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1 IntroductionWhile there is great interest in multiuser, general-purpose parallel computing, it is not obvioushow to partition the computing resources of the parallel computer among competing jobs. Space-slicing, where the parallel machine is physically partitioned among jobs, and time-slicing, in whichprocessors run threads from a global queue, each have their drawbacks. In the early '80s, JohnOusterhout proposed the thesis that related threads should be scheduled to execute together [32].This idea, now known as gang scheduling, is becoming increasingly popular, and can be found invarious forms on commercial machines such as the CM-5 from Thinking Machines [29], the IntelParagon [25], the SGI multiprocessors running IRIX [1], the Meiko CS-2 [14], the Alliant FX/8[41], and the MasPar and DAP SIMD arrays. Gang scheduling has also been used in a productionsystem on a BBN Buttery at LLNL [20], which is now being ported to a new Cray T3D machine,and several other experimental systems [13, 39, 4, 17, 6].At �rst blush, it might appear that gang scheduling is a luxury that may not be worth the price.An optimal packing of gangs that gives minimal wasted processors is an NP-complete problem.Migration of gangs might be required to compensate for a poor initial mapping. The code tosimultaneously schedule all the threads of each gang might be overly complex requiring elaboratebookkeeping and global system knowledge. Indeed, some of the existing implementations of gangscheduling are far from perfect. Symptoms include relying on a centralized controller, which mightnot scale well, and large overheads, that necessitate the use of long (and even non-interactive)scheduling time quanta.The reason that gang scheduling prevails despite these di�culties is that it provides importantbene�ts. For example, for applications with �ne grained interactions, there are large performanceimprovements over uncoordinated scheduling [17]. Gang scheduling decouples the application fromthe system, providing an environment similar to that of a dedicated machine. It is useful withany model of computation and any programming style. The use of time slicing allows performanceto degrade gradually as load increases, and fosters support for interactive response times. Andthe fact that interacting processes are guaranteed to execute simultaneously allows them to accesshardware communication devices in user mode, without the overheads associated with operatingsystem protection [29, 39, 23].A distributed hierarchical control (DHC) scheme for supporting gang scheduling has been pro-posed previously [16]. DHC de�nes a control structure over the parallel machine and combines timeslicing with a buddy-system partitioning scheme. Given the DHC framework, this paper investi-gates several design choices and their performance implications. Processor fragmentation couldpotentially negate all the bene�ts of gang scheduling. That is, because gang scheduling demandsthat no thread execute unless all other gang member threads execute, then some processors may beidle even when there are threads waiting to be run. Our results show that no more than 5 to 25%of the processing power is lost to fragmentation. This result means that neither optimal packingnor thread migration are needed, allowing for a scalable, e�cient implementation, at least for thethree widely di�ering job arrival and size distributions that are examined.The design choices that are considered include di�erent ways to map new gangs to processors andto allocate processing time to each gang. Prudent choices allow the system to reduce fragmentationand also to limit the resources lost to fragmentation. With the best design choices, our simulationsdemonstrate that an on-line scheduling algorithm can asymptotically achieve the same performanceas an o�-line algorithm. Our algorithms therefore leave little if any space for improvement, at least2



not within the DHC framework.The next section reviews the concept of gang scheduling and outlines the DHC scheme for itsimplementation. Section 3 describes the proposed solution algorithms in detail, and presents simu-lation results that tabulate their performance characteristics. Section 4 analyzes the fragmentationcaused by gang scheduling in general, and DHC in particular, and then combines this with theresults of the previous section to show that DHC is optimal, in the sense that it approaches o�-lineperformance. Section 5 presents the conclusions.2 BackgroundThe term Gang scheduling refers to the scheduling of a set of related threads1 on a parallel machineso that all the threads in a gang execute simultaneously on a (sub)set of the processors. Thus,at any time, there is a one-to-one mapping between threads and processors. We emphasize thatalthough the total number of threads in the system (and even in a single job) may be larger than thenumber of processors, no gang contains more threads than processors. For example, applicationsmay accept the number of processors as a runtime parameter, and create gangs accordingly. Thusthe gang becomes the schedulable entity, rather than the individual threads. The job a�liations ofgangs are ignored, except in the context of accounting.Gang scheduling combines the best features of both space slicing and time slicing. Space slicingprovides simultaneous execution on a dedicated partition, which allows performance guarantees tobe made | execution of a gang proceeds essentially the same as on a dedicated machine. Sincenot all parallel jobss require all the processors, the processors can be partitioned (or space sliced)so that more than one parallel job can execute at the same time. However, in pure space slicing,the multiprogramming level is limited by the maximum number of partitions.Time slicing promotes e�cient and exible use of the resources by matching gangs with comple-mentary requirements for processors. The preemption helps e�ciency by allowing new and bettermatches to be found as the execution proceeds. It promotes exible use of the resources by enablingapplications that require all the PEs to co-exist with other applications. It is necessary in orderto support swapping when the available physical memory is insu�cient. and it enables the shortresponse times needed for interactive work by recognizing interactive vs. batch jobs at runtime,without prior noti�cation.We assume a system consisting of a parallel processor that is to support a set of jobs in aninteractive fashion. A job may be a parallel program consisting of one or more gangs or it may be aprocess with a single thread2. From the multiprocessor's point of view, some threads occasionallycreate new gangs of threads for execution. A job has no signi�cance to the system, only gangsare important. Thus the workload is a sequence of requests to execute gangs, and the problem isto decide on-line when and where to schedule each gang. Note that this is not a batch system:single-thread gangs are also possible, and a fast response time is desired.1Threads are the schedulable entity in parallel systems, analogous to processes in conventional (e.g. Unix) systems.This view is directly matched to the control-parallelism programming model, where threads are de�ned by languageconstructs. It is also applicable to the data-parallel and SPMD models, where there is one thread on each (virtual)processor, and they all execute the same code.2One may �nd it helpful to consider the following speci�c scenario: Users access a shared multiprocessor througha local network, from graphical terminals (e.g. X terminals). We assume all programs, including shells, execute onthe multiprocessor. The shell programs initiate parallel programs (i.e. gangs).3
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Figure 1: Controllers and processors in the Distributed Hierarchical Control scheme.The input to the system is a stream of requests to schedule new gangs. Each request has a size(number of threads) and is characterized by the duration of its execution on a dedicated machine.Some gangs may have a very long execution time, and therefore do not require a fast response time,but this is not known in advance. We assume that all the threads within the same gang execute forthe same amount of time, i.e. that the computational load is balanced between them. The requestto schedule a gang may occur at any time. Thus the total workload may be characterized by threeparameters: the distribution of gang sizes, the distribution of execution times, and the distributionof interarrival times.Some degree of centralized control seems to be required to implement the coordinated multi-thread switching across processors required in order to implement gang scheduling. On the otherhand, when the workload is composed of many small gangs, distributed control seems to avoidsequential bottlenecks. These two contradicting designs are reconciled by using a hierarchicalcontrol structure. Speci�cally, we consider Distributed Hierarchical Control, proposed previously[16]. This control structure is especially interesting because it is now being used in the operatingsystem of the RWC-1 project in Japan [24] and in a prototype implementation of gang schedulingon an IBM SP2.DHC is based on a hierarchy of controllers that organize the processors in a buddy-systemfashion (Fig. 1) [34]. A distinct controller is associated with each block of processors. The sizeof each block is a power of two, and is the union of two blocks half the size. This also de�nesthe hierarchy. A controller at level i coordinates activities involving more than half of the 2i PEsspanned by its subtree. Controllers in low levels of the hierarchy provide for local control, whilethose in higher levels take care of global coordination. In addition, there are lateral connectionsamong the controllers that are used for load balancing.Note that the hierarchy describes the logical control structure used by the operating system,and only suggests but does not imply a hardware hierarchy. The possible advantages of a hardwarehierarchy are that separate processors for operating system tasks can be optimized for their function,and that it would prevent the operating system from interfering with the execution of user threads.However, it is perfectly possible to implement the control structure in software on the same set ofprocessors that are being scheduled.The hierarchy of controllers is used to map threads to processors as follows: A request to map a4



