
The Forgotten Fator: Fatson Performane Evaluation and its Dependeneon WorkloadsDror G. FeitelsonShool of Computer Siene and EngineeringThe Hebrew University, 91904 Jerusalem, Israelfeit�s.huji.a.ilhttp://www.s.huji.a.il/~feitAbstrat. The performane of a omputer system depends not only onits design and implementation, but also on the workloads it has to handle.Indeed, in some ases the workload an sway performane evaluationresults. It is therefore ruially important that representative workloadsbe used for performane evaluation. This an be done by analyzing andmodeling existing workloads. However, as more sophistiated workloadmodels beome neessary, there is an inreasing need for the olletionof more detailed data about workloads. This has to be done with an eyefor those features that are really important.1 IntrodutionThe sienti� method is based on the ability to reprodue and verify researh re-sults. But in pratie, the researh literature ontains many oniting aountsand ontraditions | espeially multiple oniting laims to be better than theompetition. This an often be traed to di�erenes in the methodology or theonditions used in the evaluation. In this paper we fous on one important aspetof suh di�erenes, namely di�erenes in the workloads being used. In partiular,we will look into the haraterization and modeling of workloads used for theevaluation of parallel systems.The goal of performane evaluation is typially not to obtain absolute num-bers, but rather to di�erentiate between alternatives. This an be done in theontext of system design, where the better design is sought, or as part of a pro-urement deision, where the goal is to �nd the option that provides the bestvalue for a given investment. In any ase, an impliit assumption is that dif-ferenes in the evaluation results reet real di�erenes in the systems understudy. But this is not always the ase. Evaluation results depend not only on thesystems, but also on the metris being used and on the workloads to whih thesystems are subjeted.To ompliate matters further, there may be various interations betweenthe system, workload, and metri. Some of these interations lead to problems,as desribed below. But some are perfetly benign. For example, an interation



2between the system and a metri may atually be a good thing. If systems aredesigned with di�erent objetives in mind, metris that measure these objetivesshould indeed rank them di�erently. In fat, suh metris are exatly what weneed if we know whih objetive funtion we wish to emphasize. An interationbetween the workload and the metri is also possible, and may be meaningless.For example, if one workload ontains longer jobs than another, its averageresponse time will also be higher. On the other hand, interations between asystem and a workload may be very important, as they may help identify systemvulnerabilities.But when the e�ets leading to performane evaluation results are unknownand not understood, this is a problem. Coniting results ast a shadow ofdoubt on our on�dene in all the results. A solid sienti� and experimentalmethodology is required in order to prevent suh situations.2 Examples of the Importane of WorkloadsTo support the laim that workloads make a di�erene, this setion presentsthree spei� ases in some detail. These are all related to the sheduling ofparallel jobs.A simple model of parallel jobs onsiders them as retangles in proessors�timespae: eah job needs a ertain number of proessors for a ertain interval of time.Sheduling is then the paking of these job-retangles into a larger retangle thatrepresents the available resoures. In an on-line setting, the time dimension maynot be known in advane. Dealing with this using preemption means that thejob retangle is ut into several slies, representing the work done during eahtime slie.2.1 E�et of Job-Size DistributionThe paking of jobs obviously depends on the distribution of job sizes. A goodexample is provided by the DHC sheme [12℄, in whih a buddy system is usedfor proessor alloation: eah request is extended to the next power of two, andalloations are always done is power-of-two bloks of proessors. This sheme wasevaluated with three di�erent distributions: a uniform distribution in whih allsizes are equally likely, a harmoni distribution in whih the probability of size sis proportional to 1=s, and a uniform distribution on powers of two. Both anal-ysis and simulations showed signi�ant di�erenes between the utilizations thatould be obtained for the three distributions [12℄. This orresponds to di�erentdegrees of fragmentation that are inherent to paking with these distributions.For example, with a uniform distribution, rounding eah request size up to thenext power of two leads to 25% loss to fragmentation | the average between noloss (if the request is an exat power of two) to nearly 50% loss (if the request isjust above a power of two, and we round up to the next one). The DHC shemereovers part of this lost spae, so the �gure is atually only 20% loss, as shownin Figure 1.



