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Abstract

The mean and standard deviation of heavy-tailed distributions are often infinite, as
a result of non-negligible probabilities of sampling very high values. Generating random
variates from such distributions may therefore depend on the range of output values
of the underlying random number generator. In particular, it may be appropriate to
control this range based on the number of samples that are needed.
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Heavy-tailed distributions have been known to model various phenomena such as the
distribution of word usage for over fifty years [8]. Their prominance has increased significantly
in recent years, with their application to the modeling of WAN traffic [6, 7] and workloads
on file servers and web servers [4, 2, 1].

Using such models to drive the simulations used in performance evaluation requires ran-
dom variates from heavy-tailed distributions to be generated. The simplest (albeit rather
extreme) example is the Pareto distribution with shape parameter a = 1. This distribution
has probability mass function f(x) = 1/2?, and an infinite mean, as [z -1/2? - dv = log .
Variates from this distribution are generated by selecting u from a uniform distribution on
the unit interval, and returning 1/u [5]. In particular, samples from the power-law tail of
the distribution are generated by those uniform variates that lie very close to zero. The
highest value that can be obtained depends on the smallest value that can be generated by
the random number generator used for the uniform distribution.

A simple test showing the effect of the random number generator is to generate such
variates, and compute their running average. As the mean of this distribution is infinite, we
expect the running average to grow with the number of samples; in fact, it should be the
natural logarithm of the number of samples. Figure 1 shows actual results for three random
number generators that are widely available on Unix systems: rand, random, and drand48.

The left graph, covering the first million samples, indicates that the mean of variates
created by the rand generator converges rather quickly, rather than continuing to grow. This
is the result of the limited range of only 32768 values generated by this generator.
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Figure 1: Running average of samples from a harmonic distribution, as generated by different
random number generators. All the results use the default seed.



The right graph shows that random follows the logarithmic curve rather closely in the
range of billions of samples. This is actually a result of the fact that it too is beginning
to converge as we approach a number of samples that is commensurate with its range of 2
billion values. On the other hand, the drand48 generator continues to generate extremely
large variates due to its use of 48-bit numbers. It is expected to converge to the logarithmic
curve near 10'® samples, and not to grow any more beyond that point.

The implication for simulations is that, depending on the seed being used, a relatively
short simulation might encounter a single value that belongs way out in the tail of the
distribution, and has a very low probability of showing up in such a short simulation. Such
an extreme value may dominate the results of the entire simulation, rendering the results
meaningless.

One should realize that due to such effects, when working with heavy-tailed distirbutions,
the simulation actually never converges to a steady state. Instead, it remains in a transient
state, as extreme values continue to pop up [3]. A possible solution is therefore to prevent
them from popping up too soon. This can be done by setting the range of values, or rather,
the minimal value, as a function of the simulation length. Short simlations will set a higher
threshold, thus disabling a larger part of the tail of the distribution. Long simulations will
delve deeper into the tail.

An example is shown in Figure 2. The methodology used here is to delete those uniform
variates whose magnitude is less than one over twice the simulation length. For a simulation
using a million variates from the drand48 generator with the default seed, none are deleted!.
When using 10 million, one variate, about 1.5 million into the sequence, is deleted (top
graph). This leads to a significant change in the running average. When using 100 million,
this variate is no longer considered extreme enough to delete. However another single variate,
about 77 million into the sequence, is deleted (not shown). With a billion, this one is OK,
but two others are deleted (bottom).

Setting an explicit limit on the tail of the distribution is a reasonable approach, because
in many cases it does indeed reflect reality. Consider situations in which Pareto distributions
have been used. One is to model the (tail of) the distribution of file sizes, or WWW request
sizes. Using drand48 to generate large files may create one that is larger than the total disk
capacity in the world, a situation that most modellers would probably regard as unrealistic.
Likewise, a Pareto distribution of wealth may in principle create someone whose wealth
exceeds the GNP of the United States. The data used to create the models does not include
such extreme cases, but with certain random number generators and seeds the models may
accidently create them.

There seems to be no “true” solution to the problem raised in this note. When using
models with power-law tails, the modeller must make a conscientious decision about how to
deal with it. We have suggested a simple approach in which the tail of the distribution is
truncated at a place that has a low probability of being sampled, given the number of samples
needed. While other approaches are also possible, it seems clear that it is unreasonable to
leave the problem up to the random number generator.

!This is from a BSDI machine. On a machine running Linux 2.2, the first value returned by drand48 has
13 leading zeros after the decimal point, which would get deleted in most practical situations.
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Figure 2: Effect of truncating a single value out of 10000000 from the drand48 output (top),
and two out of 1000000000 (bottom).
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