new gang of size s originates from a thread executing on some processor. The request ascends thetree of controllers until it reaches the appropriate level for its size, and then moves across to somecontroller that will balance the overall load. This controller is thereafter said to control the gang.Finally, the gang is mapped to a set of processors under this controller. Once mapped, threadsdo not migrate to other processors and control of a gang is not passed between controllers. Whena new gang is mapped or an existing one terminates, controllers exchange information about thechange in load [16].The scheduling proceeds in waves that propagate down the tree of controllers3. In regards toscheduling, each controller can be either idle, active, or disabled. At each instant, there is a frontof active controllers across the tree. All the controllers above this front have already done theirscheduling, so they are idle until the next wave. When a controller is active, it is involved inscheduling all the gangs it controls. The controller transmits a command to execute the threadsof the scheduled gang on the processors by passing the execute command down to its subordinatecontrollers that, in turn, continue to pass it down until it reaches the appropriate processors. Eachgang executes for a time quantum (the length of a time quantum is variable and will be investigatedin a subsequent section). When a controller is active, all of its subordinate controllers are disabled.However, if the scheduled gang does not utilize all the processors, selective disabling can be used:some subordinate controllers are left active and may use the leftover processors to schedule smallergangs. In either case, after the controller completes its scheduling of all its gangs, it becomes idleand its immediate subordinate controllers are activated, thus moving the active front downwards.When the bottommost controllers are done, a new wave is started from the root.The use of a hierarchy of control is not a new idea: it exists in a restricted form in all master/slavecon�gurations and in host/node con�gurations where the host processor controls the use of a back-end computation engine. The novelty of the DHC scheme lies in the fact that the master is also aparallel machine, tightly coupled to the target machine. To our knowledge, this design has so farbeen proposed only in the EGPA project from Erlangen and its followups [22], and in the NETRAimage processing system [7]. However, we are unaware of any publications concerning operatingsystem issues in these projects. Other systems that use a central controller, thus creating a two-level hierarchy, include PASM [42] and MIDAS [31]. A multilevel virtual hierarchy implementedin software appeared in the design of MICROS [43] and CHoPP [40]. All of these systems use thehierarchy and clustering to provide partitioning, but do not support interactive gang scheduling.3 Evaluation of Distributed Hierarchical ControlIn this section we detail the mapping and scheduling algorithms for DHC, and show how theysupport preemptive gang scheduling. Various stages in the algorithms may be performed in anumber of alternative ways. These options are compared using simulations. We must �rst, however,de�ne our performance metrics.3It would be natural to call this a \wave scheduling" algorithm, but regrettably this name has already been usedby others [43]. 5



3.1 Performance Metrics and Simulation ParametersThe main performance metric is the slowdown su�ered by the di�erent jobs. The slowdown of ajob is de�ned as the quotient of the response time of the job (execution time plus preempted time)divided by the actual execution time; this is similar to the \response ratio" criterion advocated byBrinch Hansen [3]. The time during which a job is preempted is used to run competing jobs, andso, assuming small system overheads, the slowdown actually measures the perceived load on themachine. The reason for using the slowdown rather than the more common response time metric isthat it is a normalized value which is useful for cases where the mean execution time is not unity;when the mean is unity, the two measures are equivalent. The reciprocal of the slowdown is calledthe run fraction of the job. It gives the percentage of the time that the job is actually running. Theslowdown can take on any value greater than one, whereas the run fraction is a number between 0and 1.In addition to the performance under a given load, it is also interesting to study the way inwhich the system reacts to various load conditions. Of course, the system will become saturatedwhenever the arrival rate of new jobs approaches the completion rate of jobs already in the system.As the completion rate depends on the e�ciency of the system, saturation may occur even if the rawcomputing resources are more than su�cient. The average slowdown metric may be used to gaugethe e�ciency of the system: as the arrival rate increases and the system approaches saturation, theslowdown tends to in�nity.We use the functional dependence of the slowdown on the generated load as our main perfor-mance measure. The generated load is the fraction of available resources consumed and is de�nedexplicitly in the Appendix. The slowdown starts at 1 for low loads, and increases as saturation isapproached. The asymptote along which the slowdown shoots upwards indicates the maximal loadthat can be sustained by a certain system; the objective of the various algorithms is to push thisthreshold to higher values.Recall that the workload is characterized by three parameters: the distribution of gang sizes,the distribution of execution times, and the distribution of interarrival times. We assume thatthere is no correlation between the di�erent parameters. For example, a small gang may have along execution time. In particular, this means that on average large gangs have a larger cumulativeservice requirement than small gangs, which reects a hidden assumption that parallelism is usedto solve larger problems [21, 15].We shall make the common assumptions that the execution times and the interarrival timesare exponentially distributed. The distribution of gang sizes is harder to characterize. It is oftenthought that parallel programs would use either all the available processors or only one, leadingto a bimodal distribution. While this may be true in some cases, e.g. for programs written in the\agenda parallelism" style [5], it is not true in the general case, and especially not for massivelyparallel architectures [15]. For example, interdependencies among the program components maylimit the degree on parallelism [41], and considerations involving communication cost may reducethe usable parallelism even further [30, 33]. Moreover, it is reasonable to assume that owners ofexpensive parallel supercomputers will charge jobs according to their level of parallelism in additionto the total number of CPU cycles consumed. This will prompt users to use the number of PEs thatgives the best overall e�ciency, rather than that which matches the maximal parallelism [12, 37].In this paper, we shall use three speci�c distributions of gang sizes. The �rst is the uniformdistribution. The second is the harmonic distribution, where the probability of size s is proportional6



