
Desktop Scheduling:
How Can We Know What the User Wants?

Yoav Etsion∗ Dan Tsafrir Dror G. Feitelson
School of Computer Science and Engineering

The Hebrew University, 91904 Jerusalem, Israel

ABSTRACT
Current desktop operating systems use CPU utilization (or lack
thereof) to prioritize processes for scheduling. This was thought
to be beneficial for interactive processes, under the assumption that
they spend much of their time waiting for user input. This reason-
ing fails for modern multimedia applications. For example, playing
a movie in parallel with a heavy background job usually leads to
poor graphical results, as these jobs are indistinguishable in terms
of CPU usage. Suggested solutions involve shifting the burden to
the user or programmer, which we claim is unsatisfactory; instead,
we seek an automatic solution. Our attempts using new metrics
based on CPU usage failed. We therefore propose and implement
a novel scheme of identifying interactive and multimedia applica-
tions by directly quantifying the I/O between an application and the
user (keyboard, mouse, and screen activity). Preliminary results in-
dicate that prioritizing processes according to this metric indeed
solves the aforementioned problem, demonstrating that operating
systems can indeed provide better support for multimedia and in-
teractive applications. Additionally, once user I/O data is available,
it opens intriguing new possibilities to system designers.

Categories and Subject Descriptors
D.4.1 [Process Management]: Scheduling; H.1.2 [User/Machine
Systems]: Human factors; C.4 [Performance of Systems]: Design
studies

General Terms
Algorithms, Human Factors, Design

Keywords
Human Centered Computing, Scheduling, Multimedia, Interactive,
Frame Rate, User I/O

∗Supported by a Usenix scholastic grant.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV’04, June 16–18, 2004, Cork, Ireland.
Copyright 2004 ACM 1-58113-801-6/04/0006 ...$5.00.

Number of Stressors
0 1 2 3 4 5 6 7 8 9 10

C
P

U
 u

til
iz

at
io

n
[%

]

0

20

40

60

80

100
Xine

X server

Stressors

other

Xine

X server

Stressors

other

frame loss [%]

ID
LE

Figure 1: Background stressors deprive the Xine movie player of required
CPU resources, causing increased frame loss rates as more of them are
added.

1. INTRODUCTION
Prevalent commodity operating systems use a simple schedul-

ing scheme that has not changed much in 30 years. Processes are
scheduled in priority order, where priority has two main compo-
nents: static and dynamic. The static component reflects inherent
importance differences (e.g. system processes might have higher
priority than user processes). The dynamic part depends on CPU
usage and ensures that the priority of a process is lowered propor-
tionally to the amount of CPU cycles it has consumed recently.

Tying priority to lack of CPU usage achieves two important goals.
The obvious one is fairness: all active processes get a fair share
of the CPU. The second one is responsiveness: the priority of a
blocked (I/O-bound) process grows with time, so that when it is
awakened, it has higher priority than that of other (CPU-bound)
processes and is therefore scheduled to run immediately. In fact, in
most systems this is the only mechanism that provides responsive-
ness for I/O-bound processes (Windows and Solaris give a boost to
interactive processes, but still within the CPU-centric framework).
This was sufficient in the past, when user-computer interaction was
mainly conducted through text editors, shell consoles, etc. — all
applications that exhibit very low CPU consumption. Nowadays,
computer workloads (especially on the desktop) contain a signifi-
cant multimedia component: playing of music and sound effects,
displaying video clips and animation, etc. These workloads are not
well supported by conventional operating system schedulers [12],
as multimedia applications are very demanding in terms of CPU
usage and therefore indistinguishable from traditional background
(batch) jobs.

Figure 1 is a good example of this deficiency. It demonstrates

what happens when a Xine movie-player displays a short clip along
with an increasing number of CPU-bound processes (which we call
stressors) executing in the background. When no such processes
are present, Xine gets all the resources it needs (which is about 40%
of the CPU). Adding one stressor process is still tolerable since
it takes the place of the idle loop. But after that, each additional
stressor reduces Xine’s relative CPU share, and causes a significant
decline in its displayed frame rate. For example, when 4 stressors
are present, each gets about 15% of the CPU, and Xine only gets
about 20% (half of what it needs), thereby causing the frame rate
to drop by a bit more than 50%. A similar effect will occur if the
background load is caused by downloading from the net, rather than
CPU activity.

