
Gang Sheduling Performane Bene�tsfor Fine-Grain SynhronizationDror G. Feitelson� Larry RudolphDepartment of Computer SieneThe Hebrew University of Jerusalem91904 Jerusalem, IsraelAbstratMultiprogrammed multiproessors exeuting �ne-grained parallel programs appear to requirenew sheduling poliies. A promising new idea is gang sheduling, where a set of threads aresheduled to exeute simultaneously on a set of proessors. This has the intuitive appeal ofsupplying the threads with an environment that is very similar to a dediated mahine. Itallows the threads to interat eÆiently by using busy waiting, without the risk of waiting fora thread that urrently is not running. Without gang sheduling, threads have to blok inorder to synhronize, thus su�ering the overhead of a ontext swith. While this is tolerablein oarse grain omputations, and might even lead to performane bene�ts if the threads arehighly unbalaned, it auses severe performane degradation in the �ne-grain ase. We havedeveloped a model to evaluate the performane of di�erent ombinations of synhronizationmehanisms and sheduling poliies, and validated it by an implementation on the Makbilanmultiproessor. The model leads to the onlusion that gang sheduling is required for eÆient�ne grain synhronization on multiprogrammed multiproessors.1 IntrodutionMultiproessors are often dediated to running a single appliation at a time. The program isallowed full ontrol over what happens on eah proessor, and in fat it might be required to inludeinstrutions that regulate the mapping and sheduling of parallel threads. Muh experiene relatingto these issues has been aumulated over the years, and automati parallelization and ompilationtehniques have been developed. These tehniques allow dediated proessors to be used eÆientlyby a single appliation.In reent years multiprogrammed general-purpose parallel systems have begun to emerge. Insuh systems, eah thread is viewed as a \virtual proessor". Threads belonging to the sameappliation ooperate with eah other, as before, while threads from di�erent appliations ompetefor system resoures. The total number of threads is typially larger than the atual number ofproessors, and the full details about the system state are not available to any of the individualappliations. Therefore the exeution annot be regulated by the programmer or the ompiler.Rather, the system software takes are of mapping and sheduling issues. The question is, howshould proessing resoures be divided among the ompeting jobs?Run-time systems on parallel mahines are typially straightforward modi�ations of uniproes-sor systems. Sometimes eah proessor simply exeutes a distint opy of the system, with various�Current address: IBM T. J. Watson Researh Center, P. O. Box 218, Yorktown Heights, NY 10598.1



loks added to provide mutual exlusion where neessary. At best, the proessors are onsidered asjust another resoure that is alloated upon request. Upon loser inspetion, however, it seems thatthis approah is not entirely satisfatory. The dynamis of program exeution on a multiproessorare fundamentally di�erent from the dynamis on a uniproessor, due to the fat that multiplethreads of ontrol are ative simultaneously. The system must aknowledge the interations andinterdependenies between the di�erent threads, and this must also be reeted in the supportprovided by the system.The interations between threads of a parallel appliation are embodied in the synhronizationrequirements of the appliation. This inludes both expliit synhronization, suh as barrier syn-hronization and mutual exlusion, and impliit synhronization, suh as the relation between athread that produes a data item and the thread that onsumes it. The next setion examines thee�et of the sheduling poliy used by the run-time system on the eÆieny of synhronization. Inthe ase of �ne-grain interations it is shown that it is best for the threads to exeute simultane-ously on distint proessors, and oordinate their ativities with busy waiting. This is ahievedby a gang sheduling poliy, i.e. the sheduling poliy that oordinates ontext swithing arossa number of proessors so as to shedule a \gang" of interating threads simultaneously. Notethe analogy between this and virtual memory management, where a working set of pages must bepresent simultaneously in order to prevent thrashing [21℄. With oarse-grain interations, on theother hand, oordinated sheduling is not neessary. If the variane in omputation times betweeninterations is high, it is then best to blok a thread that has to wait for synhronization. Thisallows the proessor to be used by another thread, possibly from another appliation, while the�rst thread is waiting.We have implemented gang sheduling on the Makbilan multiproessor in order to validate theseresults. While Makbilan is a shared-memory mahine, it should be noted that the results are alsoappliable to message passing arhitetures. The implementation is desribed in setion 3, followedby the experiments that were used to validate the model. The model and measurements are thenused to give a full haraterization of situations in whih busy waiting with gang sheduling ispreferred, as opposed to situations where bloking is better. The implementation also showed thatgang sheduling alone is not enough to support �ne-grain interations: speial hardware supportis needed to make the interations fast enough. These and other results are disussed in theonlusions.Related WorkGang sheduling was introdued by Ousterhout in the ontext of the Medusa system on Cm� [21℄(atually he suggested a less strit version alled osheduling). He explained the intuition behindusing gang sheduling to allow eÆient use of busy waiting for �ne-grain synhronization, anddeveloped three algorithms for its implementation. Similar ideas were suggested by Edler et. al. inthe ontext of the the NYU Ultraomputer projet [10℄. However, no analysis of the performaneimpliations was done.Very little work has been done on gang sheduling sine then. B la_zewiz et. al. developed o�-linealgorithms for gang sheduling, essentially using dynami programming [7℄. Seager and Stihnothhave simulated gang sheduling on multiproessor Crays, and onlude that it is a good shedulingdisipline for multithreaded superomputer appliations [26℄. Gupta et. al. have simulated gangsheduling (and other sheduling poliies) on a ahed bus-based mahine [14℄. They onludethat gang sheduling is one of the best approahes, beause busy waiting an be used eÆientlywith it. However, due to the use of only four spei� appliations, they fail to haraterize the2