to 1=s. Consequently, there will be a larger fraction of small gang sizes. The third is uniform overpowers of two, representing a conscious e�ort by users to be e�cient, similar to the use of bu�erswith 512 bytes for I/O. All three are de�ned on the range of 1 to P , the number of processors inthe system, which is assumed to be a power of two. P = 32 was used in all cases, except whereotherwise noted. The simulation methodology is described in the appendix.3.2 Mapping AlgorithmThe mapping algorithm maps threads to processors. With the DHC scheme, this is done in threestages:1. The request to map a new gang propagates up the tree of controllers until it reaches the levelin which controllers have enough processors under their control to satisfy it.2. The controllers at that level communicate among themselves to decide which will take re-sponsibility for the new gang.3. The gang's threads are mapped to processors (at the leaves) under the chosen controller.There is no thread migration.The load balancing and mapping can be done in various ways. We now describe the options andcompare them using simulation results.Mapping gangs to controllers in a balanced wayLoad balancing can be achieved by the initial placement in a balanced manner, i.e. newly createdthreads are mapped to those processors that have the least load, or by dynamic run-time migrationof active threads from overloaded processors to underloaded ones. We restrict our attention to the�rst approach, thus saving the need to transfer state information from one processor to another.Mapping new gangs to controllers to ensure a balanced load implies some knowledge aboutthe loads under at least some of the controllers. A full knowledge scheme is out of the question,as it does not scale and delays the mapping too much. Therefore, we propose that controllersin each level be partially connected in some static pattern, with load information exchanged onlybetween directly connected (i.e. neighboring) controllers. The performance of such a scheme may beexpected to depend on the interconnection pattern of the controllers. We compare two possibilities:� Ring connections | The controllers are connected to form a ring. The loads on the controllerthat originated the gang and its two nearest neighbors are compared; the new gang is mappedto the least loaded of the three.� Cube connections | The controllers within each level are connected in a hypercube pattern;the higher the level, the lower the dimensionality of the cube.To get an idea of the performance in absolute terms, three other (unrealistic) schemes are alsochecked:� No load balancing | This is obviously the worst case. Each gang is mapped on the samesubtree in which it originated. 7



Load balancing scheme Expected load per PEFrom root 2.57Cube 2.61Ring 2.88Random 3.01No balancing 3.30Table 1: The expected number of threads mapped to each processor for the di�erent load-balancingschemes (requests generated by all threads, generated load of 0.645, harmonic distribution).� Random | Each new gang is mapped to a random controller at the appropriate level.� From root | The mapping is done through the root of the tree, choosing the least loadedbranch at each step until the appropriate level is reached. This is expected to be nearlyoptimal. It is an unrealistic scheme since the root would be a performance bottleneck.In the �rst three cases the placement of a new gang will be under a controller that is directlyconnected to the one under which the request originated, so the resulting distribution depends onwhere requests originate. We simulated two models of request generation. In one, every threadcurrently in the system has an equal probability of generating the next request. This is realisticfor parallel systems, especially if shell threads are executed on the same processors as applicationthreads. In the second model, all requests are generated on processor #1. This represents anextreme case where requests are only generated by shells, and shells are restricted to run on a smallsubset of processors.We compare load balancing schemes only for the case of a harmonic distribution of gang sizes.The case of uniform distributions is not of interest since most gangs will be mapped to the toplevels of the tree where there are only a small number of controllers. With P processors, half ofthe gang sizes between 1 and P would be mapped to the root controller and a quarter of them tothe controllers just below the root. Indeed, simulations showed that all the schemes have the sameperformance under these conditions.It was thought that the di�erences between load balancing schemes would be more pronouncedwhen there was a larger number of processors since in small systems the controller hierarchy is veryshallow and the information available is nearly complete. We therefore performed simulations ofthe di�erent load balancing schemes for both 32 and 128 processor con�gurations. As it turns out,our reservations were unfounded, and the results for 128 processors were almost identical to thosefor 32. The graphs shown here are from the results for 32 processors.The results of the simulations are as follows. If we assume that any thread can generate therequest to create the next gang, the distribution of loads turns out to be rather similar for all theschemes. Table 1) shows the means of the observed distributions. While there is an observableimprovement over the case of no load balancing, the improvement is not dramatic. Similar resultsare observed when the slowdown curves of the di�erent schemes are plotted (Fig. 2). It is possibleto discern that the cube interconnection pattern and mapping through the root are best, whilerandom placement performs poorly relative to explicit load balancing.8
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Figure 2: If new gangs are generated by ex-isting threads with a uniform distribution,all load balancing schemes are similar, andslightly better than no load balancing (harmonicdistribution). 0
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Figure 3: If all new gangs are generated onprocessor #1, load balancing provides a dra-matic improvement over no load balancing. Inaddition, the di�erences between di�erent loadbalancing schemes are ampli�ed. (harmonic dis-tribution).The relatively small improvement gained by load balancing is in contrast to results from dis-tributed systems, that indicate that even simple load balancing schemes are dramatically betterthan no load balancing (with a model of equal average arrival rates to all nodes) [11]. The rea-son is that gangs of threads, generated with di�erent sizes, are always spread across a number ofprocessors so as to support gang scheduling, thereby creating an implicit spreading of the load. Indistributed systems all load balancing has to be done explicitly.If we assume that all the requests originate from processor #1, there are marked di�erencesbetween the di�erent schemes (Fig. 3). If no load balancing is used, the system saturates at avery low load. Using either load balancing scheme improves things considerably, and while usingcube connections is better than ring connections, the di�erence is small. Furthermore, both loadbalancing schemes are noticeably inferior to the ideal method of mapping through the root of thecontroller tree, and even inferior to random mapping at high loads. These results indicate that itis important to prevent situations in which requests originate predominately from a small set ofprocessors. For example, restricting shells to execute on a small set of processors is a bad idea.Similar results have been reported in [26].Mapping threads to PEsOnce a controller has been chosen, the threads need to be mapped to the underlying processors. Todo so, the controller partitions the threads among its direct subordinates; they go on to partitionstheir respective portions among their own subordinates, and so on. Let s be the number of threadsthat a controller at level i is to map. Note that initially 2i�1 < s � 2i, where 2i is the number ofprocessors in the subtree of the controller, but in lower levels it may happen that s � 2i�1. Denotethe total loads on the controller's direct subordinates by t1 and t2. There are two basic approachesfor dividing s into s1 threads running under the left subordinate controller and s2 under the rightone: 9



