculated using values from previously calculated cells. The idea is that if adding another
processor (bringing the total toj) allows the currently considered jobwji to be started, we need
to check whether includingwji in the selected jobset increases the utilization. The utilization
that would be achieved assuming this job is included is calculated in the variableutil′. If this is
higher than the utilization without this job, theselected flag is set to true for this job. If not, or
if the size of jobwji is larger thanj, the utilization is simply what it was without this job, that
is mi−1,j.util. The computation stops when reaching cellm|wq|,n at which timeM is filled with
values. In particular, the last cell filled shows the maximalutilization that can be achieved at this
stage, as it is based on considering all possible combinations of jobs.

A special case occurs when the utilization withwji turns out to be the same as without it. This
may happen if two different sets of jobs, one which containswji and one which doesn’t, lead to
the same utilization. We must then decide which set to select. The current algorithm ignores this
dilemma; it selects the currently considered job only if it actually improves the utilization, and
does not select it if it leads to the same utilization. Due to the order in which jobs are considered,
this is equivalent to preferring jobs that appear closer to the head of the queue. However, other
options are also possible, and we discuss them in Section 3.3.

The complexity of the basic algorithm is obviously the size of the matrix |WQ| × n. This
can be trimmed by first removing all jobs that are larger thann (the current free capacity) from
consideration.
♣ Our example concerns a machine of sizeN = 10. At t = 25, when the scheduler is called

(e.g. due to the termination of some previously running job), the machine runs a single jobrj1

with size = 5 and expected remaining execution timerem = 3. The machine’s free capacity is
thusn = 5. The set of waiting jobs and the resultingM is shown in Table 2. Theselected flag
is denoted byտ if it is set, and by↑ if cleared. The first job has size 7, so it does not fit in the 5
free processors. The utilization in its row is therefore 0, and theselected flag is false. The second
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j
i (size) 0 1 2 3 4 5

0 (φ) 0 0 0 0 0 0
1 (7) 0 0 ↑ 0 ↑ 0 ↑ 0 ↑ 0 ↑
2 (3) 0 0 ↑ 0 ↑ 3տ 3տ 3տ
3 (1) 0 1տ 1տ 3 ↑ 4տ 4տ
4 (2) 0 1 ↑ 2տ 3 ↑ 4 ↑ 5տ
5 (2) 0 1 ↑ 2 ↑ 3 ↑ 4 ↑ 5 ↑

Table 2: ResultingM for the example.

Algorithm 2 ConstructingS

S ← {} // initially empty

i← |WQ| // start from end
j ← n

while i > 0 andj > 0 // continue until reach edge

if mi,j .selected = True

S ← S ∪ {wji} // add this job
j ← j − wji.size // skip appropriate columns

i← i− 1

job has size 3. When only 1 or 2 processors are considered, it too is too large to fit. But when 3 or
more processors are considered, it is selected and the utilization is then 3. The third job has size
1. When only 1 or 2 processors are considered, it is selected and the utilization is 1. But when
3 processors are considered, it is better to select the second job and not the third one. With 4 or
5 processors, both can be selected, leading to a total utilization of 4. The fourth job is selected
when two processors are considered (better than using the third job with utilization 1), or when
5 are considered (achieving a utilization of 5 together withjob 2). Job 5 does not add anything
and is never selected. Thus the maximal achievable utilization of thej = 5 free processors when
considering alli = 5 jobs ism5,5.util = 5. Note that a conventional backfilling algorithm, which
considers jobs in the queue order, would select jobs 2 and 3 and only achieve a utilization of 4.

3.1.3 ConstructingS

Starting at the last computed cellm|wq|,n, S is constructed by following the boolean flags backwards
as described in Algorithm 2. Each job is considered in turn. Jobs that are marked as selected are
added toS. This induces a jump to a different column, that reflects the number of processors
remaining after starting this job. Jobs that are not marked are simply skipped.
♣ The resultingS contains two jobs:wj2 and wj4, and its scheduling at timet = 25 is

illustrated in Figure 1. The list of jobs in the queue and their expected runtime is also shown.
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rj1

N
=

1
0

t=25

Time

wj2

wj4
wj size time

1 7 4
2 3 5
3 1 6
4 2 4
5 2 2

Figure 1: Schedulingwj2 andwj4 at t = 25

3.2 Adding Reservations to the Algorithm

3.2.1 Freedom from Starvation

Algorithm 1 has the drawback that it might starve large jobs.Consider the first queued job in our
example. Its size is 7, so it cannot start running immediately, and other jobs are selected in its place,
namely jobswj2 andwj4. But after 3 time units jobrj1 will terminate, releasing its 5 processors.
However, now jobswj2 andwj4 are still running, so again 7 processors are not available, and again
other jobs will be selected. This can continue indefinitely,if smaller jobs arrive and are backfilled.

The solution to this problem is to bound the waiting time of the first queued job. The algorithm
begins by trying to start the first waiting job. Ifwj1.size ≤ n, it is removed from the waiting
queue, added to the running jobs list and starts executing. Otherwise, the algorithm calculates the
shadow timeat whichwj1 can begin its execution [15]. It does so by traversing the list of running
jobs while accumulating their sizes until reaching a jobrjs at whichwj1.size ≤ n+

∑s
i=1 rji.size.