exat onditions under whih gang sheduling is bene�ial, and the spei� performane impat itmay have. Some results that support gang sheduling were also presented by Lo and Gligor [17℄,Leutenegger and Vernon [16℄, and Zahorjan et. al. [30℄. We have desribed a novel ontrol struture,alled \distributed hierarhial ontrol", for the implementation of preemptive gang sheduling inlarge, interative multiproessor systems [11, 12℄. Some existing systems support spae-divisionsharing to exeute appliations side by side, whih is similar to bath-style gang sheduling [6, 3℄.Busy waiting and bloking have also been analyzed elsewhere. The two shemes have beenompared by Zahorjan et. al. in two di�erent papers, using queueing models. The �rst does notonsider the bene�ts of gang sheduling [31℄, and is therefore biased against busy waiting. Theother paper, through their hoie of parameters, onsiders situations whih essentially amount tooarse grain omputations, and therefore it onludes, not surprisingly, that both shemes arerather similar [30℄. Gupta et. al. show that the performane of busy waiting and bloking dependsstrongly on the sheduling mehanism [14℄, but they are nononlusive as to whih is ultimatelybetter.To our knowledge, this paper is the �rst to analyze the performane impliations of gangsheduling, and the interplay between sheduling and synhronization. This allows us to identifythe situations in whih gang sheduling should be used, namely when the appliation is based on�ne-grain synhronization. It is also the �rst to report experiments based on a real implementationof gang sheduling on a multiproessor.Gang sheduling may ause an e�et reminisent of fragmentation, if the gang sizes do not �tthe number of available proessors. We have previously shown that under reasonable onditionsthis may lead to a loss of up to 25% of the omputing resoures [13℄. In this paper we show that for�ne-grain omputations gang sheduling an more than double the proessing apability. Thus the�nal balane indiates that in ertain ases gang sheduling has onsiderable performane bene�ts.TerminologyDi�erent authors tend to use the same terms with slightly di�erent meanings. Therefore a note onour usage is in order. First, we use the term thread to denote the parallel light-weight ativitiesthat o-exist in and omprise the exeution of a parallel program. This is synonymous with taskin the ontext of our implementation on the Makbilan, desribed in setion 3.We use the term gang sheduling to denote a sheduling poliy, implemented by the run-timesystem, in whih a set of threads is sheduled simultaneously on a set of proessors, using a one-to-one mapping. In other words, we insist on a sheduling that mathes the intuitive model ofparallelism, where spawned threads really exeute in parallel with eah other. This exludes poliieswhih alloate a blok of proessors to an appliation without any regard to the number of threadsin it.Finally, we use the term bloked , as in a thread that is bloked, to mean that the tread isatually suspended from exeution, and the proessor swithes to another thread. This is morespei� than just implying it has nothing useful to do, so it an either busy wait or suspend.2 Synhronization and ShedulingThe purpose of this paper is to ompare the two basi synhronization mehanisms, busy waitingand bloking, in the ontext of parallel proessing. Busy waiting is not used on uniproessormultiprogrammed systems beause of the obvious waste it entails: one proess onsumes CPUyles waiting for another proess to advane, but the other proess annot advane beause it3



parfor i := 1 to nf for j := 1 to kf ompute for tijp timesynggFigure 1: Pseudo-ode of appliation model.does not have the CPU. On the other hand, if the threads are atually running in parallel ondistint proessors, as is possible in parallel mahines, busy waiting seems to be the fastest andmost diret way to synhronize. It still might ause waste, however, if there are more threads thanproessors, beause a thread might again wait for another thread that is not running. The resultingperformane is therefore strongly dependent on the system's sheduling poliy.Two-phase bloking, in whih a thread �rst busy-waits for a while and then bloks [21℄, is omit-ted from this omparison. The reason is that when gang sheduling is used, and the synhronizationis �ne-grained, only the �rst phase of two-phase bloking is exeuted, making it idential to busywaiting. Without gang sheduling, it is almost idential to bloking (but with a larger overhead).Thus examining it would not add any new information.As the e�etiveness of busy waiting depends on whether or not the threads are atually runningin parallel, we onsider two ases. The �rst is when gang sheduling is used, meaning that interatingthreads are always sheduled to run side by side simultaneously. The seond is when the shedulingis performed independently on eah proessor in an unoordinated manner; tasks are sheduledregardless of the state of any other task. As the ombination of gang sheduling with bloking doesnot make sense, we are left with the following three methods:� Busy waiting with gang sheduling.� Busy waiting with unoordinated sheduling.� Bloking with unoordinated sheduling.The omparison is done by seleting a simple model of appliation behavior, and alulating theexpeted run time under the di�erent methods as a funtion of a number of parameters. Theseparameters inlude a haraterization of the granularity of the interations among threads, the load,the gang size, and the sheduling time quantum and the ontext-swith overhead of the run-timesystem.2.1 Model and AssumptionsAppliation ModelingThe appliation is modeled as a set of n interating threads, where n, the gang size, is less than orequal to the number of proessors. This is expressed as a parfor loop, and is not to be onfusedwith doall loops; doall spei�es that the iterations may be done in parallel, while parfor spei�es4



