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Abstract—The increasing gap between processor and memory |l. THE SKEWED DISTRIBUTIONS OFMEMORY ACCESSES
speeds, as well as the introduction of multi-core CPUs, have
exacerbated the dependency of CPU performance on the memory  Temporal locality of reference is one of the best-known
e e onening S0 e setocof ey PTnoMena in computer workoads [3]. But this is actaly
used t?locks and decreased gower consumption. In thisq pa):)er the result of two distinct properues: that references te th
we describe a novel, random sampling based predictor that ca S@me address tend to come in batches, and that some addresses
distinguish transient cache insertions from non-transieh ones. are much more popular than others [9]. These more popular
We show that this predictor can identify a small set of data addresses can be grouped together to formctne working
fﬁfgiéfvsiir?egtsbéogﬁﬁ;&at glf)r(\jlli(cf?):nnoes\}vcgat(t]ﬁen:jeergiogsrir‘]e(;mtﬁ;’ set — a subset of the classic working set definition [3] whose
replacemer?t policies. Altﬁough we only discuss the 81 dateeche, cache residencies naturally serve the_ majority of refaenc
we have found this predictor to be efficient also when handlig Blocks that are accessed only a few times and are not part of
L1 instruction caches and shared L2 caches. this core will be calledransient.

A good way to visualize skewed popularity is by using
mass-count disparity plots [5]. These plots superimpose tw
. INTRODUCTION distributions. The first, which is called tr@unt distribution,

The increased dependence of modern processors on tlige# distribution on blocks, and specifies how many times each
memory system is driving a quest to find new methods tock is referenced. Thuk.(x) represents the probability that
identify temporal locality, methods that are more accutlagm @ block is referenced times or less. The second, called the
the prevalenstack depth and its derivative mechanisms suctmass distribution, is a distribution on references; it specifies
as theLRU replacement policy. the popularity of the block to which the reference pertains.

In this paper we introduce the concept afare working set  Thus F,,(z) represents the probability that a reference is
— a small subset of memory blocks that service the majorigjrected at a block that is referencedimes or less.
of memory references — and describe a novel predictor thatA problem with the above definition is that it consideis
determines whether a cache-residing block is part of this cdhe references to each block, throughout the duration of the
based onindependent random selections. The independent run. But the relative popularity of different blocks may olge
selections eliminate the need to maintain any past-use in-different phases of the computation, so the instantasmeou
formation. The core working set concept and the predictog®pularity may be more important for caching studies. Our
design are based on analyzing L1 data memory referencegution is thereforenot to count all the references to each
and showing they can be characterized using a statistitdck, but to count only the number of references made during
phenomenon callenhass-count disparity [5]. Specifically, this a singlecache residency. Thus, if a certain block is referenced
phenomenon stems from the known observation that memd@0 times when it is brought into the cache for the first time,
usage is highly skewed, with most references directed atisathen evicted, and finally is referenced again for 200 times
relatively small subset of the address space; it is degtiifbe when brought into the cache for the second time, we will
Sect. Il consider this as two cache residencies containing 100 abd 20

The main metric we use is the number of references a bloterences, respectively, rather than as a single residehc
is likely to serve while in the cache, which is denoted a300 references.
the cache residency length. The predictor classifies these into Returning to mass-count disparity plots, the disparitgref
longer, non-transient residencies, and short, transiees e— to the fact that the graphs of the count and mass distrilbsition
corresponding to residencies of blocks that are part of tihe c are quite distinct. An example is shown in Fig. 1, showing
working set, and residencies of non-core blocks. This isedothe mass-count disparity for 4 SPEC 2000 benchmarks, one
using random selection of memory references, as descnibedf which (mcf) is known for its poor cache utilization. The
Sect. Ill. It is compared with related work in Sect. IV. divergence between the distributions can be quantified &y th

The concepts presented in this paper were evaluated ugigt ratio [5], which is a generalization of the proverb24l/80
cache traces of SPEC benchmarks, generated usin§irtke principle: This is the unique point in the graphs where the
pleScalar toolset [1] for 16K, 4-way set-associative L1 dataum of the two CDFs is 1. In the case of the vortex data, for
caches. All benchmarks were executed with tefeinput set example, the joint ratio is approximately 13/87 (doublear
for 2 x 10? instructions, after fast-forwardingp x 10° instruc- at middle of plot). This means that 13% of the cache resi-
tions to skip any initialization code. Despite only destrip dencies, and more specifically those instances that ardyhigh
results for data caches, the predictor was also found eféectreferenced, service a full 87% of the references, whereas th
for instruction caches and shared caches. remaining 87% of the residencies service only 13% of the
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Fig. 1: Mass-count disparity plots for data memory access&6% longest residencies are required for half the mags,|.

in select SPEC benchmarks. The arrows demonstraté’thg However, since the longest 2% of the residencies still casapo

Joint-ratio, andN, ;, metrics of mass-count disparity. 30% of the mass, mcf still exhibits some degree of disparity.
The existence of mass-count disparity demonstrate that the

working set is not evenly used but is rather focused around

a core. This has important consequences regarding random

sampling. Specifically, if you pick a residency at randonar¢h

TABLE I: The N,,, andW,,, metrics values for L1 data
streams for the 20 SPEC 2000 benchmarks used.