Figure 4: Minimized fragmentationreduces the slowdown, provided selectivedisabling (SD) is used (uniform distribution). 0
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� Strive for balance. If jt1 � t2j � s, and also jt1 � t2j � 2i�1, make the division so thats1 + t1 = s2 + t2 � 1. Otherwise, revert to the second approach:� Minimize the fragmentation. Assuming w.l.o.g. that t1 < t2, assign minfs; 2i�1g of the threadsto the �rst child. If 2i�1 are mapped, this is the child's exact capacity, so there will be nofragmentation on that child. The other child gets the rest, if any.The simulation results indicate that striving for balance is marginally better than minimizing thefragmentation. However, if selective disabling (SD) is used to improve the scheduling of di�erentgangs side by side, then mapping to minimize the fragmentation is signi�cantly better (Fig. 4).Selective disabling is discussed at length below.3.3 Gang Scheduling AlgorithmThe scheduling algorithm decides which gangs will be executed when, and for how long. Theactivity in the system is divided into scheduling rounds; during each round every gang is scheduled.A round begins at the root controller. First it takes care of scheduling gangs which it controls.For each such gang, the root controller instructs its subordinates to schedule threads of the chosengang; the subordinates propagate these instructions down to their subordinates, and so on untilthe schedule command reaches the processors. As the tree is balanced, all the processors receivethe instruction at approximately the same time. Hence when each processor switches to a threadfrom the designated gang, they are actually performing a multi-thread switch.Let the total time allocated to a scheduling round be Q, and let Qr be the time spent executingthe gangs controlled by the root during this round. During this time only the root is active, andthe other controllers are disabled4. After all gangs controlled by the root controller have executedfor their respective time slices, the root becomes idle and its immediate subordinate controllersbecome active with a value of Q� Qr time left for this round. They repeat the process with their4This is total disabling. Selective disabling is described below.10
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Figure 5: Increased processor utilization due to selective disabling.gangs and their subordinates. This continues until all the controllers have scheduled their gangs,and then a new round starts from the root.Selective disabling | increasing the controller activityAn obvious optimization is to disable only some of the subordinate controllers when a controlleris scheduling a gang of threads using only part of the processors. This is referred to as selectivedisabling (SD). Subordinate controllers that control processors that are left over | i.e., do nothave a thread in the gang | need not be disabled. These controllers may use the extra processorsto schedule other smaller gangs of threads. For example, if the top controller in a three-leveltree schedules a gang of 5 threads on processors 1{5 (Fig. 5), the controller of processors 7 and 8should not be disabled; it can use these two processors to schedule a two-thread gang. Likewise,processor 6 can schedule a single independent thread locally. Note that the scheduling controllerand the processors that are actually used for the current gang de�ne a partial tree within the fullbinary tree rooted at this controller. Only controllers along branches of this partial tree shouldbe disabled. This means that selective disabling is easy to implement: when the top controllerissues an instruction to schedule a certain gang, controllers that receive this instruction check ifthis gang has any threads in their sub-tree. If so, they pass the instruction downwards and disablethemselves. If not, they ignore the instruction and schedule one of their own gangs instead. Notethat as the active front progresses down the tree, these lower controllers get another chance atscheduling their gangs, so small gangs tend to receive better service.The simulations indicate that selective disabling is indeed an e�ective method, as demonstratedin Figs. 4 and 9. This can also be seen in the way that the distribution of run fractions (thefraction of the time that a gang actually executes, or 1/slowdown) changes when selective disablingis introduced. With selective disabling, low run fractions become less probable, and higher onesbecome more probable (Fig. 6). As may be expected, the improved performance is a result of thefact that small gangs get to run more. This does not come at the expense of large gangs; on thecontrary, the run fraction of large gangs is also improved (Fig. 7). This happens because the small11
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Figure 7: Dependence of run fraction on gangsize (generated load of 0.517).gangs terminate sooner, and therefore present less of a competition for the processors.Determining time slicesWe require that each scheduling round consume the same amount of time, Q. There are severalways in which this time can be divided among the executing gangs. We make two major divisions:(i) the ratio of time allocated between each controller and its subordinates, and (ii) the ratio oftime allocated among the gangs assigned to a speci�c controller. The time allocated to a controllermeans the amount of time allocated to executing all the gangs assigned to the controller. Note thatwe are assuming that gangs may be allocated di�erent lengths of time quantums.We use the following notation to describe the allocation of time. We assume that there are ncompeting gangs, with sizes s1; : : : ; sn (i.e. gang i has si threads). The total number of threads willbe denoted S = Pni=1 si. The time allocated to gang i is ti. For simplicity, assume for now thatthe n gangs are all assigned to the same controller.We de�ne three approaches. The �rst emphasizes fairness to all gangs and the others penalizegangs that cause excessive waste of resources (and thereby deny other gangs the opportunity toexecute). Fig. 8 illustrates the di�erent schemes for a simple case of 4 gangs with staggered sizes.� Uniform time slices: ti / 1n . All gangs execute for the same amount of time, regardless of theirsize. At �rst glance this seems to be the fairest approach, but it might be ine�cient (especiallywithout selective disabling), as small gangs might leave a large number of processors idleduring their whole time slice [16]. One might question the fairness of allowing a small gangto waste more processing power than a large one.� Divide according to weight: ti / siS . The relative time allocated to a gang is determined by thenumber of its threads (its weight). Thus a gang with many threads (that leaves fewer extraprocessors) gets to run longer. This is desirable because given a certain number of processors,large gangs use more of them. At �rst glance it seems that this policy is subject to usercountermeasures, where redundant threads will be generated just to increase the execution12