that they should be done in parallel (Fig. 1). It is assumed that the identity of the interatingthreads is known, i.e. the threads are delared to be a gang. The threads are iterative, as in themodels of Vrsalovi et. al. [29℄ or Dubois and Briggs [9℄. In eah iteration, eah thread omputesfor a ertain time, and then all the threads perform a barrier synhronization. The proessing timeof thread i in iteration j is given by the random variable tijp . It is assumed that this omputation isloal, and in any ase it is not inuened by whatever other threads in the system are doing. Thenumber of iterations, k, is assumed to be large enough so that various overheads may be averagedover the iterations disregarding end e�ets.This model is representative of many parallel algorithms, whih are designed as a large numberof parallel omputation phases separated by barrier synhronizations or sequential phases. It alsoprovides a good approximation of the performane of divide-and-onquer algorithms, where eahreursive level is replaed by a synhronized iteration [18℄, and pipelines algorithms, espeially forsystoli arrays. For n = 2, the model is redued to a simple synhronization between two threads.This too is a ommon situation, whih ours in synhronous message passing, remote proedurealls, rendezvous, et. It should be noted, however, that this is not meant to be a ompletelygeneral model | it is just a simple ase that is easy to analyze.The equations to be subsequently derived in setion 2.2 give the expeted time needed toomplete a single iteration, using the di�erent synhronization and sheduling shemes. As thisdeals with the average time for an iteration, it is onvenient to base the equations on the averageproessing time and the average waiting time. The average proessing time, denoted by tp, is simplytp = 1nk nXi=1 kXj=1 tijp : (1)To de�ne the average waiting time, we �rst de�ne the maximal proessing time in a ertain iterationj. This is tmax jp = max1�i�n tijp : (2)If eah thread were to exeute on a dediated proessor, threads that ompute for less time wouldhave to wait for the one that omputes the most. The waiting time for thread i in iteration j istherefore tijw = tmax jp � tijp ; (3)and the average waiting time, denoted by tw, istw = 1nk nXi=1 kXj=1 tijw : (4)Note that tp + tw = ik Pkj=1 tmax jp , i.e. this is the average of the full iteration times as ditated bythe slowest thread in eah one.The barrier synhronization itself also takes some time. Instead of modeling this independently,we observe that this is an added overhead to all the threads. Hene we inlude it in eah thread'svalue of tijp , and therefore also in tp. Note that the synhronization overhead may depend on thenumber of proessors, so when the model is used to predit performane tp should be adjustedaordingly.
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System CharaterizationReall that we are dealing with general purpose multiprogrammed systems, where there may bemany more threads than proessors. It is assumed that time sharing is used to servie all the threadsat the same time, rather then running only a subset to ompletion. The threads are mapped toproessors when they are spawned. It is assumed that the total number of threads is a multipleof the number of proessors, and that there is perfet load balaning. The number of threads oneah proessor is denoted by `. We fous our attention on a single gang of n threads, mapped to ndi�erent proessors. The harater of the other n(`� 1) threads running on these proessors doesnot interest us in the general ase. The performane of the bloking mehanism, however, doesdepend also on the other threads. In this ase we hek two possibilities: (i) that they have anidential iterative behavior, and (ii) that they are independent ompute-bound threads.The sheduler is assumed to be perfetly fair, giving the same servie to eah thread (or eahgang). The sheduling time quantum is denoted by �q, and the ontext swithing overhead isdenoted by �s. It is assumed that �s � �q. Bloking is assumed to ost a fator of � more than aregular ontext swith, where � is a onstant somewhat larger than 1.Two ases are investigated: that of oarse-grain interations, in whih tp is large relative to �q(i.e. many time quantums are required before a synhronization), and �ne-grain interations, inwhih it is relatively small. The number of iterations, k, is assumed to be large enough so thatk(tp + tw) � �q in any ase. This allows us to average over a number of sheduling rounds. Notethat k may have to be very large in the �ne grain ase, as it is realisti to assume �q to be on theorder of 104�105 instrutions, and an interation may our every 10�100 instrutions. Note alsothat the granularity relates to the interation rate of the threads, not to their life time.2.2 Performane DerivationBusy-Waiting with Gang ShedulingWhen gang sheduling is used, the situation with respet to the interations between the threadsis idential to that in whih the threads run on dediated proessors. The only di�erene is thatwe should also take into aount the time alloated to other threads that share the use of the sameproessors, and the ontext swithes that are involved. The granularity does not have any e�et.The total run time for k iterations is therefore given byT =  k(tp + tw) + k(tp + tw)�q �s! `: (5)Dividing by k and rearranging, the average time for a single iteration ist =  1 + �s�q ! (tp + tw) `: (6)In e�et, this equation shows that an iteration takes tp + tw time on average, meaning that the rateis ditated by the slowest thread. In addition, there is an overhead fator of �s=�q. In the �ne-grainase, this means that the overhead is amortized aross a large number of iterations, beause manyiterations are ompleted in eah sheduling round.Busy-Waiting with Unoordinated ShedulingThe behavior of busy waiting with unoordinated sheduling depends on the granularity. In theoarse-grain ase, it is nearly idential to the behavior of busy waiting with gang sheduling. In every6