In recent years, there has been increasing interest in supporting
multimedia applications. Several solutions were proposed to the
above problem, which fall into two main categories. The first in-
volves specialized APIs that enable applications to request special
treatment, particularly in the area of real-time support, and sched-
ulers that respect these requests [13, 5, 15, 9]. The major drawback
of such an approach is that it reduces portability and requires a
larger learning and coding effort. The second category implements
support for quality of service in the kernel, and allows users to ex-
plicitly control the QoS provided to different applications [4, 19,
3]. While this does not require any modifications in the applica-
tion, it shifts the burden of configuring the system to the user, who
must cater for each application individually. This is probably not
a good solution for transient interactive and multimedia tasks that
come and go during normal work.

Our approach is that the solution should be automatic and trans-
parent. We start by recognizing the fact that some I/O devices can
supply us with a fairly good approximation of the user’s interests
and wishes. We can assume with a reasonable degree of certainty
that when the user types on the keyboard, he wants the target ap-
plication to receive this input and respond to it in a timely man-
ner. Similarly, if some application continuously produces output
that spans a significant portion of the screen, it wouldn’t be too far
fetched to conjecture that the user is interested in this output. By
getting such data from the relevant I/O devices, it is possible for the
system to identify applications that are of immediate interest to the
user, and prioritize them accordingly. In particular, this solves the
problem shown in Figure 1; the results, in which Xine is automat-
ically prioritized relative to the stressors and retains its full frame
rate are shown in Figure 5.

Importantly, this approach handles both traditional interactive
applications (such as text editors) and modern multimedia applica-
tions: both types can be identified by tracking user I/O. We collec-
tively denote such applications as being Human Centered, or HuC
for short.

2. METHODOLOGY
Our measurements were conducted on a 664 MHz Pentium 3 ma-

chine equipped with 256 MB RAM and a 3DFX Voodoo3 graphics
accelerator with 16 MB RAM that supports OpenGL in hardware.
The operating system is a 2.4.8 Linux kernel (RedHat 7.0), with the
XFree86 4.1 X server. The clock interrupt rate was increased from
the default 100Hz to 1,000Hz. This clock rate has been adopted in
the newly relesed Linux 2.6 kernel, and is more suitable for mul-
timedia applications which require millisecond timing resolution
[13]. We have also verified that the increase in overhead is negligi-
ble [6].

As there are numerous different applications in contemporary
desktop workloads, we have identified several dominant applica-
tion classes and chose to focus on a representative or two from each

C
P

U
 U

sa
ge

 P
er

ce
nt

0

20

40

60

80

100

Em
acs

OpenOffice

M
Player

Xine 1:1

Xine 2:1

Quake player

Quake dem
o

Kernel m
ake

Stressor

0.2 2.6
11.0 11.6

41.2

97.0 99.4
94.7

99.8

Other
X Server
Application

Figure 2: CPU consumption of different applications (when run alone)
expressed as a percentage of the wallclock time.

class. The representative applications we chose are as follows:

• Classic interactive applications: The (traditional) Emacs
and the (newer) OpenOffice text editors. During the test, ed-
itors were used for standard typing at a rate of about 8 char-
acters per second.

• Classic batch applications: Artificial CPU-bound processes
(stressors) and a complete compilation of the Linux kernel.
Several processes are involved in compilation and therefore
the associated data presented in this paper is a summation.

• Movie players: MPlayer and the Xine MPEG viewer, which
were used to show a short video clip in a loop. While MPlayer
is a single threaded application, Xine’s implementation is
multithreaded, making it a suitable representative of this grow-
ing class of applications [8]. In our experiments, audio out-
put was disabled rather than sent to the sound card, to allow
focus on interactions with the X server.

• Modern interactive applications: The Quake III Arena first-
person shooter game. An interesting feature of Quake is that
it is adaptive: it can change its frame rate based on how much
CPU time it gets. In our experiments, when running alone it
is usually ready to run and can use almost all available CPU
time.

In addition, the system runs a host of default processes, mostly var-
ious daemons. Of these, the most important with regard to interac-
tive processes is obviously the X server (to be described in Section
4.1).

3. IDENTIFYING HUC PROCESSES
BASED ON CPU USAGE PATTERNS

Prioritization based on CPU usage can take various forms. In
this section we show that all of them do not work, as modern HuC
processes may use significant CPU resources, and are essentially
indistinguishable from non-HuC work.