uniform37.5% waste weight25.0% waste frustration33.2% waste job fair52.0% wasteFigure 8: Illustrative example of di�erent schemes to set scheduling quanta, and the resulting lossof resources due to fragmentation. The workload is four gangs of sizes P , 34P , 12P , and 14P . Thehorizontal dimension denotes processors, and the vertical shows the relative sizes of the schedulingslots within a scheduling round. Gray shading denotes loss to fragmentation.priority. The simulations show that such actions are futile. For example, the results of Fig.7 use this policy, and bear witness to the fact that there is no advantage in creating extra-large gangs. In fact, this policy just partly compensates for the better service that selectivedisabling gives to small gangs.� Divide to reduce frustration: ti / 1S�si . The weight of a gang is not proportional to thenumber of its threads, but rather to the reciprocal of the number of threads in gangs thatare blocked from running when it runs. This is justi�ed as follows: scheduling a gang causesthe others to be frustrated. The time should be set so that each scheduling decision addsa constant amount of frustration to the system (otherwise performance would be improvedby reducing the time allocated to decisions that add more frustration). As the amount offrustration is the product of the number of frustrated threads by the time, the expression forti follows. The result is very similar to the previous scheme, but tends to have less variancein the run times.It should be noted that we do not consider the option of setting ti / 1si , i.e. inversely proportionalto the gang size, since such a policy is counterproductive: it promotes fairness at the job level,at the expense of making parallelism unattractive. At the conceptual level, we believe that jobsthat attempt to use the parallel resources should be encouraged, not penalized. The system mustassume that if a job has many threads, it needs that many threads. Thus fairness at the thread levelwill translate into handing more resources to those jobs that have more threads, and parallelismbecomes an e�ective means to obtain computing resources. If there is a real concern that usersabuse the system, they should be curbed by suitable accounting practices. At the technical level,this scheme can lead to excessive wasted resources as illustrated in Fig. 8.The three time slicing approaches can also be used to allocate time between the controllers. Inthe uniform case, one considers the longest chain in the hierarchy, where length is the number ofgangs allocated to the controllers along the path. If the path length is m, then each gang along thepath is allocated 1=m of the time. If the root has k gangs, it uses k=m of the time; then the twosubtrees get to execute for the remaining (m� k)=m time. Since they may have di�erent numbersof gangs, their local allocations may be di�erent. For division by weights, s1 is taken to be the total13



Figure 9: Division by weightsreduces the slowdown, both withand without selective disabling. 0
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Figure 10: Distributions of the run fractions created by the four scheduling schemes (generated loadof approximately 0.515).number of threads in all the gangs controlled by a controller, and s2 is the total number of threadsin gangs controlled by all its subordinates, so n = 2. It turns out that with this formulation theweight and frustration approaches are the same.Based on the suggested approaches, four scheduling algorithms were formulated. These algo-rithms use di�erent combinations of approaches at the two levels. One is uniform/uniform: thisdivides the time uniformly among the controller and its subordinates according to the number ofgangs they each have, and then divides the time uniformly among the gangs mapped to the con-troller itself. The other combinations used in the simulations are weight/uniform, weight/weight,and weight/frustration.The results are as follows: Fig. 9 shows a comparison of the two schemes to divide the timebetween the controllers, and indicates that division by weights is more e�ective. It also emphasizes14
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Figure 12: Run fractions as a function of gangsize. Scheduling by weight provides some com-pensation for the better service that smallgangs get due to selective disabling (generatedload of about 0.515).the importance of selective disabling: starting with uniform/uniform scheduling, the improvementdue to selective disabling is twice as large as the improvement gained by switching to weight/uniformscheduling. In addition, the graph shows that the way in which the time is divided between thegangs mapped to the same controller is not very important: the three schemes that use division byweight between controllers and di�erent strategies within a controller all give similar results.The di�erence between the schemes is evident also when the distribution of run fractions thatthey generate is examined (Fig. 10): uniform/uniform scheduling has a higher probability to gen-erate low run fractions. It is interesting to note that uniform/uniform also has a relatively highprobability for generating a run fraction of exactly 0.5 (this is tabulated in the .5{.6 interval ofthe chart). This is evidence to the fact that it actually creates run fractions that are Egyptianfractions, or other fractions with small integers in the numerator and denominator.The distributions shown in Fig. 10 can also be used to get an idea about fairness. Ideally, thedistribution should be a delta function, indicating that all the gangs get the same run fraction.This is of course impossible in a stochastic system, because the load changes in a random manner;gangs that happen to execute in an empty system thus enjoy a run fraction of 1, while gangs thatshare the resources necessarily get a lower run fraction. A better indication of fairness is thereforethe average ratio of the maximal to minimal run fractions that are observed when two or moregangs coexist in the system. This is shown in Fig. 11. Obviously, uniform/uniform division of thetime results in better fairness, at least for low loads, because its ratio is lower and closer to a valueof 1.Another aspect of fairness is the question of which characteristics may inuence the service thata gang receives. It turns out that small gangs always get a better run fraction than large gangs(Fig. 12); this is a result of using selective disabling. Note that selective disabling more than o�setsthe advantage that scheduling by weights gives to large gangs, and with uniform scheduling it evencauses large gangs to receive a disproportionally low run fraction.The execution time of a gang, on the other hand, does not inuence its run fraction; thismeans that the response time is linearly proportional to the execution time. This may be expected15



considering that the simulations are based on the assumption that the scheduling time quantumis signi�cantly smaller than the intervals between consecutive gang creation and gang terminationevents. If this assumption is removed, we may expect very short jobs to su�er from a low runfraction, because the time they have to wait is long relative to their execution time. Note, however,that the absolute waiting time may still be quite short, being limited to a single scheduling round.4 Wasted Processing Power Due to Gang SchedulingThe main drawback of gang scheduling is that sometimes there is no set of gangs that can executeside by side and utilize all of the processors. Thus adhering to a strict gang scheduling policycauses processing power to be wasted explicitly by the system5. Real implementations can avoidthis by using alternative scheduling, that disregards gang a�liation. If the scheduled threads makeprogress, then no resources are wasted. However, if the application requires gang scheduling inorder to make progress, due to interactions among the threads, it will not bene�t from such partialscheduling. By analyzing the waste under strict gang scheduling, we �nd how much resources ap-plications may not be able to utilize. The rest is guaranteed to be utilized just as if the applicationswere running on a dedicated machine.The DHC scheme can only partition the machine into powers of two that correspond to thestructure of the tree of controllers. This restriction might increase the waste. In this section weevaluate the expected waste. We �rst examine optimal, o�-line algorithms operating under idealconditions, but restricted to the same mapping of gangs onto groups of PEs whose number is apower of two as in DHC. This gives an upper bound on the performance that can be expectedfrom the DHC algorithms (or equivalently, a lower bound on the waste). Next we investigatean o�-line unrestricted best-�t mechanism and show that the waste in the restricted case canindeed be attributed to the restrictive partitioning of DHC. However, a naive on-line version ofthe unrestricted best-�t mechanism su�ers much more waste than DHC, indicating that restrictivepartitioning is a reasonable compromise in the quest for a realistic on-line algorithm.Gang scheduling is reminiscent of dynamic memory allocation, in the sense that a set of pro-cessors must be found to execute a gang, much as a block of memory must be found to satisfy arequest for a new segment [32, 16]. The DHC scheme in particular is related to the buddy systemmethod for memory allocation [34]. It is therefore possible to use results about fragmentation inbuddy systems to evaluate the waste generated by DHC. However, there is no analogy to selectivedisabling in the literature.4.1 O�-Line Algorithms Restricted to DHC-like PartitioningThis subsection derives bounds on the performance of o�-line partitioning algorithms, i.e. thealgorithm has full knowledge about the sizes of all the gangs in the workload in advance and canorganize them at will. Naturally, the o�-line algorithm is not a candidate for implementation in areal system, but any algorithm that is implemented will su�er from at least as much fragmentationas the o�-line algorithm. Thus we obtain a lower-bound on the waste caused by fragmentationunder ideal conditions.5We note in passing that it has recently been shown that leaving processors idle is sometimes bene�cial also inthe context of partitioning with no time slicing [35]. 16