sheduling round, eah thread exeutes on its respetive proessor, but this does not neessarilyhappen at the same time within the round. Given that tp + tw is substantially larger than �q, itis obvious that eah iteration is spread over a number of sheduling rounds. Spei�ally, thereare b(tp + tw)=�q full sheduling rounds, in whih the whole time quantum is used, and then a�nal round in whih the synhronization is ompleted. The di�erene between the gang shedulingsheme and the unoordinated sheme is apparent only in the �nal round; therefore the di�erenein run times is relatively small. To summarize, equation (6) is a good approximation of the runtime for both busy-waiting shemes in the ase of oarse-grain interations.With �ne-grain interations, however, the situation is more ompliated: the fat that the nthreads are not running simultaneously might hange the waiting time. Spei�ally, there is aertain probability that the n threads happen to be sheduled simultaneously, even if no expliitmeasures are taken to ensure gang sheduling. When this happens, many iterations are ompleted.If, on the other hand, there is no overlap between the exeutions of any two threads, then the wholegang an only omplete a single iteration.The expeted overlap of n segments of length � that are plaed at random in a loop of irum-ferene �, where � � �, is �n=�n�1. In our ase, � = �q represents the exeution of a single thread,and � = `(�q + �s) is the duration of a sheduling round. The expeted overlap, i.e. the time inwhih all the threads happen to exeute simultaneously, is therefore �nq =`n�1(�q + �s)n�1. Theexpeted number of iterations that will be ompleted in this time is �nq =`n�1(�q + �s)n�1(tp + tw)(assuming this is not less than 1; see below). Hene the number of sheduling rounds needed toomplete k iterations is m = k`n�1(�q + �s)n�1(tp + tw)=�nq , and the total run time isT = m (�q + �s) `= k`n (�q + �s)n (tp + tw)�nq : (7)The expeted time for a single iteration is thent =  1 + �s�q !n (tp + tw) `n: (8)Assuming that �q � �s, this is about a fator of `n�1 slower than with gang sheduling. Thehigher the load, the smaller the probability of being sheduled simultaneously, thus inreasing theprobability of wasting the rest of the time quantum. As a side note, we observe that two-phasebloking an be used to plae a bound on the waste, but it annot improve the performane to thelevel ahieved by gang sheduling.If the load is too high or the grain not �ne enough, the equations might show that less than oneiteration is ompleted eah time. This is of ourse not true. In the orret equations, the number ofompleted iterations is the maximum between the expression given above and 1, and the expetedtime per iteration is the minimum between equation (8) and (�q + �s)`.Bloking MehanismBloking is an alternative to busy waiting. When a thread must wait for the ompletion of iterationj, it is suspended until the awaited threads aumulate an additional tijw run-time. At this time thewaiting thread is moved to the ready queue; it gets to run again on the subsequent round. Notethat with bloking the burden of synhronization lies with the operating system. We assume that7



the overhead inurred is � times that of a regular ontext swith, where � is a onstant larger thanone.The fat that the waiting threads do not onsume CPU yles during their wait does notredue the duration of the slower omputations. Its e�et is to redue the number of threads thatompete for proessor usage. We therefore have to make some assumption about the behavior ofthe ompeting threads. Two possibilities are onsidered: (i) all the threads in the system have thesame behavior, i.e. they all ompute and synhronize iteratively, and blok when they have to wait;and (ii) the ompeting threads are independent and ompute bound, so they never blok.As usual, both possibilities must be investigated in the oarse-grain and the �ne-grain ases. Inthe oarse-grain ase, most of the ontext swithes are the result of a time quantum that expires,and do not involve bloking. The extra overhead in bloking is negligible. Based on the assumptionthat all the threads display the same behavior, only a fration tptp+tw of them are ative at any givenmoment. The expeted total run time is thereforeT =  k(tp + tw) + k(tp + tw)�q �s! tptp + tw `; (9)and the time per iteration is t =  1 + �s�q ! tp`: (10)Comparing this with equation (6), we �nd that the e�etive length of eah iteration is redued fromtp + tw to tp. Therefore this result an also be interpreted as an exeution of ` threads where eahiteration takes the average omputation time rather than the maximum time.If we do not assume that all the other `�1 threads have the same harateristis, i.e. that someof them also blok, then the number of ative threads remains `. In this ase, the bloked threadsgain no advantage. The average time per iteration is again given by equation (6). However, thebloked threads do redue the load on the system, freeing resoures for their ompetitors. Thusbloking is an altruisti mehanism.Let us now onsider the �ne-grain ase, where a thread that bloks indues a ontext swith.In this ase the bloking may be said to ause the system to adapt to the workload, by e�etivelydereasing the size of the sheduling time quantum to �t the typial interation rate of the applia-tion. An important point to notie is that as eah iteration is ompleted, the last thread to arriveat the barrier is not bloked. This thread an immediately ontinue to the next iteration, withoutpaying the overhead. Thus in eah iteration only n � 1 of the n partiipating threads inur theoverhead.Again, we start by assuming that all the threads sharing the use of the proessors have thesame harateristis. The average run time, whih is atually the e�etive time quantum, beomestp. The ontext swithing overhead is multiplied by �, beause ontext swithes only our whena thread is bloked. The total run time for k iterations is thereforeT = k �tp + n�1n ��s� `; (11)and the time per iteration is t =  1 + (n� 1)��sntp ! tp`: (12)Like the oarse grain ase, the e�etive length of eah iteration is redued. However, the overheadis inreased relative to the busy-waiting ase (equation (6)). First, bloking is more expensive than8