Benchmark]| Wy ,5 | W1,2@ | Ny /g Ny /2@ is a good chance that it is seldom referenced. That is why
9zip 3.22 1] o001 6005 random replacement is a reasonable eviction policy, as has
vpr 4.40 2| 0.08 1606 : . .

mef 24 47 11 15099 5 been observed many times [14]. But if you piakreference
crafty 2.49 1| 013 1932 at random, there is a good chance that this reference refers t
parser 3.21 3| 010 3441 a block that is referenced very many times, thus belonging to
perlbmk 1.82 4| 051 2277 h £ th Ki

vortex 1.75 3| 019 2528 the core of the working set. _ N

bzip2 135 1| 0.00 52757 Identifying the core working set can improve the efficiency
twolf 6.78 3| 178 60 of caching mechanism, and the nature of this core allows it to
wupwise 4.44 15 0.00 | 11521092 be id ified . d li Thi b . is th
swim 39.49 10 | 3780 10 e identified using random sampling. This observation is the
magrid 11.51 9 | 14.55 31 focus of this paper.

mesa 1.50 15| 0.36 13377

galgel 11.98 2 0.61 198

art 21.75 111573 3 I1l. 1 DENTIFYING THE CORE WORKING SET

facerec 2.30 2 0.05 17534 ) ) ] . ) .
ammp 5.17 3| 024 444 The basic goal of a residency length predictor is to identify
gggs 2%'81 I 18'(2]2' 22252 the residencies that are likely to be long. The optimal apgino
Average 955 76 497 | E82479 would be to simply count th(_a number of references m:_;\de to
Median 444 3 024 2232 each block in the cache — i.e. the length of each residency

— and classify the residency deng once it passes some

threshold. Fig. 1 indicates that even an arbitrary threshol
references. Thus a typicadsidency is only referenced a ratheraround 100 references-per-residency would suffice to iigent
small number of times (up to about 10), whereas a typical small subset of residencies that service the majority of
reference is directed at a long residency (one that is accessegferences for most benchmarks. However, this naive design
from 100 to millions of times). is costly as it maintains a counter for each cache line.

More important for our work are th#/, ,, andV; , metrics The alternative, based on the observations made in the
[5]. The W ,» metric assesses the combined weight of the haifevious section, is to use random sampling. If we sample
of the residencies that receive few references. For voitiese references uniformly with a relatively low probabilify, short
50% of the residencies together gel.7% of the references residencies will have a very low probability of being sedett
(left down-pointing arrow). Thus these are instances ofkdo But given that a single sample is enough to classify a resigden
that are inserted into the cache but hardly used, and shoa&l belonging to the core (at least until the corresponding
actually not be allowed to pollute the cache. Rather, th@eadlock is evicted), the probability that a residency is dléess
should be used preferentially to store longer residensigsh as core aftem references isl — (1 — P)". This converges
as those that together account for 50% of the referencexponentially to 1 for large:.

The number of long residencies needed to account for halflmportantly, implementing such a predictor does not reguir
the references is quantified by th€, ,, metric; for vortex savingany state information for the blocks, since every random
it is less than 1% (right up-pointing arrow). Table | listsselection is independent of its predecessors. The onlywzaed
the measured?;,, and N, ,, data for the 20 SPEC 2000required is a pseudo random number generator — a simple
benchmarks used, along with the maximal residency lengthlofear-feedback shift register, for example.
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Fig. 2: The distributions characterizing selected and nofrig. 3: Fraction of blocks sampled by the probabilistic predictor
selected L1 data cache residencies, with selection prlifpabiand the percent of memory references they service, compared
P = 0.01. The downward arrows indicate the median points. to those of the optimal counter-based predictor.