Recall that we assume the gang size is not correlated with the duration of execution. Conse-quently, the distribution of execution times may be hidden in the distribution of sizes by allowinggangs to be preempted: a gang of size s that executes for t time units is equivalent to t gangs of sizes that execute for one time-unit each6. It should be emphasized that the workload is given in ad-vance (i.e. all gangs are present at the outset), thus relieving the algorithm from any dependencieson stochastic arrivals. Hence the evaluated waste depends only on the distribution of gang sizes.This is in line with the results of this subsection being an upper bound on the performance thatmay be expected in a real system, where dependencies on stochastic processes cannot be avoided.To simplify the analysis, we assume that the distribution of gang sizes is given in the form of atable specifying the number of gangs of each size (thus the table actually represents the probabilitymass function). For example, a uniform distribution will be speci�ed by a table in which there areequal numbers of gangs of all sizes. We further assume that the numbers in the table are largeenough so that end e�ects may be ignored.A general bound is obtained for any algorithm that maps each gang to a group of processors,where a group contains a power of two number of processors. Since we assume that the totalnumber of processors is also a power of two, the groups of processors can always be �tted togetherto allow gangs to execute in parallel. Using bin-packing terminology, the waste is therefore due tointernal fragmentation alone, where not all the allocated processors are used.Uniform distributionUnder the uniform distribution, a large fraction of the gangs have large sizes, generating largewastes. Selective disabling cannot improve the situation by much, as there are not enough smallgangs to �ll the empty spaces.Claim 1 The optimal performance of DHC-like partitioning on a uniform distribution of gang sizesis 25% waste with total disabling and 20% waste with selective disabling.Proof sketch The proof is based on a geometrical representation. A gang of size s is representedby a rectangle of height s and unit width (Fig. 13 (a)). A set of gangs with a uniform distribution ofsizes can then be represented by the arrangement shown in Fig. 13 (b), which for large systems maybe approximated by the triangle of Fig. 13 (c). The area of the triangle represents the processingresources required by all the gangs.The case of total disabling is shown in Fig. 14. This shows an enumeration of gangs rangingin size uniformly from P (at left) down to 1. When each gang is scheduled, a block of processorsthat is a power of two has to be allocated. Assuming that the only waste is due to the di�erencebetween the gang sizes and these blocks, the waste is represented by the shaded area in the �gure.As exactly a quarter of the total area of the blocks is shaded, this implies a 25% waste. This resultagrees with the derivations of Peterson and Norman [34] and Russell [36] for internal fragmentationin the binary buddy system memory allocation7.6This equivalence is strictly valid only if (i) gangs may migrate at run time, and (ii) a gang may spread out onk � s processors and �nish in time t=k. While this is an unreasonable requirement, it just makes the bound stronger,so we allow it in this subsection.7They also show how the fragmentation changes between 25% and 33% if the maximal request size is not a powerof two. 17



s6?(a) (b) @@@@@@@@@(c)Figure 13: Geometrical representation of gangs: (a) A gang of size s is represented by a rectangleof height s and unit width. (b) A set of gangs with a uniform distribution of sizes. (c) For largesystems a uniform distribution may be approximated by a triangle.
Figure 14: To aid proof of 25%waste for DHC with total disablingunder a uniform distribution.

@@@@@@@@@@@@@@@@@@@@@@P P2 P4P=2 P=4 P=8 � � �The proof for the selective disabling case is similar. The only di�erence is that small gangs canbe executed on processors left over by larger gangs, provided that the di�erence in sizes is morethan a factor of two. An arrangement using this option is shown in Fig. 15. The shaded area inthis case is 1=5 of the total, implying 20% waste.Harmonic distributionClaim 2 The optimal performance of DHC on a harmonic distribution of gang sizes is 27.9% wastewith total disabling and 10% waste with selective disabling.Proof sketch The proof follows the same principle as before. When gangs from a harmonicdistribution are enumerated according to size, they may be approximated by the curve e��n (Fig.16). To see this, note that when N gangs whose sizes have a cumulative distribution function18



Figure 15: To aid proof of 20%waste for DHC with selectivedisabling under a uniformdistribution.
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F (x) are sorted from the largest to the smallest, the serial number of a gang with size s is n(s) =N(1 � F (s)). For the harmonic distribution, F (s) = � ln s where � = 1= lnP is a normalizationfactor. Inverting the expression, we �nd that the size of the nth gang is s(n) = expf(1� n=N)=�g.The approximation is better for the large sizes, which are the more important because of theirlarger contribution to the waste. Note that when the gangs are grouped by sizes that fall betweensuccessive powers of two, there are equal numbers of gangs in each group. Therefore completingeach gang to the nearest power of two yields blocks with equal widths. For total disabling, thearea above the curve in each block is wasted (shaded in the �gure). Evaluating the integral gives2 ln2�12 ln2 � 27:86%. This result agrees with the derivation by Russell [36] for the binary buddy systemwith a harmonic distribution; it is also very close to the 28% reported by Shen and Peterson [38]and to the 28{30% reported by Peterson and Norman [34], both for simulations of buddy systemsusing a truncated exponential distribution.With selective disabling we have to construct an explicit arrangement as we did for the uniformdistribution. This arrangement must abide by the restrictions imposed by DHC, i.e. it must usecertain partitions into powers of two. We begin by noting that the third block (with gangs rangingin size from P=4 to P=8) cannot be accommodated fully in the wasted area of the �rst block | awidth of x = 2 ln2�ln 3� is left over (Fig. 17). Therefore the minimal allocation of resources needed isproportional to the area of the �rst two blocks plus x of the third (heavy outline in the �gure). Aswe show below, all the smaller blocks can be accommodated in the wasted part (above the curve)of this area, so this allocation is indeed su�cient. The area that is wasted in the end is shadedin the �gure. As the requirements are proportional to the total area under the curve, we can nowcalculate the resulting waste. It turns out to be 8 ln2�ln 3�48 ln 2�ln 3 � 10:04%.The way to pack the smaller blocks into the wasted parts of the �rst blocks is shown in Fig.17. The procedure is recursive, starting from the smallest. Each block is divided into three parts,which are �tted into the wasted area in larger blocks. First, the part of the block starting at x andextending till the end of the block is �tted into the block after next (i.e. the block that contains19



e��n�����P P2 P4ln2� 2 ln 2� 3 ln 2� � � �Figure 16: To aid proof of 27.9% waste forDHC with total disabling under a harmonicdistribution. 4 ln 2�ln 3�
�-x