The shadow time is defined to beshadow = t + rjs.rem. A reservation is then made for jobwj1

at timeshadow (recall thatR is ordered by increasingrem times, so at this time the firsts running
jobs have terminated and freed their processors). To dismiss the concern of handling special cases,
we setshadowto∞ if wj1 can be started att. In this caseeveryselected jobset is safe, as the first
waiting job is assured to start without delay.
♣ The7 processors requirement ofwj1 prevents it from starting att = 25. It will be able to

start att = 28 afterrj1 terminates, thusshadow is set to28 in the example.

3.2.2 Maximizing Utilization

One way to ensure the safeness of the selected jobset is to require all jobs inS to terminate before
the shadow time, so as not to interfere with the first job’s reservation. But this is overly restrictive.
The idea is that some processors may be left over at the shadowtime afterwj1 is started. These
processors, referred to as theshadow free capacity, can be used by backfilled jobs without inter-
fering with the reservation forwj1. Using them can lead to a better jobsetS ′, still safe but with a
much improved utilization.
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If the first waiting job,wj1, can only start afterrjs has terminated, than the shadow free capac-
ity, denoted byextra, is calculated as follows :

extra = n +
s

∑

i=1

rji.size − wj1.size

To use the extra processors, the jobs which are expected to terminate before the shadow time are
distinguished from those that are expected to still run at that time, and are therefore candidates for
using the extra processors. Each waiting jobwji ∈WQ will now be represented by two values: its
original size and itsshadow size— its size at the shadow time. Jobs expected to terminate before
the shadow time have a shadow size of0. The shadow size is denoted byssize, and is calculated
using the following rule:

wji.ssize =

{

0 t + wji.time ≤ shadow
wji.size otherwise

If wj1 can start att, the shadow time is set to∞, as noted above. As a result, the shadow sizessize
of all waiting jobs is set to0, and any computations involving extra processors are unnecessary.
In this case settingextra to 0 improves the algorithm runtime. All these calculation are done in a
pre-processing phase, before running the dynamic programming algorithm.
♣ wj1which can begin execution att = 28 leaves3 extra processors.extra is therefore set to

3. As for the queued jobs,wj5 is the only job expected to terminate before the shadow time,thus
its shadow size is0.

3.2.3 A Three Dimensional Data Structure

To manage the use of theextra processors, we use a three dimensional matrix denotedM ′ of size
(|WQ|+ 1)× (n + 1)× (extra + 1). Each cellm′

i,j,k now contains two integer values,util and
sutil, as well as the booleanselectedflag. util holds the maximal achievable utilization att, if
the machine’s free capacity isj, the shadow free capacity isk, and only waiting jobs{1..i} are
considered for scheduling.sutil hold the minimal number of extra processors required to achieve
the util value mentioned above. Theselected flag is used in the same manner as described in
section 3.1.1. Likewise, thei = 0 rows andj = 0 columns are initialized with zero values, this
time for allk planes.

3.2.4 Filling M ′

The values in everym′
i,j,k cell are calculated in an iterative manner using values frompreviously

calculated cells as described in Algorithm 3. The calculation is similar to Algorithm 1, except for
another encompassing loop, and the use of a slightly more complicated condition that checks that
enough processors are available both nowand at the shadow time. First, we initialize the cell as
if the job is not selected. Then, if the job is small enough, wecheck whether it will improve the
utilization. The job will be selected if it actually improves the utilization, or even if the utilization
stays the same but lessextra processes are used at theshadow time. The computation stops when
reaching cellm′

|wq|,n,extra.

9



Algorithm 3 ConstructingM ′

for k = 0 to extra // outer loop on layers (extra processors)

for j = 0 to n
m0,j.util ← 0 // init top row
m0,j.sutil ← 0

for i = 1 to |WQ| // middle loop on rows (jobs)
mi,0.util ← 0 // init first column
mi,0.sutil ← 0

for j = 1 to n // inner loop on columns (free processors)
m′

i,j,k.util ← m′
i−1,j,k.util // default: don’t use this job

m′
i,j,k.sutil ← m′

i−1,j,k.sutil
m′

i,j,k.selected← False

if wji.size ≤ j andwji.ssize ≤ k // job is a potential candidate

util′ ← m′
i−1,j−wji.size,k−wji.ssize.util + wji.size

sutil′ ← m′
i−1,j−wji.size,k−wji.ssize.sutil + wji.ssize

if (util′ > m′
i−1,j,k.util) or // improves util or reduces shadow util

(util′ = m′
i−1,j,k.util andsutil′ < m′

i−1,j,k.sutil)

m′
i,j,k.util ← util′ // so use it

m′
i,j,k.sutil ← sutil′

m′
i,j,k.selected← True

If the values ofutil andsutil when selecting a job remain the same as without that job, then
we have found two sets of jobs that have identical resource usage. For now we ignore this special
case, and simply skip the current job. Other options are considered in Section 3.3.
♣ We use the notationsizessize to represent the size and shadow size of the jobs. When

the shadow free capacity isk = 0, only wj5 who’s ssize = 0 can be started. As a result, the
maximal achievable utilization of thej = 5 free processors, when considering alli = 5 jobs is
m′

5,5,0.util =2, as can be seen in the top of Table 3.
When the shadow free capacity isk = 1, wj3 who’s ssize = 1 is also considered for schedul-

ing. As can be seen in the second table in Table 3, starting atm′
3,1,1 the maximal achievable

utilization is increased to1, at the price of using a single extra processor. When considering job
wj5 it becomes preferable when only two processors are available, atm′

5,2,1. But from the next
cell on, both jobswj3 andwj5 are selected, and the utilization is 3.