3.1 CPU Consumption
The simplest measure of CPU usage is total consumption. Most

general purpose schedulers base priority mainly on this metric (see
appendix). Processes that use the CPU lose priority, while those
that wait in the queue gain priority.

The question, however, is whether low CPU consumption can be
used to identify HuC processes. Figure 2 demonstrates that this is

Emacs Open MPlayer Xine Quake Quake Kernel Stressor
Office user demo make

99.6 99.1 98.5 83.1 14.3 1.2 81.6 0.5

Table 1: Percent of context switches that are voluntary for the various
applications.

not the case. HuC processes are seen to span the full range from
very low CPU usage (the Emacs and OpenOffice editors) to very
high CPU usage (the Quake role-playing game). Movie players
such as Xine provide an especially interesting example: their CPU
usage is proportional to the viewing scale. Showing a relatively
small movie, taking about 13% of the screen space, required about
15% of the CPU resources for the player and X combined. Using
a zoom factor of 2:1, the viewing size quadrupled to about half
the screen, and the resource usage also quadrupled to about 60%.
Attempting to view the movie on the full screen would overwhelm
the CPU. This is despite using an optimization by which the frame
data is handed over to X using shared memory.

3.2 Effective Quantum Lengths
While CPU consumption is the main metric used by current sched-

ulers, other (new) metrics are also possible. A promising candidate
is the distribution of effective quantum lengths. An effective quan-
tum is defined to be the period from when a process is allocated
a processor until the processor is relinquished, either because the
process has exhausted its allocated quantum, or because it blocks
waiting for some event, or because a newly awakened process has
a higher priority. The intuition is that although HuC processes may
exhibit large CPU consumption, their effective quanta probably re-
main very small due to their close interaction with I/O devices.
Thus we expect to see a difference between the allocated quanta
and the effective ones in HuC processes, but expect non-HuC pro-
cesses to typically use their full allocation.

Figure 3 shows these distributions for different groups of appli-
cations. Multimedia applications, in particular, are indistinguish-
able from other application types: on one hand Quake behaves just
like a CPU stressor, both when running alone and when running
with a competing process, and on the other hand Xine resembles
the well-known kernel-make benchmark.

3.3 Voluntary vs. Forced Context Switches
Another possible metric is the type of context switch. HuC pro-

cesses (such as movie players) often relinquish the processor volun-
tarily, due to their dependency on I/O devices, through which they
communicate with the user. We can therefore classify processes
according to the fraction of their effective quanta that ended volun-
tarily, rather than the duration of the effective quanta (as described
above).

We define a voluntary context switch as one that was induced
by the process itself, either explicitly by blocking on a device, or
implicitly by performing an action that triggered another process to
run (such as releasing a semaphore). We were able to trace such
context switches by monitoring the various kernel queues. The re-
sults shown in Table 1 indicate that this new metric also fails to
make a clear distinction between HuC and other processes. Quake
is again similar to stressors, and Xine looks like kernel-make.

4. IDENTIFYING HUC PROCESSES BASED
ON USER INTERACTION

Failing to identify HuC processes using the traditional CPU-
consumption-based metrics suggests a different approach is needed.

It seems there’s no alternative other than to actually follow the flow
of information between the user and the various processes, and ex-
plicitly characterize HuC processes as such according to the mag-
nitude of this flow.

4.1 HuC Devices
Only a subset of the peripheral devices in the system are of in-

terest when trying to quantify the volume of interactions between
the user and the various processes. These include the keyboard,
mouse, screen, joystick, sound card, etc., and will be referred to
collectively as HuC devices. The common property of such devices
is that they all directly interact with the user. For the purpose of
this research we’ve decided to only monitor the “bare necessities”,
namely the keyboard, mouse, and screen. The same principles can
be applied to the other HuC devices in a straightforward manner.