�-x
$� $� $� $�
$� $� $� �� $� $�Figure 17: Packing of smaller blocks intowasted parts of larger ones, generating 10%waste.gangs that are four times larger than the gangs in the current block). The x that is left is dividedinto two, and �tted into the next larger block (with gangs eight times larger than in the currentblock). As all blocks have the same width and all are divided according to the same proportions,parts of small blocks can be moved like this a number of times, until they end up in the �rst blocks(i.e. the area marked by the heavy outline).Uniform distribution over powers of twoIn the case of a uniform distribution over powers of two the DHC scheme does not impose anyrestrictions; the gang sizes are directly mapped onto groups of power-of-two processors. Thereforethere is no waste, implying a utilization of 100%. This is a special case of packing items with sizesthat divide each other [10].4.2 Unrestricted Best-Fit AlgorithmsTo analyze the waste due to the partitioning into powers of two, consider an unrestricted best-�talgorithm that does not abide by such a restriction. We �rst examine the optimal o�-line case,and then a strict on-line case, that services gangs on a �rst-come �rst-serve (FCFS) basis. Theperformance of a realistic algorithm is expected to fall between these two extremes.20



O�-line caseIt is easy to see that an optimal algorithm producing no waste exists for the uniform distribution:simply match each gang of size s with a gang of size P � s. Even if random behavior is allowed, i.e.the gang sizes are chosen according to a uniform distribution but the number of gangs from eachsize is not necessarily identical, the relative waste can be shown to tend to zero as the number ofgangs increases [27]. This is so because the larger the pool of gangs, the easier it is to �t gangstogether.The no-waste result can be generalized for other distributions (including the harmonic) asfollows.Claim 3 If, for every size s, where s > 1, the number of gangs of size s is less than or equal to thenumber of gangs of size s� 1, i.e. the probability mass function of the gang sizes is nonincreasing,then an optimal matching with no waste exists.Proof sketch Recall that we assume that P is a power of two. The idea is that there are alwaysenough small gangs to pad the holes left by the bigger gangs. More formally, the optimal algorithmproceeds as follows: divide the table of gang sizes into two halves. Match each gang of size s fromthe top half with a smaller gang of size 2d lg se � s from the lower half, thus creating a full blockwhich is a power of two (initially it is P ). After this step there are no more gangs of sizes larger thanP=2, and the numbers of those with sizes smaller than P=2 are again nonincreasing. Therefore it ispossible to repeat this step recursively on the lower half. The sizes of the blocks that are generatedare nonincreasing powers of two, so they can be �tted together to create blocks of size P with nowaste. The last block may be only partially full, but we assumed the numbers are big enough forthis to be insigni�cant.Obviously, any distribution over powers of two can also be scheduled with no waste. Thus, forthe three distributions we are investigating, unrestricted o�-line scheduling achieves full utilizationof the resources. We may therefore conclude that the results on waste in Section 4.1 are a directconsequence of restricting the partitioning to powers of two, like in DHC.B la_zewicz et. al. [2] present a linear programming formulation for o�-line gang scheduling, thusindicating a polynomial complexity. Hence we actually have a tractable optimal algorithm for anydistribution. Note, however, that this algorithm is centralized and o�-line, so it is not useful forreal systems.FCFS on-line caseThe above analysis of the optimal performance assumed an o�-line algorithm. We now turn to theother extreme, i.e. an on-line algorithm that schedules gangs in the order they arrive. Moreover,there is no preemption or migrating gangs from one set of processors to another. As an arrivinggang may be larger than any block of available processors, this may create external fragmentationin addition to the internal fragmentation considered before.The requirement that gangs be scheduled in the order of arrival provides for an independencefrom the details of the distribution of arrival times. However, it is necessary to account for thedistribution of execution times. We consider two cases: unit execution times and execution timesthat are exponentially distributed. With unit execution times gangs are accumulated until the next21



Figure 18: Results of waste with on-line FCFS best-�t algorithms. 10
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gang cannot be satis�ed, and then a new scheduling round in started. The situation in one roundhas no e�ect whatsoever on subsequent rounds. This is equivalent to the \next-�t" bin-packingalgorithm [9]. This case is easy to analyze, and provides a lower bound on the fragmentation underFCFS on-line scheduling. When variable execution times are allowed, gangs may retain their holdon a block of processors from one scheduling round to the next. Gangs that terminate may leavea free block of processors that cannot be uni�ed with other blocks, creating a checkerboard e�ect[8]. This exacerbates the problem of wasted space. We used an exponential distribution with amean of �ve time-units as one speci�c example of this e�ect, showing that the fragmentation canbe considerably worse than for unit execution times.The analysis is based on simulations: a sequence of gangs with sizes drawn at random fromthe desired distribution was generated, and these gangs were then accumulated as long as theircombined sizes plus waste did not exceed P . When the next gang could not be satis�ed, the wastewas tabulated and a new round started. For the unit execution times, all one has to do is to sumup the gang sizes, until the next one would cause the total to exceed P . The di�erence betweenP and the accumulated sum is the waste, and each new round is a fresh start. The simulation ofexponentially distributed execution times simply keeps track of the allocation of blocks to gangs,and maintains a list of free blocks. Free blocks are merged whenever possible. Each new roundalready has all the gangs from the previous round that have not terminated. The average wasteover a large sequence was used to gauge the performance.The simulation results are shown in Fig. 18. The waste ranges from 20% to 25% for unitexecution times. With our example of exponentially distributed execution times, the range is31% to 37% for 32 processors, and goes up higher than that for certain distributions when moreprocessors are used. For uniform over powers of two, the waste reaches 49% at 4096 processors.This matches results by Krueger et. al., who report a maximum utilization of about 50% for FCFSscheduling of subcubes from a hypercube, when all sizes are equally likely [28].Comparing this with the result of no waste for the o�-line case shows that on-line scheduling is areal challenge. This is especially true in the more realistic case of nonuniform execution times. Thecheckerboard e�ect caused by the increased fragmentation as new gangs are �tted into the space leftby previous ones results in a severe degradation in performance. This means that nonpreemptive22