just swithing; this is represented by the fator of �. Moreover, tp appears in the denominatorrather than �q, and in �ne grained interations we expet that tp � �q. The result is that theoverhead per iteration is a onstant n�1n ��s, instead of beoming negligible as the grain beomes�ner as it does for busy waiting with gang sheduling (or two-phase bloking with gang sheduling).If we do not assume that the other threads have the same harateristis, then their timequantum stays a whole �q. Thus the gang of iterative threads that we are examining still manageonly one iteration per sheduling round on average, as in the above derivation, but the shedulinground does not get shorter. The run time in this ase is approximatelyT = k (tp + (`� 1)�q + (` + �� 1)�s) : (13)As tp and �s are assumed to be small relative to �q, the yle time of the ompeting threadsdominates; thus the ompetitors again bene�t more than the altruisti bloking gang. Note thatthis derivation depends on the assumption that the sheduler stiks to a rigid round-robin poliy,whih auses it to be unfair. A smart sheduler an ompensate for this to some degree by givingtop priority to a thread that was just resumed; in fat, this is the motivation behind giving higherpriority to I/O bound jobs in many operating systems.3 Implementation and ExperimentsIn order to validate the model presented in the previous setion, a run-time library using a gangsheduling poliy was written for the Makbilan researh multiproessor. This setion provides somebakground about the system, and delineates the implementation of gang sheduling. Then theexperimental results are desribed. Note that while Makbilan is a shared memory mahine, themodel is more general and does not rely on this feature.3.1 BakgroundThe Makbilan TestbedThe Makbilan researh multiproessor onsists of up to 15 proessor boards in a Multibus II age.The experiments reported in the next setion were run on a 10-proessor on�guration. Eahboard has an Intel 386 proessor running at 20 MHz, providing about 4 MIPS. It also has a 387mathematial o-proessor, a message passing o-proessor, and 4MB of memory. Memory onremote boards may be aessed through the bus, thus supporting a shared-memory model. Asaess to on-board memory is faster than aess to memory on remote boards, Makbilan is a non-uniform memory aess (NUMA) mahine [5℄. The proessors have on-board ahes, but they donot ahe remote referenes. Hene there is no issue of ahe oherene.The box also inludes one board that ats as a Unix host, a bus ontroller, a peripherals interfae,and a terminals ontroller. Users log on to the Unix board, and an then load and exeute ParCprograms on all the other boards.The ParC LanguageParC is a superset of the C programming language intended to support parallel programmingin a shared memory environment [4℄. The main additions over C are two blok-oriented parallelonstruts, parblok and parfor; the �rst indiates that the onstituent sub-bloks exeute inparallel, while the seond indiates that iterations of the loop body be done in parallel. Eahsub-blok or iteration is alled an ativity ; these are equivalent to threads in the disussion so far.9
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Figure 2: MAXI system on�guration on eah board.These onstruts may be nested in arbitrary ways, reating a tree of ativities where all the leavesare exeuting in parallel. Variables delared within the blok of ode that de�nes a ertain ativityare aessible only by that ativity and its desendants. For the work reported in this paper, theset of ativities that are spawned together in a single onstrut is taken as the de�nition of a gang.In addition to the parallel onstruts, there are three main synhronization mehanisms: feth-and-add, semaphores, and syn. The syn instrution implements a barrier synhronization amongall the ativities reated by a ertain parallel onstrut. However, it is not used in the experimentsdesribed in setion 3.3. Rather, a speially optimized version of barrier synhronization withless overhead is used. This version is based on atomi bitwise logial operations supported bythe multibus II. It annot be used in the general implementation beause it limits the number ofativities that are involved.The MAXI SystemMAXI is an aronym for the Makbilan System, based on an abuse of the English alphabet. Thesystem may be partitioned into two main layers: A run time library that supports the ParConstruts, and a loal kernel on eah board. The loal kernel is Intel's RMK [15℄, whih is a real-time kernel designed to use hardware support provided by the 386 and the Multibus II. This kernelis highly optimized to provide fast task reation, termination, and ontext swithing. Parallelativities are implemented by RMK tasks (whih are the RMK equivalents of Unix proesses).These tasks embody the threads from the analysis of setion 2.The urrent version supports only a single user at a time. The system design emphasizesasynhronous distributed operation without unneessary interdependenies between boards. Thuseah board has a loal opy of the run-time library, omplete with loal data strutures (Fig. 2).Global data strutures in shared memory are used only when ativities exeuting on one boardneed to inuene what happens on other boards, e.g. when new ativities are spawned or when abarrier synhronization point is reahed.