Unix environments use the X-Windows system [20] to multiplex
I/O between the user (as represented by HuC devices) and the vari-
ous applications. Applications that wish to communicate with HuC
devices are referred to as X-clients. Clients connect to the X-server
and communicate with it using the X-protocol. The server usually
associates a window with each client, such that user input events
performed within this window are forwarded to the client (in the
form of X-events), and output produced by the client (in the form of
X-requests) is directed to this window. Consequently, the X server
centralizes all work concerning the kernel mechanisms that allow
communication with the canonical HuC devices, and hence with
the user. It is therefore natural to use the X server as a meta-device
when monitoring user I/O. We have instrumented the X server to
collect per-process I/O data, and forward it to the kernel once a
second. Also, since the X server is itself a process, its own user I/O
must be reported. As such, the kernel sums the I/O the X server re-
ports about other clients, and considers that sum to be the X server’s
own I/O production.

We remark that even though the X protocol is the conventional
paradigm used to perform user I/O in Unix environments, other
mechanisms do exist. The Direct rendering Infrastructure (DRI
[14]) is an extension to the X protocol that allows direct interaction
with the graphics controller. This is the dominant alternative to
using the X protocol itself for output since it is used by the OpenGL
graphical library [17], which in turn is heavily used by graphical
software (such as Quake). In order to make our implementation
complete, OpenGL should have also been modified (similarly to
the X server) to maintain the per-process output statistics and to
periodically report them to the kernel.

4.2 Quantifying User Input
Input events can be perceived as an immediate and explicit ex-

pression of the user’s wishes. The number of events is typically not
so important: dragging with the mouse, which generates multiple
events per second, conveys the same amount of user interest as a
single mouse button click or the typing of a single character. But
given that users are slow, the effect is retained for several seconds.

The most important issue regarding input is recency: the most
recent user input should get the highest priority. Therefore, in addi-
tion to the regular periodic updates sent from X to the kernel once a
second, whenever a client that has not received any input events re-
cently, does receive input, the kernel is immediately notified. This
allows the scheduler to maximize responsiveness by promptly han-
dling such events.

4.3 Quantifying Output to the User
Unlike user input that has almost an unary nature (a human user

can deliver simultaneous events to very few processes in one sec-

Milliseconds

P
ro

ba
bi

lit
y

(a)
0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

1234567890123456
Emacs
OpenOffice

(b)
0 10 20 30 40 50

12345678901234567
12345678901234567

Kernel Make
X (with Xine)
MPlayer
Xine

(c)
0 10 20 30 40 50

12345678901234567
Demo Quake
Stressor

(d)
0 10 20 30 40 50

1234567890123456789
12345678901234567

Demo Quake
Demo Stressor
User Quake
User Stressor

Figure 3: Cumulative distribution function of the effective quanta when applications are run alone. (a) Editors have very short effective quanta. (b) Movie
players also have short effective quanta, but this is similar to the profile of the kernel-make batch job. (c) Quake can consume all available CPU cycles, so
when running in demo mode it behaves like a stressor. Both are occasionally interrupted by various system daemons, causing around 50% of the effective
quanta to end prematurely. (d) When a stressor runs together with Quake , both end up with the same distribution, because Quake interrupts the stressor.

Request Name Description

ClearArea Clear a rectangular area
CopyArea Copy a rectangular area
CopyPlane Copy one color plane of a rectangular area
PolyPoint Draw points
PolyLine Draw a line through a path of points
PolySegment Draw multiple separate lines
PolyRectangle Draw the outline of rectangles
PolyArc Draw a circular or elliptical arc
FillPoly Fill the region inside the specified path
PolyFillRectangle Fill a rectangle
PolyFillArc Fill a given arc (either Chord or PieSlice)
PutImage Draw a bitmap
PolyText8 Draw a 1-byte character string
PolyText16 Draw a 2-byte character string
ImageText8 1-byte characters string with background
ImageText16 2-byte characters string with background

Table 2: X protocol graphical requests

ond) and which reflects the immediate wishes of the user, quantify-
ing output is a bit more complex: firstly, because various applica-
tions may simultaneously produce output to different windows, but
more importantly, because we don’t know which of these output
events is more significant to the user. To cope with this difficulty
we exploit a feature in human perception and physiology that is a
remnant of our predatory days: human vision is more sensitive to
movement [16]. By quantifying the rate of changes produced by
each client we get a reasonable idea about which process has the
user’s attention. We further assume that the user does not like to be
distracted and will eliminate any source of interference (e.g. iconify
an irrelevant window).

The question remains of how to quantify the rate of screen changes.
Simple event counting will not work in this case since an output
event can be as small as printing a character or as large as changing
the background image. Moreover, output events may refer to hid-
den portions of windows. Our goal is therefore to approximate the
percentage of the screen actually changed due to each output event.