As the shadow free capacity increases tok = 2, wj4 who’s shadow size is2, joins wj3 and
wj5 as a valid candidate. Its effect is illustrated in the third table of Table 3. Atm′

4,2,2 it becomes
preferred over jobwj3 and the maximal achievable utilization increases to2. This remains the case
till the end of the row, because it uses both available extra processors. Only when the fifth job is
considered can we increase the utilization further, using the fact that it does not require any extra
processors. The maximal utilization is then 4, the sum ofwj4 andwj5 sizes, using a minimum of
2 extra processors, corresponding towj4’s shadow size.

It is interesting to examine them′
5,2,2 cell, as it introduces an interesting heuristic decision.
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k = 0 j
i (sizessize) 0 1 2 3 4 5

0 (φφ) 00 00 00 00 00 00

1 (77) 00 00 ↑ 00 ↑ 00 ↑ 00 ↑ 00 ↑
2 (33) 00 00 ↑ 00 ↑ 00 ↑ 00 ↑ 00 ↑
3 (11) 00 00 ↑ 00 ↑ 00 ↑ 00 ↑ 00 ↑
4 (22) 00 00 ↑ 00 ↑ 00 ↑ 00 ↑ 00 ↑
5 (20) 00 00 ↑ 20տ 20տ 20տ 20տ

k = 1 j
i (sizessize) 0 1 2 3 4 5

0 (φφ) 00 00 00 00 00 00

1 (77) 00 00 ↑ 00 ↑ 00 ↑ 00 ↑ 00 ↑
2 (33) 00 00 ↑ 00 ↑ 00 ↑ 00 ↑ 00 ↑
3 (11) 00 11տ 11տ 11տ 11տ 11տ
4 (22) 00 11 ↑ 11 ↑ 11 ↑ 11 ↑ 11 ↑
5 (20) 00 11 ↑ 20տ 31տ 31տ 31տ

k = 2 j
i (sizessize) 0 1 2 3 4 5

0 (φφ) 00 00 00 00 00 00

1 (77) 00 00 ↑ 00 ↑ 00 ↑ 00 ↑ 00 ↑
2 (33) 00 00 ↑ 00 ↑ 00 ↑ 00 ↑ 00 ↑
3 (11) 00 11տ 11տ 11տ 11տ 11տ
4 (22) 00 11 ↑ 22տ 22տ 22տ 22տ
5 (20) 00 11 ↑ 20տ 31տ 42տ 42տ

k = 3 j
i (sizessize) 0 1 2 3 4 5

0 (φφ) 00 00 00 00 00 00

1 (77) 00 00 ↑ 00 ↑ 00 ↑ 00 ↑ 00 ↑
2 (33) 00 00 ↑ 00 ↑ 33տ 33տ 33տ
3 (11) 00 11տ 11տ 33 ↑ 33 ↑ 33 ↑
4 (22) 00 11 ↑ 22տ 33 ↑ 33 ↑ 33 ↑
5 (20) 00 11 ↑ 20տ 31տ 42տ 53տ

Table 3: FilledM ′ in the example
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Figure 2: Schedulingwj2 andwj5 at t = 25

When the machine’s free capacity isj = 2 and jobs{1..5} are considered, the maximal achievable
utilization can be accomplished by either startingwj4 or wj5, both with a size of2, yet wj4 will
use2 extra processors whilewj5 will use none. The algorithm chooses to skipwj4 and selectswj5

as it leaves more extra processors to be used by other jobs.
Finally the full k = 3 shadow free capacity is considered.wj2, who’s shadow size is3 can

now join the other jobs as a valid candidate. As can be seen in the bottom part of Table 3, the
maximal achievable utilization att = 25, when the machine’s free capacity isn = j = 5, the
shadow free capacity isextra = k = 3 and all five waiting jobs are considered by the algorithm is
m′

5,5,3.util = 5. The minimal number of extra processors required to achievethis utilization value
is m′

5,5,3.sutil = 3.

3.2.5 ConstructingS ′

S ′ is constructed in essentially the same way asS (Algorithm 2), with the necessary extension to
handle the third indexk. The construction starts at the last computed cellm′

|wq|,n,extra, follows the
selected flags, and stops when reaching the 0 boundary of any plane.
♣ In our example the selected flag inm′

5,5,3 is set, sowj5 is added toS ′. Moving to cell
m′

4,3,3 we find that the flag is not set, and the same applies in cellm′
3,3,3. Therefore the two jobs

wj4 andwj3 are skipped. Landing in cellm′
2,3,3 we find a set flag, and add jobwj2 to S ′, thus

completing the algorithm and achieving a full utilization of 5 processors. This selected jobset is
safe, and ensures thatwj1 will start without a delay at timet= 28. The resulting jobset is illustrated
in Figure 2. Note the difference from the jobset shown in Figure 1, which achieves the same
utilization, but is not safe, as it does not respect the reservation for jobwj1.

3.3 Improving Performance by Job Selection

3.3.1 Adding Merit Values

In Section 3.2.4 we noted that there are cases where several different sets of jobs lead to exactly the
sameutil andsutil values. In these cases, we need to choose one of these sets. Rather than make
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an arbitrary decision, we can define additional metrics thatwill guide the decision. To do so, we
enhanced our three dimensional data structure described inSection 3.2.3 by including an additional
merit value in everym′

i,j,k cell, in addition to the existingutil, sutil, andselected fields. We also
modified LOS’s core algorithm for constructingM ′ to update and consider the merit value. The
idea is that whenever the same utilization value can be achieved either by selecting or skipping job
i, the modified algorithm considers the merit value in order todecide whether to set theselected
flag or not. By doing so, the selected jobsetS ′ is optimized in view of the merit.

