
Random Number Generators and Heavy-TailDistributionsDror G. FeitelsonShool of Computer Siene and EngineeringThe Hebrew University of Jerusalem91904 Jerusalem, IsraelAbstratThe mean and standard deviation of heavy-tailed distributions are often in�nite, asa result of non-negligible probabilities of sampling very high values. Generating randomvariates from suh distributions may therefore depend on the range of output valuesof the underlying random number generator. In partiular, it may be appropriate toontrol this range based on the number of samples that are needed.Keywords: heavy-tail distribution, random variate generation.Heavy-tailed distributions have been known to model various phenomena suh as thedistribution of word usage for over �fty years [8℄. Their prominane has inreased signi�antlyin reent years, with their appliation to the modeling of WAN traÆ [6, 7℄ and workloadson �le servers and web servers [4, 2, 1℄.Using suh models to drive the simulations used in performane evaluation requires ran-dom variates from heavy-tailed distributions to be generated. The simplest (albeit ratherextreme) example is the Pareto distribution with shape parameter a = 1. This distributionhas probability mass funtion f(x) = 1=x2, and an in�nite mean, as R x � 1=x2 � dx = logx.Variates from this distribution are generated by seleting u from a uniform distribution onthe unit interval, and returning 1=u [5℄. In partiular, samples from the power-law tail ofthe distribution are generated by those uniform variates that lie very lose to zero. Thehighest value that an be obtained depends on the smallest value that an be generated bythe random number generator used for the uniform distribution.A simple test showing the e�et of the random number generator is to generate suhvariates, and ompute their running average. As the mean of this distribution is in�nite, weexpet the running average to grow with the number of samples; in fat, it should be thenatural logarithm of the number of samples. Figure 1 shows atual results for three randomnumber generators that are widely available on Unix systems: rand, random, and drand48.The left graph, overing the �rst million samples, indiates that the mean of variatesreated by the rand generator onverges rather quikly, rather than ontinuing to grow. Thisis the result of the limited range of only 32768 values generated by this generator.1
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Figure 1: Running average of samples from a harmoni distribution, as generated by di�erentrandom number generators. All the results use the default seed.
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The right graph shows that random follows the logarithmi urve rather losely in therange of billions of samples. This is atually a result of the fat that it too is beginningto onverge as we approah a number of samples that is ommensurate with its range of 2billion values. On the other hand, the drand48 generator ontinues to generate extremelylarge variates due to its use of 48-bit numbers. It is expeted to onverge to the logarithmiurve near 1015 samples, and not to grow any more beyond that point.The impliation for simulations is that, depending on the seed being used, a relativelyshort simulation might enounter a single value that belongs way out in the tail of thedistribution, and has a very low probability of showing up in suh a short simulation. Suhan extreme value may dominate the results of the entire simulation, rendering the resultsmeaningless.One should realize that due to suh e�ets, when working with heavy-tailed distirbutions,the simulation atually never onverges to a steady state. Instead, it remains in a transientstate, as extreme values ontinue to pop up [3℄. A possible solution is therefore to preventthem from popping up too soon. This an be done by setting the range of values, or rather,the minimal value, as a funtion of the simulation length. Short simlations will set a higherthreshold, thus disabling a larger part of the tail of the distribution. Long simulations willdelve deeper into the tail.An example is shown in Figure 2. The methodology used here is to delete those uniformvariates whose magnitude is less than one over twie the simulation length. For a simulationusing a million variates from the drand48 generator with the default seed, none are deleted1.When using 10 million, one variate, about 1.5 million into the sequene, is deleted (topgraph). This leads to a signi�ant hange in the running average. When using 100 million,this variate is no longer onsidered extreme enough to delete. However another single variate,about 77 million into the sequene, is deleted (not shown). With a billion, this one is OK,but two others are deleted (bottom).Setting an expliit limit on the tail of the distribution is a reasonable approah, beausein many ases it does indeed reet reality. Consider situations in whih Pareto distributionshave been used. One is to model the (tail of) the distribution of �le sizes, or WWW requestsizes. Using drand48 to generate large �les may reate one that is larger than the total diskapaity in the world, a situation that most modellers would probably regard as unrealisti.Likewise, a Pareto distribution of wealth may in priniple reate someone whose wealthexeeds the GNP of the United States. The data used to reate the models does not inludesuh extreme ases, but with ertain random number generators and seeds the models mayaidently reate them.There seems to be no \true" solution to the problem raised in this note. When usingmodels with power-law tails, the modeller must make a onsientious deision about how todeal with it. We have suggested a simple approah in whih the tail of the distribution istrunated at a plae that has a low probability of being sampled, given the number of samplesneeded. While other approahes are also possible, it seems lear that it is unreasonable toleave the problem up to the random number generator.1This is from a BSDI mahine. On a mahine running Linux 2.2, the �rst value returned by drand48 has13 leading zeros after the deimal point, whih would get deleted in most pratial situations.3
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Figure 2: E�et of trunating a single value out of 10000000 from the drand48 output (top),and two out of 1000000000 (bottom).
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