This is a feasible task since the X protocol defines a reduced set
of only seventeen graphical X-requests that are available to clients.

AB font
height

character
width

Figure 4: Estimation of the area of a diagonal line and a text caracter.

The full list of graphical requests is available in table 2. For each
X-request we have implemented a function that approximates the
amount of change it introduces to the screen. Additionally, we’ve
hooked to the X clipping mechanism in order to find out how much
of the change is indeed visible to the user.

For example, when drawing a diagonal line, the number of pix-
els drawn is estimated by the line’s width · height. This number
however, is not accurate since the line’s boundaries might not co-
incide with the discrete pixels’ boundaries as can be seen in Figure
4. Although in this case the inaccuracy is in the range of 1-2 pixels
only, it might be bigger for other lines. The figure also shows the
calculation of the area used by a character. When drawing a string
the estimate of the area drawn is the sum of the bounding boxes of
all the characters used, whereas the actual area used is smaller.

5. EXPERIMENTAL RESULTS
To evaluate the concept of HuC scheduling and our Linux imple-

mentation of this concept (described in detail in [7]) we conducted
measurements with several workloads. The workloads typically in-
cluded at least one HuC process, and different numbers of stressor
processes that compete for the CPU.

Probably the most striking result is shown in Figure 5. This
shows profiles of executing Xine showing a movie at a 2:1 size
ratio, with up to 10 stressor processes. Xine and the X server re-
quire about 60% of the CPU in this case. Under the original Linux
scheduler, they do not get this percentage when there are two or
more stressors, resulting in an increasing frame-loss rate as stres-
sors are added (Figure 1). But with the HuC scheduler Xine and X
are identified as the focus of attention and given priority over the

Number of Stressors
0 1 2 3 4 5 6 7 8 9 10

C
P

U
 u

til
iz

at
io

n
[%

]

0

20

40

60

80

100
Xine

X server

Stressors

other

Xine

X server

Stressors

other

frame loss [%]

ID
LE

Figure 5: Division of CPU time and Xine’s frame-loss rate under the HuC-
scheduler (compare with Figure 1).

Before

Number of Stressors
0 1 4

C
P

U
 u

til
iz

at
io

n
[%

]

0

20

40

60

80

100
Quake

Stressors

other

Quake

Stressors

other

After

0 1 4

Figure 6: CPU share given to quake by the default scheduler (left) and by
the HuC scheduler (right).

stressor processes, and they continue to get 60% of the CPU re-
gardless of the number of stressors. As a result the frame loss rate
remains negligible.

Similar results are obtained for other applications as well. At the
low end of CPU usage, applications like the Emacs editor are un-
affected by the HuC scheduler. Emacs only requires maybe 1% of
the CPU resources, and gets it even under the default scheduler; the
HuC scheduler provides the same. But at the high end, Quake can
adaptively use CPU resources to improve its output quality. When
run under the default scheduler, its share of the CPU is reduced
when stressor processes are added. With the HuC scheduler, it can
continue to dominate the CPU (Figure 6).

The HuC scheduler not only allocates CPU time preferentially
to HuC processes, it also does so promptly. Figure 7 shows the
dispatch latency of various process types under loaded conditions
when served by the Linux scheduler and by HuC scheduler. The
dispatch latencies of HuC-processes remains very low (≤ 1ms),
regardless of the background load.

Another point worth mentioning is the improved responsiveness
of the window-manger itself. While conducting measurements in-
volving heavy background load under the default scheduler, we
have noticed that moving windows around produces extremely jerky
and abrupt results. By contrast, the HuC scheduler impressively
rectified this misfeature: identifying the window-manager as HuC
allowed smooth window movement which (subjectively) felt as if
no background load was present.

Before

0 1 2 3 4 5 6 7 8 9 10

A
vg

. d
is

pa
tc

h
la

te
nc

y
[m

s]

0

2

4

6

8

10

12

14 1234567890123456789012
1234567890123456
1234567890123456
1234567890123456

Quake
OpenOffice
Xine
X (with Xine)
MPlayer
Emacs

After

Number of Stressors
0 1 2 3 4 5 6 7 8 9 10

0

2

4

6

Figure 7: Average dispatch latency of HuC applications under the Linux
scheduler (top) and the HuC-scheduler (bottom).