Algorithm 4 ConstructingM ′ With Merit

for k = 0 to extra // outer loop on layers (extra processors)

for j = 0 to n
m0,j.util ← 0 // init top row
m0,j.sutil ← 0
m0,j.merit← 0

for i = 1 to |WQ| // middle loop on rows (jobs)
mi,0.util ← 0 // init first column
mi,0.sutil ← 0
mi,0.merit← 0

for j = 1 to n // inner loop on columns (free processors)
m′

i,j,k.util ← m′
i−1,j,k.util // default: don’t use this job

m′
i,j,k.sutil ← m′

i−1,j,k.sutil
m′

i,j,k.merit← m′
i−1,j,k.merit

m′
i,j,k.selected← False

if wji.size ≤ j andwji.ssize ≤ k // job is a potential candidate

util′ ← m′
i−1,j−wji.size,k−wji.ssize.util + wji.size

sutil′ ← m′
i−1,j−wji.size,k−wji.ssize.sutil + wji.ssize

merit′ ← calc merit(m′
i−1,j−wji.size,k−wji.ssize.merit, wji)

if (util′ > m′
i−1,j,k.util) or // job leads to improvement

(util′ = m′
i−1,j,k.util andsutil′ < m′

i−1,j,k.sutil) or
(util′ = m′

i−1,j,k.util andsutil′ = m′
i−1,j,k.sutil andmerit′ > m′

i−1,j,k.merit)

m′
i,j,k.util ← util′ // so use it

m′
i,j,k.sutil ← sutil′

m′
i,j,k.merit← merit′

m′
i,j,k.selected← True

Algorithm 4 describes the use of the merit for the construction of M ′. As in the original
algorithm, it fills the 3-dimensional matrix one cell at a time. The default is not to select the
current jobi, and to use theutil, sutil, andmerit values from the corresponding cell in rowi− 1.
However, the current job will be selected for inclusion inS ′ if one of three conditions holds. The
first is that this will cause the utilization to increase. Thesecond is that the utilization will stay
the same, but this will be achieved using less extra processors. The third and new condition is that
both the utilization and the extra processors are the same, but the merit value improves.
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scheme calc merit(m, wji)

always skip −i
always select i
max jobs m+1
short first m− wji.time

max slowdown m + (t−wji.arrival)+wji.time

wji.time

Table 4: Options for Defining Merit

It is important to note that the use of the merit doesnot change any of the utilization values
in any of M ′s cells when compared to the values computed by the original algorithm, and that
the selected set,S ′, will still maximize the machine utilization. Likewise, itis also important to
understand thatM ′ is still filled in a similar iterative manner as described in Section 3.2.4, thus the
use of the merit does not change the complexity of the algorithm.

The calculation of the merit values is represented in Algorithm 4 by the functioncalc merit().
We experimented with various merit functions, which are summarized in Table 4 and described in
the following sub-sections.

3.3.2 Always Skip or Always Select

The original algorithm never selects a job unless it actually improves the utilization or reduces the
use of the extra processors. This can be called the “always skip” approach. It is motivated by the
desire to select jobs that are closer to the head of the waiting queue, and therefore have waited
longer. In the framework of the merit values, we use−i (minus the job’s serial number) as the
merit value. In this way, jobs that have a low rank in the queueget a higher merit value.

The opposite approach is “always select”, in which we preferto include the current job and
thereby tend to select jobs that are closer to the tail of the waiting queue. Surprisingly, simulation
results indicated that this improves the system’s performance (as measured by the mean response
time and bounded slowdown metrics). This is explained by thefact that the population of the
waiting queue is not homogeneous. The backfilling algorithmrepeatedly picks jobs out of the
queue and starts them. The jobs that are thus removed are those that use idle processors, and will
not interfere with the reservation for the first job; hence these are jobs that tend to be small and
short. The head of the waiting queue has been subjected to such selections for a longer time, so
the characteristics of the remaining jobs are different from those that are present near the end of
the queue.
♣ In our example, usingalways selectinstead ofalways skipleads to selecting jobswj3 and

wj4 instead of jobwj2. This leads to the same maximal current utilization, and uses the same
number of extra processors, but the jobs are closer to the tail of the queue.

3.3.3 Maximizing the Number of Jobs

An alternative approach attempts to improve the performance metrics directly. Both the response
time and bounded slowdown metrics are computed as an averageover all jobs executed by the
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system. In this average, all jobs have the same weight. Therefore improving the performance of a
larger set of jobs will boost the performance metrics more than doing so for a smaller set of jobs.

In terms of the merit value, this idea is expressed by simply counting the jobs inS ′. We select
the current job and add it toS ′ if this will lead to a larger set of selected jobs; otherwise we skip
it. And indeed, simulation results indicated that this did in fact improve the performance metrics
over the always select and always skip schemes.

3.3.4 Running Shortest Jobs First

It is well-known that the optimal off-line scheduling scheme with respect to the average response
time metric is the shortest jobs first algorithm. An approximation of this algorithm can actually be
implemented in the context of backfilling, because we are given user estimates of the running time
of each job. The merit value is then calculated as the sum of these runtime estimates, with a minus
sign. As a result, the set of jobs with smaller runtimes will have a higher merit value.

