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ien
e and EngineeringThe Hebrew University of Jerusalem91904 Jerusalem, IsraelAbstra
tThe mean and standard deviation of heavy-tailed distributions are often in�nite, asa result of non-negligible probabilities of sampling very high values. Generating randomvariates from su
h distributions may therefore depend on the range of output valuesof the underlying random number generator. In parti
ular, it may be appropriate to
ontrol this range based on the number of samples that are needed.Keywords: heavy-tail distribution, random variate generation.Heavy-tailed distributions have been known to model various phenomena su
h as thedistribution of word usage for over �fty years [8℄. Their prominan
e has in
reased signi�
antlyin re
ent years, with their appli
ation to the modeling of WAN traÆ
 [6, 7℄ and workloadson �le servers and web servers [4, 2, 1℄.Using su
h models to drive the simulations used in performan
e evaluation requires ran-dom variates from heavy-tailed distributions to be generated. The simplest (albeit ratherextreme) example is the Pareto distribution with shape parameter a = 1. This distributionhas probability mass fun
tion f(x) = 1=x2, and an in�nite mean, as R x � 1=x2 � dx = logx.Variates from this distribution are generated by sele
ting u from a uniform distribution onthe unit interval, and returning 1=u [5℄. In parti
ular, samples from the power-law tail ofthe distribution are generated by those uniform variates that lie very 
lose to zero. Thehighest value that 
an be obtained depends on the smallest value that 
an be generated bythe random number generator used for the uniform distribution.A simple test showing the e�e
t of the random number generator is to generate su
hvariates, and 
ompute their running average. As the mean of this distribution is in�nite, weexpe
t the running average to grow with the number of samples; in fa
t, it should be thenatural logarithm of the number of samples. Figure 1 shows a
tual results for three randomnumber generators that are widely available on Unix systems: rand, random, and drand48.The left graph, 
overing the �rst million samples, indi
ates that the mean of variates
reated by the rand generator 
onverges rather qui
kly, rather than 
ontinuing to grow. Thisis the result of the limited range of only 32768 values generated by this generator.1
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Figure 1: Running average of samples from a harmoni
 distribution, as generated by di�erentrandom number generators. All the results use the default seed.
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The right graph shows that random follows the logarithmi
 
urve rather 
losely in therange of billions of samples. This is a
tually a result of the fa
t that it too is beginningto 
onverge as we approa
h a number of samples that is 
ommensurate with its range of 2billion values. On the other hand, the drand48 generator 
ontinues to generate extremelylarge variates due to its use of 48-bit numbers. It is expe
ted to 
onverge to the logarithmi

urve near 1015 samples, and not to grow any more beyond that point.The impli
ation for simulations is that, depending on the seed being used, a relativelyshort simulation might en
ounter a single value that belongs way out in the tail of thedistribution, and has a very low probability of showing up in su
h a short simulation. Su
han extreme value may dominate the results of the entire simulation, rendering the resultsmeaningless.One should realize that due to su
h e�e
ts, when working with heavy-tailed distirbutions,the simulation a
tually never 
onverges to a steady state. Instead, it remains in a transientstate, as extreme values 
ontinue to pop up [3℄. A possible solution is therefore to preventthem from popping up too soon. This 
an be done by setting the range of values, or rather,the minimal value, as a fun
tion of the simulation length. Short simlations will set a higherthreshold, thus disabling a larger part of the tail of the distribution. Long simulations willdelve deeper into the tail.An example is shown in Figure 2. The methodology used here is to delete those uniformvariates whose magnitude is less than one over twi
e the simulation length. For a simulationusing a million variates from the drand48 generator with the default seed, none are deleted1.When using 10 million, one variate, about 1.5 million into the sequen
e, is deleted (topgraph). This leads to a signi�
ant 
hange in the running average. When using 100 million,this variate is no longer 
onsidered extreme enough to delete. However another single variate,about 77 million into the sequen
e, is deleted (not shown). With a billion, this one is OK,but two others are deleted (bottom).Setting an expli
it limit on the tail of the distribution is a reasonable approa
h, be
ausein many 
ases it does indeed re
e
t reality. Consider situations in whi
h Pareto distributionshave been used. One is to model the (tail of) the distribution of �le sizes, or WWW requestsizes. Using drand48 to generate large �les may 
reate one that is larger than the total disk
apa
ity in the world, a situation that most modellers would probably regard as unrealisti
.Likewise, a Pareto distribution of wealth may in prin
iple 
reate someone whose wealthex
eeds the GNP of the United States. The data used to 
reate the models does not in
ludesu
h extreme 
ases, but with 
ertain random number generators and seeds the models maya

idently 
reate them.There seems to be no \true" solution to the problem raised in this note. When usingmodels with power-law tails, the modeller must make a 
ons
ientious de
ision about how todeal with it. We have suggested a simple approa
h in whi
h the tail of the distribution istrun
ated at a pla
e that has a low probability of being sampled, given the number of samplesneeded. While other approa
hes are also possible, it seems 
lear that it is unreasonable toleave the problem up to the random number generator.1This is from a BSDI ma
hine. On a ma
hine running Linux 2.2, the �rst value returned by drand48 has13 leading zeros after the de
imal point, whi
h would get deleted in most pra
ti
al situations.3
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Figure 2: E�e
t of trun
ating a single value out of 10000000 from the drand48 output (top),and two out of 1000000000 (bottom).
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