Figure 19: The e�ect of the workloadstatistics on performance. Thevertical lines show the maximalutilizations possible for the threedistributions (20% waste for theuniform distribution, 10% for theharmonic, and no waste for uniformover powers of 2). 0
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algorithms would have to perform some sort of compaction and load balancing to be acceptable.4.3 The optimality of DHCMost of the DHC simulation results reported in Section 3 were for a uniform distribution of gangsizes. We can compare this with the two other distributions that we have used, namely harmonicand uniform over powers of two. The results are as follows (Fig. 19): a uniform distribution givesthe worst performance among the distributions that were checked. This indicates that the resultspresented in Section 3 should be taken as conservative estimates. The harmonic distribution givesbetter performance, which is understandable considering that it has a larger percentage of smallgangs and it is easier to �t small gangs together. The uniform distribution over powers of two getsmuch better performance then the other two, because it increases the probability that gangs will�t together.When compared with the bounds derived in Section 4.1, these results are found to be optimalin the sense that the DHC algorithms approach the performance of optimal o�-line algorithms thatuse the same partitioning into powers of two (Fig. 19). This is especially impressive consideringthat the DHC algorithms operate in the face of stochastic arrivals, and might waste processingresources unavoidably if there is a gap in the stream of arrivals. The o�-line algorithms do nothave to contend with such cases. In e�ect, the DHC algorithms eliminate nearly all the externalfragmentation under loaded system conditions, leaving only the internal fragmentation that isinherent for each distribution of gang sizes.Moreover, the DHC algorithms outperform the on-line FCFS best-�t scheduling with unre-stricted partitioning. This result may be traced to the use of preemption with time slices deter-mined by weights, thus giving gangs that generate less waste a higher priority. In other words,clever modi�cations of time quantums allow us to avoid the problematic migration of tasks thatwould otherwise be necessary to achieve acceptable performance in the face of fragmentation.23



5 ConclusionsGeneral-purpose, multiuser, interactive systems are a promising direction for the further develop-ment of parallel systems. A basic issue in such systems is the partitioning of the machine betweenthe users; both time slicing (as in conventional uniprocessors) and space slicing (i.e. the alloca-tion of distinct processors to di�erent users) can be used. We showed how both methods can becombined e�ciently using a Distributed Hierarchical Control scheme, which is scalable to verylarge machines. This provides support for gang scheduling, which in turn provides a convenientinteractive execution environment to applications.Note that the whole discussion does not mention the architecture of the parallel computeritself, nor the model that the user sees. This results from the fact that the relevant operatingsystem functions are orthogonal to the architecture, and are relevant for any parallel computer.In particular, it should be stressed that the hierarchical structure is in the control, not in theprocessors. Thus we achieve the exibility and scalability of cluster machines without forcinga nonuniform model on the user. On the other hand, if the architecture is indeed nonuniform,this does not invalidate our algorithms. To the contrary, the tree structure of the controllers canguarantee the best possible locality properties, by matching it to the architecture. Thus in aclustered architecture subtrees would correspond to clusters, and in a hypercube each level of thetree would correspond to a dimension.The main problem in supporting gang scheduling is the coordination of the multi-thread-switching. These should be synchronized across the relevant processors, but should not causeredundant dependencies when small gangs are involved. Our solution is based on a hierarchy ofcontrollers, that provide the desired degree fo control for di�erent sized gangs. The price is thatwe use a prede�ned partitioning into powers of two. This was shown to result in a loss of 5{25%of the resources to fragmentation, depending on the distribution of gang sizes. An optimal o�-linealgorithm that is not restricted to use such a partitioning can �nd a schedule with no waste.However, real systems must be based on realistic, on-line algorithms. The simple approach togang scheduling is to use a non-preemptive FCFS scheduler, like those used in systems that providepure space slicing. In one example we checked, such an algorithm su�ered from 31{49% loss tofragmentation, depending on the gang-size distribution and on the system size. Our preemptivealgorithm is much more e�cient. Moreover, we have shown that asymptotically it achieves thesame utilization as an o�-line algorithm that is restricted to use the same partitioning into powersof two. Consequently, within the framework of such a partitioning, our algorithms are optimaland leave no space for improvement. In particular, the use of preemption eliminates the need toimplement runtime migration of threads as a means to counter external fragmentation.Appendix: Simulation MethodologyThe following list of assumptions underlies the algorithms and simulations presented in Section3. The simulation assumes that the scheduling time quantum is signi�cantly smaller than theinterval between gang creation and termination events, so that all the gangs get to run in themanner speci�ed by the scheduling policy. This assumption simpli�es the simulation and removesthe scheduling time quantum from the list of parameters.The execution times of the gangs are drawn from an exponential distribution with a mean24



of 1. The interarrival times are exponentially distributed as well, and their mean is changed soas to create various loading conditions. The number of processors in the simulations was set at32; simulations for higher numbers required too much time. The only exception were a few runswith 128 processors, used to validate the results of the load balancing experiments. The systemperformance is measured as a function of the generated load, which is given as the fraction ofthe available resources consumed. This is also the average non-idle time of each processor; it iscalculated by the expression(average gang size) � (average execution time)(number of processors)� (average interarrival time)Each combination of load balancing, mapping, and scheduling schemes was simulated for severalload conditions, which were generated by changing the average interarrival time. In each simulation,the following information was collected: histogram of gang sizes; distribution of loads; distributionof run fractions; run fractions as a function of gang size; and run fractions as a function of executiontime. The slowdown is the reciprocal of the run fraction, so information about it is readily obtained.We use the median slowdown in the presentation of the results, rather than the average. The reasonis that the median slowdown and run fraction correspond to each other, while the average slowdownand run fraction do not. Thus using averages tends to distort the picture, painting it in rosy colorswhen run fractions are used, but in gray when slowdown is used.The length of the simulation runs was long enough so that the di�erences between the averageslowdown on independent runs was less than one percent for low loads. The di�erence may besubstantially larger for high loads, but this does not e�ect the quality of the results because theslowdown increases sharply in that region. A single long run for each con�guration was preferredover a number of independent short runs, because full distributions and not just averages werecollected.It should be noted that the simulations presented here are di�erent from those presented ina previous paper [16]. Those simulations provided an average over multiple static con�gurationswith exactly the same load, whereas the current simulations model the dynamic changes in systemcon�guration that occur when new jobs are submitted and old ones terminate.References[1] J. M. Barton and N. Bitar, \A scalable multi-discipline, multiple-processor scheduling frame-work for IRIX". In Job Scheduling Strategies for Parallel Processing, D. G. Feitelson andL. Rudolph (eds.), pp. 45{69, Springer-Verlag, 1995. Lecture Notes in Computer ScienceVol. 949.[2] J. B la_zewicz, M. Drabowski, and J. W�eglarz, \Scheduling multiprocessor tasks to minimizeschedule length". IEEE Trans. Comput. C-35(5), pp. 389{393, May 1986.[3] P. Brinch Hansen, \An analysis of response ratio scheduling". In IFIP Congress, Ljubljana,pp. TA{3 150{154, Aug 1971.[4] R. H. Campbell, N. Islam, and P. Madany, \Choices, frameworks and re�nement". ComputingSystems 5(5), pp. 217{257, Summer 1992. 25
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