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Figure 3: Global data strutures used for gang sheduling.3.2 The Gang Sheduling LibraryIn the default ParC run-time library, sheduling is done by the RMK kernel on eah board inde-pendently. In order to implement gang sheduling, a new library with an external sheduler waswritten. This sheduler fores RMK to shedule the desired task by raising its priority.The gang sheduling algorithm and data strutures are based on the matrix algorithm developedby Ousterhout [21℄. Sheduling spae is seen as a matrix, where eah row orresponds to a shedulingslot and eah olumn to a proessor. Tasks belonging to a single gang are mapped to entries in thesame slot. In our implementation, the matrix is not stored expliitly; it is simply the onjuntionof the PCB tables1 on all the proessors.The sheduling is done in round-robin style, by irling through the used slots. Reshedulingis triggered when the alarm on PE #1 goes o�, indiating that the time quantum has expired.Alternatively, any proessor may trigger a resheduling if it �nds that no gang sheduling is takingplae in the urrent slot. This information is mediated by a shared bit mask, with a distint bitrepresenting eah proessor. A set bit indiates that the orresponding proessor is not partiipatingin gang sheduling in the urrent slot: this an happen if a proessor was not alloated a task inthe slot, if the task is suspended, or if it terminated. A proessor that �nds all the bits set triggersa resheduling.Resheduling is implemented by a broadast interrupt, whih auses all the proessors to swithto the next slot simultaneously. When the broadast interrupt is reeived, the interrupt handlerredues the priority of the urrent task (if any), and raises the priority of the task in the next slot.A hint about the maximal used slot is maintained to indiate when to return to the �rst slot.Two global data strutures are used to alloate slots to gangs (Fig. 3). The �rst is an arrayof pointers to lists of slots with a given apaity. The seond is a table of slots. Eah slot entryindiates how muh free spae there is in the slot, and the entries are linked to eah other aordingto this value. The list is loked when a slot is manipulated. A slot an also point to a list of spawn1PCB stands for Proess Control Blok. This is the data struture used by the run-time system to store informationabout the task. 11



run-time librarydefault gang shedsheduling 0:07 + 0:14` � 0.2spawning 1.6 2.5�The seond term is due to overhead expe-riened one in eah sheduling round, andtherefore amortized.Table 1: Run-time library overheads (in ms).desriptors. These are data strutures that desribe gangs that have been alloated to this slot,but have not ommened yet. The alloation is stati and does not hange during exeution. Inpartiular, slots that are left with a small number of tasks due to the termination of other tasksare not united.For example, Fig. 3 shows a possible on�guration for a system with 5 proessors and a maximumof 8 tasks per proessor (the real numbers in MAXI are 15 and 512, respetively). The �rst slotontains ative tasks on all the proessors exept one. The seond slot has been alloated to twogangs of sizes 3 and 2, so it has no free spae. When it is sheduled, the tasks will be reated andthe spawn desriptors removed. All the rest of the slots are unused.The gang sheduling library su�ers more overhead than the default library (Table 1) [5℄. This hastwo reasons: �rst, it requires more oordination through global variables and broadasts. Seond,various funtions whih would normally be implemented inside the kernel are atually implementedabove it, and use a sequene of kernel alls to ahieve the desired end result. The next setionshows that despite this higher overhead, the gang sheduling version does indeed perform betterfor �ne-grain appliations.3.3 Experimental ResultsThe experiments used to verify the model of setion 2 are based on a syntheti program thatsimulates interations with various degrees of granularity. The program spawns gangs with onethread per proessor. These threads loop a large number of times and synhronize in eah iteration.The average time to omplete an iteration and synhronize is measured. Eah instane of theprogram, i.e. eah exeution, is haraterized by three parameters:� LOAD | the number of ompeting gangs.� GRAIN | the number of instrutions in eah iteration, exluding the ode that implementsthe synhronization. If di�erent ativities in the gang have di�erent granularities, this is theminimal one.� VAR | the di�erene between the minimal and maximal numbers of instrutions in di�erentativities in eah iteration. The atual numbers are seleted at random from a uniformdistribution between GRAIN and GRAIN+VAR.As the exeution times are seleted from a uniform distribution, the expeted exeution timeof the longest ativity in any iteration is GRAIN + nn+1VAR, and that of the shortest ativity isGRAIN + 1n+1VAR, where n, the number of ativities, is equal to the number of proessors. 10 were12



Figure 4: Results of experiment 1. 0
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used in the experiments. The system time quantum is 50 ms. Measurements show that eah unit ofGRAIN takes 0.00141 ms, and the interation at the end of eah iteration takes an additional 0.137ms on 10 proessors. Thus the relationship between the experimental parameters and the modelparameters used in setion 2 is the following:tp = 0:137 + 0:00141 � (GRAIN + 12VAR)tw = 0:00058 � VAR (14)The above expressions and values, and the overheads shown in table 1, are used to alulate modelpreditions. Equations (6) and (12) are used. The preditions are then ompared with the atualmeasurements.The number of iterations that were measured was 30000 or 50000 in most of the experiments.Repeated measurements show that this is large enough so that the auray is within 5%, andin most ases even within 1% (exept for some of the results of experiments 3 and 4, see below).To prevent situations in whih the starting onditions ause the system to settle into a shedulingpattern that a�ets synhronization performane, a set of skewing threads is generated at theoutset. These threads exeute for random durations of up to one quantum. Thus they terminateearly in the measurement, and serve to ause the di�erent proessors to start asynhronously.There are two versions of the program: one using busy waiting and the other using bloking. Asimpli�ed version of bloking was used, where threads just yield the proessor but do not join anyexpliit bloked queue. In e�et, the run queue serves as a bloked queue as well. This saves theneed for expliit dequeueing. As a result, the bloking overhead is not onstant. Rather, it dependson how many times the waiting thread yielded the proessor. The program ounts this parameter,and its average value is used for � in the model preditions.Experiment 1This experiment shows the additive overhead inurred by bloking, and also that bloking annotahieve any gains when the load is 1 (e.g. on a dediated mahine). VAR is set to 0. With busy waitingthe time per iteration is essentially the time needed for GRAIN instrutions plus synhronization.With bloking, eah iteration su�ers an additional onstant overhead. The measured and predited13