3

0

5

10

15

20

0.4 0.5 0.6 0.7 0.8 0.9 1

m
ed

ia
n 

sl
ow

do
w

n

generated load

uniform
harmonic

powers of 2

Fig. 1. Simulation results showing normalized response time (slowdown) as a funtionof load for proessor alloation using DHC, from [12℄. The three urves are for exatlythe same system | the only di�erene is in the statistis of the workload. The dashedlines are proven bounds on the ahievable utilization for the three workloads.Note that this analysis tells us what to expet in terms of performane,provided we know the distribution of job sizes. But what is a typial distributionenountered in real systems in prodution use? Without suh knowledge, theevaluation annot provide a de�nitive answer.2.2 E�et of Job Saling PatternIt is well-known that average response time is redued by sheduling short jobs�rst. The problem is that the runtime is typially not known in advane. But inparallel systems sheduling aording to job size may unintentionally also leadto sheduling by duration, if there is some statistial orrelation between thesetwo job attributes.As it turns out, the question of whether suh a orrelation exists is not easyto settle. Three appliation saling models have been proposed in the literature[30, 23℄:{ Fixed work. This assumes that the work done by a job is �xed, and parallelismis used to solve the same problems faster. Therefore the runtime is assumed tobe inversely proportional to the degree of parallelism (negative orrelation).This model is the basis for Amdahl's law.{ Fixed time. Here it is assumed that parallelism is used to solve inreasinglylarger problems, under the onstraint that the total runtime stays �xed. Inthis ase, the runtime distribution is independent of the degree of parallelism(no orrelation).{ Memory bound. If the problem size is inreased to �ll the available memoryon the larger mahine, the amount of produtive work typially grows at
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Fig. 2. Comparison of EASY and onservative bak�lling using the CTC workload,with inaurate and aurate user runtime estimates.least linearly with the parallelism. The overheads assoiated with parallelismalways grow superlinearly. Thus the total exeution time atually inreaseswith added parallelism (a positive orrelation).Evaluating job sheduling shemes with workloads that onform to the di�er-ent models leads to drastially di�erent results. Consider a workload that isomposed of jobs the use power-of-two proessors. In this ase a reasonablesheduling algorithm is to yle through the di�erent sizes, beause the jobs ofeah size pak well together [16℄. This works well for negatively orrelated andeven unorrelated workloads, but is bad for positively orrelated workloads [16,17℄. The reason is that under a positive orrelation the largest jobs dominatethe mahine for a long time, bloking out all others. As a result, the averageresponse time of all other jobs grows onsiderably.But whih model atually reets reality? Again, evaluation results dependon the seleted model of saling; without knowing whih model is more realisti,we annot use the performane evaluation results.2.3 E�et of User Runtime EstimatesReturning to the 2D paking metaphor, a simple optimization is to allow theinsertion of small jobs into holes left in the shedule. This is alled bak�lling,beause new jobs from the bak of the queue are used to �ll urrent idle resoures.The two ommon variants of bak�lling are onservative bak�lling, whih makesstrit reservations for all queued jobs, and EASY bak�lling, whih only makes areservation for the �rst queued job [19℄. Both rely on users to provide estimatesof how long eah job will run | otherwise it is impossible to know whethera bak�ll job may onit with an earlier reservation. Users are expeted tobe highly motivated to provide aurate estimates, as low estimates improve thehane for bak�lling and signi�antly redued waiting time, but underestimateswill ause the job to be killed by the system.