3.3.5 Maximizing the Total Slowdown

Another optional merit value is maximizing the overall slowdown of the selected jobs. Slowdown
is the ratio of the time it takes to run the job on a loaded system divided by the time it takes
on a dedicated system, i.e.slowdown = response time

running time
. Sinceresponse time = wait time +

running time and the jobs’ actualrunning time is unknown at the time of scheduling, we use
the user-estimated runtime for that job instead. Thus for each considered jobwji, its slowdown is
computed as follows:

wji.slowdown =
wait time + estimated runtime

estimated runtime
=

(t− wji.arrival) + wji.time

wji.time

The proposed merit value is the total jobs slowdown with the purpose of choosing the setS ′ which
maximizesthis factor. This goes against intuition which states that performance metrics will in-
crease less if we add smaller values, not larger values. But this short-term view is wrong. The
reason is that if we choose the jobs with the minimal slowdown, we actually focus on those that
have the least waiting time; this is similar to the always select scheme described above. But by
selecting those jobs that have the maximal slowdown, we focus on those that are themost sensitive
to the slowdown metric (i.e. the shortest jobs) and have alsosuffered the most so far. These are
the jobs that are also expected to cause the most significant further degradation to the performance
metrics if we leave them in the queue. It is therefore better to start them immediately, and prevent
worse degradation of the metrics in the future.

In other words, maximizing slowdown is a generalization of scheduling short jobs first. It
prefers short jobs, but also takes the time that they have already waited in the queue into account.
Simulation results shown in Section 4.3 indicate that this is the best job selection scheme among
those checked.

3.4 Complexity of the Algorithm

The complexity of the EASY algorithm is linear in the size of the queue:O(|WQ|). The com-
plexity of LOS is much higher. However, it is still quite low in absolute terms, and it leads to an
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optimal packing.

3.4.1 Complexity Analysis

The most time and space demanding task is the construction ofM ′, which depends on three input
parameter:|WQ| — the length of the waiting queue,n — the machine’s free capacity att, and
extra — the shadow free capacity.|WQ| depends on the system load. Since eachm′

i,j,k cell is
computed in a constant time, the total running time is simply|WQ|×n×extra. Bothn andextra
are bounded byN — the size of the machine, but there is a dependence between them: the first
queued job must be bigger thann, implying thatextra < N − n. Their product therefore satisfies

n× extra ≤ n× (N − n) = Nn− n2 (1)

This is maximized whenn = N/2, leading to a value ofN2/4. Therefore the time complexity of
the algorithm for constructingM ′ and thus for producing the optimal schedule is:

T = O(|WQ| ×N2) (2)

While this is a polynomial expression, it is important to understand that it isnot a polynomial
in the size of the input. The input is the list of jobs sizes. To compute the size of theinput we
first need to encode each of the waiting jobs’ sizes in a binaryformat. The length of encoding an
integerx is log x. As the sizes of jobs may be as big asN , each requireslog N input bits. Hence
the size of encoding the entire input is:

I = O(|WQ| × log N) (3)

As T is not bounded by a polynomial inI, this is not a polynomial time algorithm.
What we have here is an algorithm whose running timeT is bounded by a polynomial in

two variables: the size of the input, and the largest inputvalue. Such algorithms, often based on
dynamic programming, are known aspseudo-polynomialalgorithms (defined in [9] and reviewed
in textbooks such as [18, chap. 16]). They are designed to solve NP-complete problems using the
fact that in practice it is sufficient to solve the problem fora restricted set of inputs, in contrast to
the unbounded values which are considered in general theoretical analysis. Not all NP problems
have such solutions: the ones that do not are called NP-complete “in the strong sense”. As we have
found a pseudo-polynomial solution, our problem is not strongly NP-complete (unlessP = NP ).

In our case,N is a predefined constant. Moreover, for realistic systems itis even quite small, on
the order of hundreds or maybe thousands of processors. Thisrestriction allows the optimal sched-
ule to be produced in a reasonable time, feasible for practical implementation. This is demonstrated
in our experimental results in Section 4.5. We show there that during all our simulations, in which
we scheduled a total of more than 100,000 jobs, the schedulernever took more than about 0.6
seconds to run, and the average was less than 2 milliseconds.

3.4.2 Limited Lookahead

The length of the waiting queue,|WQ|, depends on the system load. On heavy loaded systems the
mean waiting queue length can reach tens of jobs with peaks sometimes reaching hundreds — a
fact that significantly increases the runtime of the algorithm.
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log location nodes jobs load duration

CTC Cornell Theory Ctr. 512 79,302 0.55 6/96–7/97
SDSC San-Diego Supercomputer Ctr. 128 67,667 0.69 4/98–4/00
KTH Royal Inst. Technology, Sweden 100 28,490 0.83 9/96–8/97

Table 5: The workload logs used to evaluate LOS.

A possible enhancement is to limit the number of jobs examined by the algorithm by including
only the firstC waiting jobs inWQ whereC is a predefined constant. We call this approach
limited lookaheadsince we limit the number of jobs the algorithm is allowed to examine. It is
often possible to produce a schedule which maximizes the machine’s utilization by looking only at
the firstC jobs, thus achieving the same result at a lower cost. But obviously this is not always the
case, and such a restriction might result in a jobset which isnot optimal. The effect of limiting the
lookahead on LOS’s results is examined in Section 4.4.