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Figure 5: Results of experiment 2. 0
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Figure 6: Ratio of time required by blokingto time required by busy waiting with gangsheduling.results are shown in Fig. 4. The x axis is the time needed to omplete an iteration on a dediatedmahine, tp + tw. The y axis shows the time that was atually required. The model equationsfor the �ne-grain ase were used, and indeed the agreement with the measurements deterioratesslightly as the grain beomes larger.Experiment 2This is the main experiment used to verify the performane relations between busy waiting withgang sheduling and bloking with unoordinated sheduling. LOAD is set to 3, and VAR is equal toGRAIN. As expeted, when the granularity is large enough, bloking an use the idle time of waitingativities to exeute other ativities, thus reduing the average time per interation (Fig. 5). For�ne-grain interations, however, the bloking overhead dominates the possible gain.Note that the rossover ours at a granularity of about 0.8 ms; for smaller granularity, gangsheduling is better. As the exeution time of �ne grain omputations is small, the di�erenebetween the two shemes is also small in absolute terms. The relative performane gains, however,are unmistakable. The measurements show that for the most �ne-grain interations that weremeasured, busy waiting with gang sheduling was twie as fast as bloking (Fig. 6). This was agranularity of about 0.16 ms. The results indiate an obvious inrease in the relative performaneratio for smaller granularities. Measurements on a smaller number of proessors, where the barriersynhronization overhead is smaller, on�rm this trend (dotted line in the �gure).Experiment 3This experiment demonstrates the altruisti nature of bloking. Both GRAIN and VAR are set equalto 1000. Two versions of the test program with bloking are used. In one all the ompeting gangshave the same iterative nature with the same granularity, and blok when they try to synhronize.In the other, only one gang has these harateristis. The ompeting gangs are omposed ofompute-intensive ativities that do not blok. 14
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Figure 7: Results of experiment 3. 0
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Figure 8: Results of experiment 4.The results indiate that the time per iteration of the bloking gang is approximately theprodut of the number of ompeting gangs times the sheduling time quantum, as expeted fromequation (13). The exat relation depends on the details of the sheduling pattern that the systemfalls into, hene the large variane in the measured results.The slightly non-linear harateristi of the urve results from the fat that � hanges fromabout 4 for a load of one down to about 1.2 for a load of four. The reason for this is that at higherloads there is a larger delay until a task is resheduled, so the rest of the gang has a better haneto reah the synhronization point.Experiment 4This experiment shows that busy waiting without gang sheduling is indeed not a viable alternative(Fig. 8). Pairs of threads are used (n = 2), with GRAIN and VAR set to 100. As expeted, there is alinear dependene between the required time and the load for busy waiting with gang shedulingand for bloking. While the results for busy waiting with unoordinated sheduling are not asaurate, beause they depend on the exat pattern that the system falls into, it is evident that inthis ase the dependene is quadrati.4 Disussion and ConlusionsBased on the model and experiments, we an derive the following onlusions regarding synhro-nization mehanisms and sheduling poliies:1. When busy waiting with gang sheduling is ompared with bloking, the relative performaneis a funtion of the granularity. For �ne-grain jobs, busy waiting with gang sheduling isbetter.2. Bloking altruistially frees system resoures. If all the jobs are unbalaned and oarsegrained, the run time is redued. For �ne-grained jobs, however, the bloking overheaddominates any possible savings and thus degrades the performane. If ompeting jobs do notblok, a job that does use bloking may reeive disproportionally low servie.15
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�Figure 9: Phase diagram omparing the relative performane of busy waiting with gang shedulingvs. bloking, on the Makbilan multiproessor.3. Busy waiting with unoordinated sheduling is wasteful, espeially in �ne-grained jobs. Withvery oarse-grain interations, however, it is basially similar to busy waiting with gangsheduling.4. Two-phase bloking limits the waste, but does not provide any real bene�ts unless it is usedtogether with gang sheduling.When to use busy waiting with gang shedulingThe omparison between busy waiting with gang sheduling and bloking an be quanti�ed in ourmodel in the following manner. Denote the expeted time per iteration when using busy waiting andgang sheduling by tBW , and the time when using bloking by tBLK ; these are given in equations(6) and (12), respetively. Note that for bloking this rests on the assumption that all the threadsin the system display the same behavior and blok to save system resoures. We would like to knowwhen one is smaller than the other by a ertain fator �. In other words, we would like to �nd aondition that will ause the inequality tBWtBLK � � < 1 to be satis�ed. By using the equations andhanging sides, it is easy to see that the ondition istw � � n�1n � �q �s�q + �s +  ��q�q + �s � 1! tp (15)This de�nes a ertain area in \interation spae", i.e. the quarter-plane onsisting of all possibleombinations of tp and tw, using oeÆients that are a funtion of system parameters. The area isdelimited by a straight line with a negative slope, yielding that orner in interation spae whereboth tp and tw are small. In this area, busy waiting with gang sheduling is at least 1=� timesfaster than bloking.The same approah may be used to �nd a ondition that guarantees that tBLKtBW � � < 1, i.e.16