6. CONCLUSIONS AND DISCUSSION
To summarize, explicit identification of HuC processes is neces-

sary to correctly prioritize them relative to background jobs. While
this cannot be done by using CPU-based metrics, quantifying I/O
activity provides a general and automatic solution to the problem.
It is effective for both traditional interactive applications that make
little use of the CPU, and for modern multimedia applications that
use large amount of CPU power. It does not require any modifi-
cations to the applications themselves. The price is modifications
to the system, to instrument HuC devices (in our implementation,
the X server) to collect I/O information regarding the different pro-
cesses, and then to use this information in the scheduler.

Once these facilities are in place, they open up a whole new spec-
trum of possibilities. For example, it is possible to adjust CPU allo-
cations so that movie viewers with different sizes achieve the same
frame rates. This is done by counting output production in terms
of relative window change (namely the number of changed pixels
divided by the size of the window). Allocating CPU power so as
to equalize this metric will give more to viewers with a larger win-
dow, as opposed to equal allocations that will enable small view-
ers to complete more frames, at the same time starving the larger
(probably more important) viewers.

Another example is the option to propagate “user-importance”
information to other system components. This can be used to of-
fload heavy computations that produce graphical output to other
machines, or to prioritize disk/network bandwidth that is used for
immediate viewing by a human user, thus improving the support
for video streaming.

Finally, the concept of prioritization by I/O production opens in-
teresting research questions: should output be quantified differently
for images, text, and sound? Should input from the keyboard count
the same as a mouse click/drag? Such questions beg for interdis-
ciplinary research involving not only computer scientists but also
human-interface experts and cognitive psychologists.

7. APPENDIX: SURVEY OF SCHEDULING
ALGORITHMS

This review demonstrates how CPU usage is factored into the
scheduling algorithms of contemporary operating systems.

The simplest example is the Traditional Unix scheduler [1]. The
scheduler chooses processes based on priority, which is calculated
as the sum of three terms: a base value that distinguishes between
user and kernel priorities, a nice value (partially configurable by
the ordinary user to reflect relative importance), and a usage value.
Lower numerical values represent higher priorities. The usage is
incremented on each operating system clock tick for the currently
running process, so priority is reduced linearly when a process is
running. On the other hand the accumulated usage of all processes
is divided by a factor once a second, thus raising their priorities.
The factor depends on the load: when load is high, and the process
gets to run less often, the aging is also slower. BSD Unix, which is
the basis for FreeBSD and Mac OS-X, uses a similar formula [11].

In Linux the priority dictates both which process is chosen to
run, and how long it may run [2]. The Linux scheduler partitions
time into epochs. In each epoch, every process has an allocation
of how long it may run, as measured in ticks. When the process
runs, the allocation is decremented on each tick until it reaches
zero. Then, the process is preempted in favor of the ready pro-
cess with the highest positive allocation. When there are no ready
processes with an allocation left, a new epoch is started, with all
processes getting a new allocation that is inversely proportional to
their nice value (the lower the nice value, the higher the priority
and thus the higher the allocation). In addition, processes that did
not use up all their previous allocation transfer half of it to the new
epoch. Thus processes that were blocked for I/O get a higher total
allocation, and hence a higher priority.

Solaris is somewhat more sophisticated [10]. The Solaris sched-
uler supports scheduler modules, so new modules can be loaded
at runtime by the administrator, thus changing the behavior of the
scheduler. The default classes are time sharing (TS), interactive
(IA, which is very similar to TS), system (SYS), and real-time (RT).
User threads are usually handled by the TS and IA classes. Pri-
orities and quanta are set according to a scheduling-class-specific
table, which sets (i) the quantum length for each priority, (ii) the
priority the thread will have if it finishes its quantum (lower), or
(iii) if it blocks on I/O (higher). The quanta are in operating system
clock tick units, and the values in the tables can be changed by the
administrator. The basic idea is that higher priorities get shorter
quanta: when a process finishes its quantum it gets a longer one at
lower priority, and when it blocks it receives a shorter quantum at
a higher priority, as opposed to what might happen under Linux.

The priority of threads in Windows NT4.0/2000 also has static
and dynamic components [18]. The static component depends on
the thread’s type. The dynamic component is calculated according
to a set of rules, that may also give the thread a longer quantum.
These rules include the following:

• Threads associated with the focus window get a quantum that
is up to three times longer than they would otherwise.