5It has been shown that in some ases performane evaluation results dependin non-trivial ways on the auray of the runtime estimates. An example isgiven in Figure 2, where EASY bak�lling is found to have lower slowdownwith inaurate estimates, whereas onservative bak�lling is better at least forsome loads when the estimates are aurate. This ontradition is the result ofthe following [8℄. When using aurate estimates, the shedule does not ontainlarge holes. The EASY sheduler is not a�eted too muh, as it only heedsthe reservation for the �rst queued job; other jobs do not �gure in bak�llingdeisions. The onservative sheduler, on the other hand, ahieves less bak�llingof long jobs that use few proessors, beause it takes all queued jobs into aount.This is obviously detrimental to the performane of these long jobs, but turnsout to be bene�ial for short jobs that don't get delayed by these long jobs.As the slowdown metri is dominated by short jobs, it shows the onservativebak�ller to be better when aurate estimates are used, but not when inaurateestimates are used.One again, performane evaluation has haraterized the situation but notprovided an answer to the basi question: whih is better, EASY or onservativebak�lling? This depends on the workload, and spei�ally, on whether userruntime estimates are indeed aurate as we expet them to be.3 Workload Analysis and ModelingAs shown above, workloads an have a big impat on performane evaluationresults. And the mehanisms leading to suh e�ets an be intriate and hardto understand. Thus it is ruially important that representative workloads beused, whih are as lose as possible to the real workloads that may be expetedwhen the system is atually deployed. In partiular, unbased assumptions aboutthe workload are very dangerous, and should be avoided.3.1 Data-Less ModelingBut how does one know what workload to expet? In some ases, when truly in-novative systems are designed, it is indeed impossible to predit what workloadswill evolve. The only reourse is then to try and predit the spae of possibleworkloads, and thoroughly sample this spae. In making suh preditions, oneshould employ reurring patterns from known workloads as guidelines. For ex-ample, workloads are often bursty and self-similar, proess or task runtimes areoften heavy tailed, and objet popularity is often aptured by a Zipf distribution[4℄.3.2 Data-Based ModelingThe more ommon ase, however, is that new systems are an improvement orevolution of existing ones. In suh ases, studying the workload on existing sys-tems an provide signi�ant data regarding what may be expeted in the future.