A more sophisticated possibility is not to use a constant lookahead, but rather to set this dy-
namically according to need and overhead. This is beyond thescope of the present paper and is
left for future work.

4 Experimental Results

4.1 The Simulation Environment

We implemented all aspects of the algorithm as described above and integrated them into the
framework of an event-driven job scheduling simulator. In the simulations, we used workload logs
from the Cornell Theory Center (CTC) IBM SP2, the San-Diego Supercomputer Center (SDSC)
IBM SP2, and the Swedish Royal Institute of Technology (KTH)IBM SP2 parallel supercomputers
[19]. Each log contains a list of jobs, and for each job, a record of its size, arrival time, actual and
estimated runtimes, and other descriptive fields. Time related information is specified in seconds.
Details about the logs are given in Table 5. Each simulation used the number of nodes available
on the machine from which the log was taken. Unfortunately wecan’t evaluate the algorithms for
other arbitrary machine sizes, as that would dramatically change the packing properties of the jobs,
and lead to unreliable results.

For each of these logs we calculated itsduration, which is the difference between the arrival
time of the last and the first jobs. We then calculated the log’soffered loadby multiplying the jobs
sizes by their runtimes, summing these values, and then dividing the result by the log’s duration
and the size of the machine it represents. Given the offered load, we generated logs of varying
loads ranging from0.5 to 0.95 by multiplying thearrival time of each job by a constant factor.
For example, if the offered load in the log is0.60, then by multiplying each job’s arrival time by
0.60
0.90

the duration of the log is reduced, leading to a load of0.9. This is better than changing the
jobs’ sizes, as that would affect their packing properties,because in the original logs most job sizes
are powers of two. The logs were used as an input for the simulator, which generatesarrival and
terminationevents according to the specifications in the log.

On each arrival or termination event, the simulator invokesLOS which examines the waiting
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Figure 3: Average system utilization vs. load

queue, and based on the current system state decides which jobs to start. For each started job, the
simulator updates the system free capacity and enqueues a termination event corresponding to the
job termination time. For each terminated job, the simulator records its response time, bounded
slowdown (applying a threshold ofτ = 10 seconds), and wait time. Note that in this type of
simulation the overall utilization is not a meaningful metric, as the system utilization is dictated
by the workload and is not affected by the scheduler (this is essentially theρ = λ/µ of open-
systems queueing analysis). However, one must verify that the scheduler is not overwhelmed and
that the system is not saturated. When this happens, the measured utilization becomes lower than
the offered load.

4.2 Improvement over EASY

We used the framework mentioned above to run simulations of the EASY scheduler [15, 24], and
compared its results to those of LOS which was limited to a maximal lookahead of 50 jobs. The
reason for comparing with EASY is that it is the most popular backfilling algorithm today, and is
used in many systems.

By comparing the average system utilization vs. the offeredload of each simulation, we saw
that for the CTC and SDSC logs a discrepancy occurs at loads higher than 0.9 (Figure 3(a,b)),
whereas for the KTH log it occurs only at loads higher than 0.95 (Figure 3(c)). Such discrepancies
indicate that the simulated system is actually saturated, astate which is characterized by a contin-
uously growing length of the waiting queue. As a result, all measured values are meaningless and
depend on the length of the simulation. For this reason, whenreporting our results, we limit the
x axis to the range where the simulation is still stable, and ignore the results beyond the point at
which the discrepancy begins.

As the results of schedulers processing the same jobs may be similar, we need to compute con-
fidence intervals to assess the significance of observed differences. Rather than doing so directly,
we first apply the “common random numbers” variance reduction technique [13]. For each job in
the workload file, we tabulate thedifferencebetween its response time (or slowdown) under EASY
and under LOS. We then compute 90% confidence intervals on these differences using the batch
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means approach. By comparing the difference between the schedulers on a job-by-job basis, the
variance of the results is greatly reduced, and so are the confidence intervals.

The results for the response time are shown in Figure 4, on theleft of each sub-figure. The
results for bounded slowdown are on the right. All graphs show the actual mean job response
time (or bounded slowdown) of the two schedulers as well as the differential results. As can be
seen, the mean job differential results are positive acrossthe entire load range for both metrics
and all three logs, indicating that LOS outperforms EASY in all cases. This result is statistically
significant, as witnessed by the fact that all lower boundaries of the confidence intervals remain
above zero. Comparing the actual results with the differential ones illustrates the significance of
these differences and their dependency on the load. For example, by looking at sub-figure 4(a), we
see that for a load of 0.75, the mean job differential response time is about 900 seconds. Comparing
this to the actual mean job response time for the same load, wesee that this is an improvement of
7% of the absolute value. On the other hand, at 0.90 load, the difference in response is 4200
seconds, which in absolute value means an improvement of more than 20%.

4.3 Job Selection Effect on Performance

In Section 3.3 we introduced several alternative merit values for guiding the selection when several
sets of jobs lead to the same utilization. The first was thealways-selectscheme. Unlike the original
always-skipscheme which selects jobs closer to the head of the queue, thealways-selectscheme
favors jobs near the tail. The results for the CTC log are shown in Figure 5(a). We decided to focus
our analysis on the mean job bounded slowdown metric, since it uses relative runtime values,
and thus more accurately reflects the difference between thetwo algorithms. Results for KTH
are generally similar to CTC, and SDSC are generally somewhat lower, but still show a positive
difference; this is true for all job selection schemes.