that bloking has the advantage. The ondition turns out to betw � n�1n � �q �s�(�q + �s) +  �q�(�q + �s) � 1! tp (16)This is again a straight line, but now the area of interest is above it.The two expressions onverge when � = 1. This gives a line with a negative slope, but assumingthat �s � �q the slope is very very small. In e�et, this line therefore divides the interation spaeinto two. The lower part, where tw is smaller than the bloking overhead (tw < ��s), inludesall ombinations in whih busy waiting with gang sheduling has the advantage. The upper partinludes those interations in whih bloking is better.Applying the above formulas to the parameters that haraterize the Makbilan system (�q = 50,�s = 0:2, � = 1:5), and using � = 12 , we get the phase diagram of Fig. 9. The lower shaded areais the part of interation spae where busy waiting with gang sheduling is at least twie as goodas bloking2. The shaded triangle at the top left is the part where bloking is twie as good. Thewhite area indiates ombinations in whih the di�erene is smaller than a fator of two. This areais neatly divided, and busy waiting has the advantage whenever tw is smaller than 0.3 ms.Obviously the advantage of busy waiting with gang sheduling inreases for �ner grained in-terations. The spei� area in the �gure is de�ned by the requirement that tp + 2tw � 300�s;given that eah Makbilan proessor is apable of about 4 MIPS, this represents a granularity ofup to a few hundred instrutions. In a multiproessor based on modern RISC miroproessorsthe graularity would be even larger, beause the ontext is bigger. Bloking only has a deidedadvantage when tw is larger than tp by 0.6 ms. This happens only if the omputational tasks ofthe di�erent threads are highly unbalaned.Note that all the above was done under assumptions that favor bloking, namely that all theompeting gangs display the same behavior. If this assumption is dropped, equation (13) shouldbe used for tBLK rather than equation (12). This leads to the following ondition for the advantageof busy waiting and gang sheduling:tw � � �q(`� 1)` + � � �q �s(�q + �s)` +  ��q(�q + �s)` � 1! tp: (17)This is again the �ne-grain orner of interation spae, but due to the �rst term it is a muh largerorner. The other ondition hanges in a similar manner.The onlusion from the above is that busy waiting with gang sheduling is a viable and promis-ing method for the implementation of �ne-grain parallel systems, a target that has been problematito date. Its importane lies in the fat that many algorithms are naturally expressed using smallparallel bloks of ode, and the �ner the granularity the larger the degree of parallelism that isexposed [8℄. Gang sheduling allows busy waiting to be used for synhronization, whih allows �negrain threads to be supported. In addition, busy waiting has an advantage on multiproessors withahes, as the frequent ontext swithes indued by bloking may make ahing muh less e�etive[20, 14℄. Moreover, busy waiting an atually utilize the ahe oherene mehanism to reduenetwork load [24, 2℄.However, bloking is easier to implement than gang sheduling, so bloking is used in most of theparallel systems existing today. Consequently �ne-grained algorithms have to be restrutured to runeÆiently on ontemporary oarse-grain systems (see, e.g., [25, 19, 8℄). This plaes an unneessary2This does not orrespond exatly with the results of experiment 2 beause the atual values of � in that experimentwere di�erent for di�erent data points, and varied between 1.1 and 2.1.17



burden on the programmer and the ompiler. In addition, it is imperative that systems that usebloking raise the priority of tasks that beome unbloked. If this is not done, the altruisti natureof bloking an ause these tasks to su�er severe performane degradation.While gang sheduling would provide better support for �ne-grain omputations, this approahtoo has its limitations. Spei�ally, a gang annot involve more than P threads, where P is thenumber of proessors. This does not mean that appliations annot spawn more threads: it onlymeans that larger groups should not interat simultaneously. In e�et, the appliation is requiredto display interation loality, whih is analogous to the requirement for referene loality in virtualmemory. The gangs are atually \thread working sets", and gang sheduling is a means to preventthrashing [21℄. While this requirement may seem restritive to the point of limiting the usefulness ofgang sheduling, this is in fat not so. Sheduling poliies that shedule threads in an unoordinatedmanner impliitly require the threads to be independent, whih is muh more restritive.It should be emphasized that this de�nition of interation loality is ompletely di�erent fromthe often mentioned requirement that programs display ommuniation loality. Communiationloality refers to ases in whih the hardware has a ertain topology, and threads are requiredto ommuniate with only a small subset of the other threads, so as to failitate the mapping ofthreads to proessors. Interation loality means that threads may be grouped into gangs withno more than P threads eah, suh that the vast majority of the interations do not ross gangboundaries. However, a thread may interat with all the other members of its gang. This hasnothing do to with topology.ImpliationsThe support of �ne-grain omputations through busy waiting and gang sheduling requires adapta-tions in various areas of parallel omputing. For example, expliitly parallel programming languagesshould give the ompiler and run-time system information about threads that an be expeted tointerat strongly, e.g. through the syntati struture of parallel bloks. Alternatively, ompile-timedependeny analysis an be used to glean information about interation patterns and granularity.Automati parallelization may also produe threads that must interat: for example, this happenswith doaross loops [22℄. If the granularity of interations is �ne enough, the relevant threadsshould be marked for gang sheduling.The implementation of gang sheduling also requires additional researh. To date, only asmall number of parallel operating systems inorporate preemptive gang sheduling [21℄, whilesome others support bath-style spae-division sharing whih has similar features [6, 3℄. Newalgorithms and ontrol strutures are needed to support gang sheduling on inreasingly largermahines [11, 12℄. Hardware support for the operating system may also be needed. For example,in our implementation the ability to broadast interproessor interrupts was neessary.It is oneivable that speial hardware support might also be neessary for the eÆient im-plementation of inter-thread interations. Gang sheduling guarantees that threads will �nd theirinteration partners, but if the interations themselves take too long they will violate the �ne-grain time sale [8℄. For example, hardware supporting aess to shared variables onditioned on afull/empty status bit an save expliit busy waiting, resulting in faster operation and reduing theload on the ommuniation network; this already exists in a number of systems [27, 1℄. Hardwaresupport for barrier synhronization is also advoated [23, 28℄. In addition, it would be bene�ialto have ahing with hardware support for ahe oherene, as this an redue the ontention andfurther redue the ost of busy waiting [2℄. Of ourse, the opposite point of view should also beremembered. Systems that inorporate hardware support for synhronization will not utilize this18
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