6 The ase of job sheduling on parallel systems is espeially fortunate, beausedata is available in the form of aounting logs [22℄. Suh logs ontain the detailsof all jobs run on the system, inluding their arrival, start, and end times, thenumber of proessors they used, the amount of memory used, the user who ranthe job, the exeutable �le name, et. By analyzing this data, a statistial modelof the workload an be reated [7, 9℄. This should fous on reurrent features thatappear in logs derived from di�erent installations. At the same time, featuresthat are inonsistent at di�erent installations should also be identi�ed, so thattheir importane an be veri�ed.A good example is the �rst suh analysis, published in 1995, based on a logof three months of ativity on the 128-node NASA Ames iPSC/860 hyperubesuperomputer. This analysis provided the following data [11℄:{ The distribution of job sizes (in number of nodes) for system jobs, and foruser jobs lassi�ed aording to when they ran: during the day, at night, oron the weekend.{ The distribution of total resoure onsumption (node seonds), for the samejob lassi�ations.{ The same two distributions, but lassifying jobs aording to their type:those that were submitted diretly, bath jobs, and Unix utilities.{ The hanges in system utilization throughout the day, for weekdays andweekends.{ The distribution of multiprogramming level seen during the day, at night,and on weekends. This also inluded the measured down time (a speial aseof 0 multiprogramming).{ The distribution of runtimes for system jobs, sequential jobs, and paralleljobs, and for jobs with di�erent degrees of parallelism. This inludes a on-netion between ommon runtimes and the queue time limits of the bathsheduling system.{ The orrelation between resoure usage and job size, for jobs that ran duringthe day, at night, and over the weekend.{ The arrival pattern of jobs during the day, on weekdays and weekends, andthe distribution of interarrival times.{ The orrelation between the time a job is submitted and its resoure on-sumption.{ The ativity of di�erent users, in terms of number of jobs submitted, andhow many of them were di�erent.{ Pro�les of appliation usage, inluding repeated runs by the same user andby di�erent users, on the same or on di�erent numbers of nodes.{ The dispersion of runtimes when the same appliation is exeuted manytimes.Pratially all of this empirial data was unpreedented at the time. Sine then,several other datasets have been studied, typially emphasizing job sizes andruntimes [27, 14, 15, 6, 2, 1, 18℄. However, some new attributes have also beenonsidered, suh as speedup harateristis, memory usage, user estimates ofruntime, and the probability that a job be anelled [20, 10, 19, 2℄.
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Fig. 3. The umulative distribution funtions of runtimes of jobs with di�erent sizes,from the SDSC Paragon.3.3 Some Answers and More QuestionsBased on suh analyses, we an give answers to the questions raised in theprevious setion. All three are rather surprising.The distribution of job sizes has often been assumed to be bimodal: smalljobs that are used for debugging, and large jobs that use the full power of theparallel mahine for prodution runs. In fat, there are very many small jobsand rather few large jobs, and large systems often do not have any jobs that usethe full mahine. espeially surprising is the high fration of serial jobs, whihis typially in the range of 20{30%. Another prominent feature is the emphasison power-of-two job sizes, whih typially aount for over 80% of the jobs.This has been laimed to be an artifat of the use of suh size limits in thequeues of bath sheduling system, or the result of inertia in system where suhlimits were removed; the laim is supported by diret user data [3℄. Nevertheless,the fat remains that users ontinue to prefer powers of two. The question forworkload modeling is then whether to use the \real" distribution or the empirialdistribution in models.It is hard to obtain diret evidene regarding appliation saling from a-ounting logs, beause they typially do not ontain runs of the same applia-tions using di�erent numbers of nodes, and even if they did, we do not knowwhether these runs were aimed at solving the same problem. However, we anompare the runtime statistis of jobs that use di�erent numbers of nodes. theresult is that there is little if any orrelation in the statistial sense. However, thedistributions of runtimes for small and large jobs do tend to be di�erent, withlarge jobs often having longer runtimes [7℄ (Figure 3). This favors the memorybound or �xed time saling models, and ontradits the �xed work model. Thereis also some evidene that larger jobs use more memory [10℄. Thus, within a sin-



8gle mahine, parallelism is in general not used for speedup but for solving largerproblems.Diret evidene regarding user runtime estimates is available in the logs ofmahines that use bak�lling. This data reveals that users typially overestimatejob runtime by a large fator [19℄. This indiates that the expetations abouthow users behave are wrong: users are more worried about preventing the systemfrom killing their job than about giving the system reliable data to work with.This leads to the question of how to model user runtime estimates. In addition,the e�et of the overestimating is not yet fully understood. One of the surprisingresults is that overestimating seems to lead to better overall performane thanusing aurate estimates [19℄.4 A Workloads RFI1There is only so muh data that an be obtained from aounting logs thatare olleted anyway. To get a more detailed piture, ative data olletion isrequired. When studying the performane of parallel systems, we need high-resolution data about the behavior of appliations, as this a�ets the way theyinterat with eah other and with the system, and inuenes the eventual per-formane measures.4.1 Internal Struture of AppliationsWorkload models based on job aounting logs tend to regard parallel jobs asrigid: they require a ertain number of proessors for a given time. But run-time may depend on the system. For example, runs of the ESP system-levelbenhmark revealed that exeutions of the same set of jobs on two di�erentarhitetures led to ompletely di�erent job durations [28℄. The reason is thatdi�erent appliations make di�erent use of the system in terms of memory, om-muniation, and I/O. Thus an appliation that requires a lot of �ne-grain om-muniation may be relatively slow on a system that does not provide adequatesupport, but relatively fast on a system with an overpowered ommuniationnetwork.In order to evaluate advaned shedulers that take multiple resoures intoaount we therefore need more detailed workload models. It is not enough tomodel a job as a retangle in proessors�time spae. We need to know aboutits internal struture, and model that as well. Suh a model an then form thebasis for an estimation of the speedup a job will display on a given system, whenprovided with a ertain set of resoures.A simple proposal was given in [13℄. The idea is to model a parallel appli-ation as a set of tasks, whih are either independent of eah other, or needto synhronize repeatedly using barriers. The number of tasks, number of bar-riers, and granularity are all parameters of the model. While this is a step in1 Request for Information