We see that the mean job bounded slowdown difference is positive across the entire load range
— a clear indication that thealways-selectalgorithm outperforms the originalalways-skipwith
respect to this metric. On the other hand, if we compare the resulting plots to the corresponding
plots in Figure 4, where LOS was compared to EASY, we see that the curves here are significantly
lower and in fact some of the lower boundaries of the confidence interval bars fall below zero.
For example, the mean job differential bounded slowdown at 0.90 load for the CTC log in Figure
5(a) is 2, while in Figure 4(a) it is about 18. The reason for the low values is the fact that unlike
Section 4.2, where we compared LOS to the suboptimal EASY algorithm, we now compare two
versions of the same scheduler, both of which maximize the utilization, and only differ in their
jobset selection. Therefore we can expect the performance gaps to be smaller.

Another approach we suggested was to maximize the number of jobs in the selected jobset. We
stated that by considering the number of jobs which will start on each scheduling step, and selecting
the jobset which holds the maximal number of jobs (in addition to maximizing utilization), LOS’s
performance is expected to improve since less jobs will remain waiting.

The results of simulations using this approach are shown in Figure 5(b). The fact that the
mean job differential bounded slowdown remains positive for the entire load range indicates that
themax-jobsapproach also outperforms the original algorithm for constructingM ′. But it is not
significantly better than thealways-selectapproach.

The third proposed approach was to select the jobset with thesmaller sum of runtimes, so
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Figure 4: Raw results and difference comparing LOS with EASY.

as to approximate the shortest job first scheduling scheme. As shown in Figure 5(c), this indeed
improves performance considerably more than the previous two schemes.

We also introduced theMax-Slowdownapproach in which the setS ′ is chosen in a way that
its overall total slowdown is maximized. The results using this approach are presented in Figure
5(d). These results far exceed those of thealways-selectalgorithm in Figure 5(a) and themax-jobs
approach in Figure 5(b), and are even slightly better than theshortest-jobs-firstapproach in Figure
5(c). This is also true for the other workloads; for example,the maximal differential bounded
slowdown for the KTH log usingalways-selectcompared toalways-skipis 60, usingmax-jobsit
is 55, and for theMax-Slowdownapproach it is 90.
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Figure 5: Improved performance using different job selection schemes, CTC log.

To complete the performance evaluation, we also compared LOS when using theMax-Slowdown
approach directly with the EASY scheduler. The results are shown in Figure 6, for all three logs,
again with the response time metric on the left and the bounded slowdown metric on the right.
These should be compared with Figure 4, where thealways-skipalgorithm for constructingS ′ was
used. As can be seen, for all three logs and for the entire loadrange, the mean job differential
bounded slowdown curves in Figure 6 are higher than the corresponding curves in Figure 4. The
fact that the new curves are higher indicates that thedifferencebetween the jobs bounded slow-
down under EASY and under LOS has increased. Since EASY was not modified, it is another
indication that theMax-Slowdownapproach further reduces the jobs’ bounded slowdown, and thus
outperforms the original algorithm. We can also assess the significance of the improvement in
terms of absolute values. For example, in sub-figure 6(a), wesee that at 0.90 load, the mean job
bounded slowdown has dropped from 30 to 8, an improvement of more that 73%, while in the
corresponding sub-figure 4(a) it improves by no more than 60%.

Considering the response time results, we see that for all three logs, the curves for the mean
job differential response time of theMax-Slowdownapproach are higher than those of the original
algorithm, which means that theMax-Slowdownapproach outperforms the original algorithm with
respect to the response time metric as well. On the other hand, if we compare the absolute results,
we see that at 0.90 load in SDSC and 0.95 in KTH, there is a slight advantage for the unmodified
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(b) SDSC log
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(c) KTH log
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Figure 6: Raw results and differences comparing LOS+Max-Slowdownwith EASY

algorithm. This does not mean that theMax-Slowdownhas failed to perform and in fact a positive
mean response difference of 13900 in SDSC (19000 in KTH) is a major improvement over EASY,
which is about 25% improvement in terms of absolute values. What this means is that for extremely
high loads when the machine almost saturates, a change in theheuristic may be considered if the
scheduler target is to minimize the response time of the jobs.
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(b) SDSC log
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(c) KTH log
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Figure 7: Limited lookahead affect on mean job response timeand bounded slowdown.

4.4 Limiting the Lookahead

Subsection 3.4.2 proposed an enhancement calledlimited lookaheadaimed at reducing the run-
time of LOS. We explored the effect of limiting the lookaheadon LOS’s results by performing
six LOS simulations with a limited lookahead of10, 25, 35, 50, 100 and250 jobs respectively.
Figure 7 presents the effect of limiting the lookahead on themean job response time and the mean
job bounded slowdown. The notationLOS.Xis used to represent LOS’s results whereX is the
maximal number of waiting jobs that LOS was allowed to examine on each scheduling step (i.e.
its lookahead limitation). We also plotted EASY’s result curve to allow a comparison.
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Log #Jobs Load Tot Sim[sec] Avg Time/Job[ms] Max Time/Step[ms]

CTC 79302 0.90 129 1.63 613.3
SDSC 67667 0.90 36 0.53 204.9
KTH 28490 0.90 8 0.28 139.8

Table 6: Running time of simulations.