• Threads that seem to be starved get a double quantum at the
top possible priority, and then revert to their previous state.

• After waiting for I/O, a thread’s priority is boosted by a factor
that is inversely proportional to the speed of the I/O device.
This is then decremented by one at the end of each quan-
tum, until the original priority is reached again. Thus threads
waiting for user input get the biggest boost, as the keyboard
and mouse are amongst the slowest devices.

• Users may specify the relative importance of applications.

8. REFERENCES
[1] M. J. Bach, The Design of the UNIX Operating System.

Prentice-Hall, 1986.
[2] D. P. Bovet and M. Cesati, Understanding the Linux Kernel.

O’Reilly, 2001.
[3] J. Bruno, E. Gabber, B. Özden, and A. Silberschatz, “The

Eclipse operating system: providing quality of service via
reservation domains”. In USENIX Technical Conf.,
pp. 235–246, 1998.

[4] S. Childs and D. Ingram, “The Linux-SRT integrated
multimedia operating system: bringing QoS to the desktop”.
In 7th Real-Time Tech. & App. Symp., p. 135, May 2001.

[5] K. J. Duda and D. R. Cheriton, “Borrowed-virtual-time
(BVT) scheduling: supporting latency-sensitive threads in a
general-purpose scheduler”. In 17th Symp. Operating
Systems Principles, pp. 261–276, Dec 1999.

[6] Y. Etsion, D. Tsafrir, and D. G. Feitelson, “Effects of clock
resolution on the scheduling of interactive and soft real-time
processes”. In SIGMETRICS Conf. Measurement &
Modeling of Comput. Syst., pp. 172–183, Jun 2003.

[7] Y. Etsion, D. Tsafrir, and D. G. Feitelson, Human-Centered
Scheduling of Interactive and Multimedia Applications on a
Loaded Desktop. Technical Report 2003-3, School of Comp.
Sci. and Eng., The Hebrew University, Mar 2003.

[8] K. Flautner, R. Uhlig, S. Reinhardt, and T. Mudge,
“Thread-level parallelism and interactive performance of
desktop applications”. In 9th Intl. Conf. Architect. Support
for Prog. Lang. & Operating Syst., pp. 129–138, Nov 2000.

[9] A. Goel, L. Abeni, C. Krasic, J. Snow, and J. Walpole,
“Supporting time-sensitive applications on a commodity
OS”. In 5th Symp. Operating Systems Design &
Implementation, pp. 165–180, Dec 2002.

[10] J. Mauro and R. McDougall, Solaris Internals. Prentice Hall,
Oct 2001.

[11] M. K. McKusick, K. Bostic, M. J. Karels, and
J. S. Quarterman, The Design and Implementation of the
4.4BSD Operating System. Addison Wesley, 1996.

[12] J. Nieh, J. G. Hanko, J. D. Northcutt, and G. A. Wall, “SVR4
UNIX scheduler unacceptable for multimedia applications”.
In 4th Int’l Workshop Network & Operating System Support
for Digital Audio and Video, Nov 1993.

[13] J. Nieh and M. S. Lam, “The design, implementation and
evaluation of SMART: a scheduler for multimedia
applications”. In 16th Symp. Operating Systems Principles,
pp. 184–197, Oct 1997.

[14] B. Paul, Introduction to the Direct Rendering Infrastructure.
http://dri.sourceforge.net/doc/DRIintro.html, Aug 2000.

[15] M. A. Rau and E. Smirni, “Adaptive CPU scheduling
policies for mixed multimedia and best-effort workloads”. In
Modeling, Anal. & Simulation of Comput. & Telecomm.
Syst., pp. 252–261, Oct 1999.

[16] B. Shneiderman, Designing the User Interface.
Addison-Wesley, 3rd ed., 1998.

[17] Silicon Graphics Inc., “OpenGL”. http://www.opengl.org/.
[18] D. A. Solomon and M. E. Russinovich, Inside Windows

2000. Microsoft Press, 3rd ed., 2000.
[19] C. A. Waldspurger and W. E. Weihl, “Lottery scheduling:

flexible proportional-share resource management”. In Symp.
Operating System Design & Implementation, pp. 1–11, Nov
1994.

[20] X Consortium, “X Windows System”. www.X.org.