9the right diretion, the modeling of ommuniation is minimal, and interationswith other system resoures are still missing. Moreover, representative values forthe model parameters are unknown.There has been some work on haraterizing the ommuniation behavior ofparallel appliations [5, 25℄. This has on�rmed the use of barrier-like olletiveommuniations, but also identi�ed the use of synhronization-avoiding non-bloking ommuniation. The granularity issue has remained open: both verysmall and very big intervals between ommuniation events have been measured,but the small ones are probably due to multiple messages being sent one after theother in the same ommuniation phase. The granularity of omputation phasesthat ome between ommuniation phases is unlear. Moreover, the analysis wasdone for a small set of appliations in isolation; what we really want to know isthe distribution of granularities in a omplete workload.More detailed work was done on I/O behavior [21, 24℄. Like ommuniation,I/O is repetitive and bursty. But again, the granularity at whih it ours (orrather, the distribution of granularities in a workload) is unknown. An interestingpoint is that interleaved aess from multiple proesses to the same �le may leadto synhronization that is required in order to use the disks eÆiently, even ifthe appliation semantis do not ditate any strit synhronization.Very little work has been done on the memory behavior of parallel applia-tions. The onventional wisdom is that large-sale sienti� appliations requirea lot of memory, and use all of it all the time without any signi�ant loality.Still, it would be nie to root this in atually observations, espeially sine it isat odds with reports of the di�erent working set sizes of SPLASH appliations[29℄. Somewhat disturbing also is a single paper that investigated the pagingpatterns of di�erent proesses in the same job, and unexpetedly found them tobe very dissimilar [26℄. More work is required to verify or refute the generalityof this result.4.2 User BehaviorWorkload models typially treat job arrivals as oming from some independentexternal soure. Their statistis are therefore independent of the system behav-ior. While this makes the evaluation easier, it is unrealisti. In reality, the userpopulation is �nite and often quite small; when the users pereive the system asnot responsive, they tend to redue their use (Figure 4). This form of negativefeedbak atually fosters system stability and may prevent overload onditions.Another important aspet of user behavior is that users tend to submit thesame job over and over again. Thus the workload a system has to handle may berather homogeneous and preditable. This is very di�erent from a random sam-pling from a statistial distribution. In fat, it an be alled \loalized sampling":while over large strethes of time, e.g. a whole year, the whole distribution issampled, in any given week only a small part of it is sampled.In terms of performane evaluation, two important researh issues may beidenti�ed in this regard. One is how to perform suh loalized sampling, or inother words, how to haraterize, model, and mimi the short-range loality
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Fig. 4. The workload plaed on a system may be a�eted by the system performane,due to a feedbak loop through the users.of real workloads. the other is to �gure out what e�et this has on systemperformane, and under what onditions.5 The Roky Road AheadBasing performane evaluation on fats rather than on assumptions is important.But it shouldn't turn into an end in itself. As Henri Poinar�e said,Siene is built up with fats, as a house is with stones. But a olletionof fats is no more a siene than a heap of stones is a house.The systems we now build are omplex enough to require sienti� methodologyto study their behavior. This must be based on observation and measurement.But knowing what to measure, and how to onnet the dots, is not easy.Realisti and detailed workload models arry with them two dangers. Oneis lutter and obfusation | with more details, more parameters, and moreoptions, there are more variations to hek and measure. Many of these areprobably unimportant, and serve only to hide the important ones. The otherdanger is the substitution of numbers for understanding. With more detailedmodels, it beomes harder to really understand the fundamental e�ets that aretaking plae, as opposed to merely desribing them. This is important if we wantto learn anything that will be useful for other problems exept the one at hand.These two dangers lead to a quest for Einstein's equilibrium:Everything should be made as simple as possible, but not simpler.
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