The lookahead limitation that can be tolerated without degrading the performance depends
on the log. For the CTC log (Figure 7(a)) we find that when LOS islimited to examine only
10 jobs at each scheduling step, its resulting mean job response time and bounded slowdown is
relatively poor. In fact, the result curve of LOS.10 and EASYeven intersect several times along the
load axis, indicating that the two schedulers achieve similar results with neither one consistently
outperforming the other as the load increases. The reason for the poor performance is the low
probability that a jobset which maximizes the machine utilization actually exists within the first 10
waiting jobs, thus although LOS selects the best jobset it can, it is rarely the case that this jobset
indeed maximizes the machine utilization. However, with a lookahead of 25 or more LOS achieved
essentially optimal results.

For the SDSC log in Figure 7(b), LOS manages to provide good performance even with a
limited lookahead of only 10 jobs. But for the KTH log in Figure 7(c), a lookahead of 50 is
required for optimal performance, at least under the highest possible load. For lower loads, a
lookahead of 10 suffices. To summarize, it seems that we can safely place a bound of 50 on the
lookahead, and thus also bound the runtime of the algorithm.

The explanation for the good performance under limited lookahead is that for most of the
scheduling steps, especially under low loads, the length ofthe waiting queue is actually small, so
a lookahead of hundreds of jobs has no effect in practice. As the load increases and the machine
advances toward its saturation point, the number of waitingjobs increases, and the effect of limiting
the lookahead is more clearly seen. The left-hand side of Figure 8 compares the mean queue
length under EASY and LOS which was limited to a lookahead of 50 jobs. We can make two
interesting observation based on these measurements. First, with LOS, the mean queue length is
actually smaller compared to EASY, due to its efficiency in packing jobs, which allows more jobs
to terminate faster. The second observation is that only forthe KTH log in sub-figure 8(c), the
mean number of waiting jobs exceeds the lookahead limitation of 50 jobs, and this happens only
at a load of 0.95.

The problem with the plots on the left of Figure 8 is that the mean queue length provides only
a summary to what happened over the entire simulation. We therefore performed a detailed time-
dependent analysis of the queue behavior, where the queue length is examined at every scheduling
step across the entire simulation. The results show that although peaks of hundreds of jobs actually
exist, they are relatively rare, and that LOS often manages to keep the queue length below 50 jobs
at times when it reaches a length of more than 100 under EASY.
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Figure 8: Queue behavior in simulations.

4.5 Running Time

The main feature of the LOS algorithm is that it computes the optimal packing of queued jobs.
As packing is in general NP-complete, this may raise concerns regarding the running time of the
algorithm. In Section 3.4 we claimed that our specific instance of the packing problem is actually
tractable, due to the relatively small number of processors(currently less than 10,000 even in the
biggest machines in the world). To support this claim, we present runtime data from the simulations
in Table 6. Note that the simulations contain a full implementation of LOS, and execute exactly the
same algorithm as would be executed in a real system using LOS. Therefore the simulation time
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gives an upper bound on the running time of the algorithm in a real system processing the same
workload.

The results are that the running time of the full simulation,at high load values, and processing
up to nearly 80,000 jobs, is often less than a minute and nevermuch more than two minutes.
When this is divided by the number of jobs, we find that the average scheduling overhead per
job is measured in milliseconds. The maximum measured in anysingle scheduling step is also
much less than a second. While these numbers are significantly higher than for EASY (where
simulations complete in a few seconds), they are still very low in absolute terms, especially relative
to other overheads on parallel machines, where loading a parallel job for execution may take several
minutes [1].

Thus we conclude that optimal packings can indeed be found realistically.

5 Conclusions

Backfilling algorithms have several parameters. In the past, two parameters have been studied:
the number of jobs that receive reservations, and the order in which the queue is traversed when
looking for jobs to backfill. We introduce a third parameter:the amount of lookahead into the
queue. We show that by using a lookahead window of about 50 jobs it is possible to derive much
better packing of jobs under high loads, and that this improves both the mean job response time
and mean job bounded slowdown metrics.

In addition, improving packing positively effects secondary metrics such as the queue length
behavior. We show that on heavily loaded systems under the control of traditional backfilling
schedulers, the waiting queue length can reach tens of jobs with peaks sometimes reaching hun-
dreds. On the other hand, when lookahead is used and packing is optimized, the waiting queue is
shorter across a large fraction of the scheduling steps.

There is often more than a single way to pack jobs and achieve the same utilization value. We
explored various alternatives by including a merit calculation in the lookahead process and choos-
ing the set of jobs which maximizes the merit value. We show that performance is indeed sensitive
to such choices, despite the fact that all lead to the same utilization. Surprisingly, performance
is boosted when choosing the set of jobs with themaximaltotal slowdown. A possible reason is
the nature of the slowdown metric which is mostly effected bythe shorter jobs; therefore a set
with a large total slowdown is likely to contain the shortestjobs, and specifically, those short jobs
that have waited the most. By starting these jobs ahead of other ones, a further degradation of the
performance metrics is avoided.

Future work can further explore various ways to reduce the algorithm runtime. For example,
it is possible to calculate the utilization in an on-going fashion and stop the construction ofM ′

when the utilization reaches a certain threshold. Extending our algorithm to perform reservations
for more than a single job and exploring the effect of such a heuristic on performance also presents
an interesting challenge. On the other hand, it is possible to simplify the algorithm significantly by
removing reservations altogether, and relying on the selection of jobs with maximal slowdowns to
prevent starvation. The question is how well this performs in practice.
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