The predictor divides the set of all residencies into twd:0 references. Furthermore, the average residency leogth f
those that are classified as core, and those that retainahie tmcf’s entire stream is~2, and under 1.8 for the transient
sient label. In effect, the probabilistic classificatios@bplits residencies — as oppose to 16.8 for the core residencies. Thu
every core residency in two, representing the referencelemaandom sampling was effective at identifying the core wogki
to the residencybefore and after the random selection. Oneset to the degree that such a core exists at all.
way to analyze the predictor is by comparing the distrim&io 5 3 compares the probabilistic predictor to the optimal
of ref_erences mz_slde to re5|denC|es_ in th_e two groups (where EHaive) counting approach, by showing the percentage of res
transient group mc_ludes both residencies that are notteele yoncjes classified as core and the references they serviee. T
and the pre-selection part of those that are). X-axis equates a sampling probability &f with a counting

Fig. 2 shows the distributions of residencies (count) angregholq of L. When analyzing the percent of references
the number of references they service (mass) for each Claggyiced we see a very good correlation to those serviced
using P = 0.01, for two benchmarks. The distributions ancby the optimal predictor, at least foP up to 0.01. For
their median values are compared to the base distributibnseg{amme withP = 0.01 the sampling predictor covers over
residencies and references from Fig. 1. Note that the bag@y, of the number of references covered by the optimal
distribution of residencies practically overlaps that 8Bt pregictor for crafty. This good correlation stems from the
residencies classified as transient, Wheregs the_basbmhm?n_ fact that both predictors only select a very small percentag
of references resembles that of the residencies classified @ ihe residencies usually just a few percents. But when
core (at least for cache-friendly benchmarks). This is @t p s rejatively high, we get too many false positives where
manifestation of the mass-count disparity phenomenon.  y-5nsjent residencies are classified as core (residertuetes

The resulting distributions show a good correlation betwegna 15 references constitutes some 90% of all residencies i
the residency’s length and whether it was classified as cofige penchmarks shown in Fig. 1). These residencies are also
with residencies classified as transient likely to be sdh@n 6 reason why the probabilistic sampling predictor somesi
those marked core (left of figure): less than 10% percent gfems to serve more references than the optimal predibtsr (t
crafty's residencies that are classified as transient consist;@fir e for mcf. where the coverage & = 0.01 is almost
more than 10 references, as opposed to over 50% of ref30s). This implies thaP = 0.01 is a good operating point,

dencies classified as core. Furthermore, some 92@bafly's 5 resylt that was consistent for all benchmarks analyzed.
references that are serviced by residencies classifiedras co ] ) )

are indeed served by residencies longer than 200 referencesUMming over all the residencies, Table Il shows how
(middle double-arrow). In contradistinction, onky7% of Many are classified as core and how many references they

the references serviced by residencies that are classifiedS8Vice- By sampling only 0.1% of the references we select on
transient actually reference residencies longer than 200. 2verage~1.3% of the residencies, and cover over 50% of the
Random sampling even yields reasonable results for fi€rences. As the average is highly affected by benchmarks
cache-unfriendly mcf benchmark: Although 90% of the resown for their poor temporal locality, such @aim, art,
idencies classified as core are shorter than 10 refereregs, @1d Mcf, we also show the median values, demonstrating a
only account for 10% of the core’s mass. The other 90% gpverage of over 60% of the references.
the mass is composed of residencies longer than 10 refexenceln conclusion, the probabilistic predictor is shown to beyve
These 90% of the core references in fact cover over 608#ective in distinguishing between transient and coreheac
of mcf’s overall reference that target residencies longant residencies, thus approximating the optimal countingipted



TABLE II: Percents of residencies (insertions) classified as core
and the references they service, foe= 0.001 andP = 0.01.

V. CONCLUSIONS
In this paper we explore the mass-count disparity of memory

P =0.001 P =0.01 references, where the vast majorityreferences are serviced
Benchmark ?g;s ‘(’gg)RZEIS O/ZIQ)Z ‘;/%Rgs by a very small fraction of all cache residencies, and the
gzip . . . . I . . !
vpr 087 | 5733 617 | 70.58 majority o_f residencies serve only very few references. This
gce 112 | 66.63 9.04 | 73.78 even applies to cache-unfriendly benchmarks.
mcf 019 | 9.29 1.76 | 18.09 Harnessing this phenomenon, we have designed a predictor
crafty 1.02 | 62.68 || 5.60 | 81.25 e ; ; ;
parser 114 | es.66 6.90 | 7572 that class_n‘les cache_ residencies based on the|r_ expecigth le
perlbmk 305 | 68.01 || 13.66 | 87.22 The predictor uses independent random selection of refegen
vortex 219 | 69.16 9.96 | 88.33 with a low probabilty (e.g.1;). thereby mostly selecting
baip2 1 3% 1Al 8538 long residencies (in 20 SPEC benchmarks, it selected an
wupwise | 1.64 | 77.54 || 14.45 | 82.01 average of~8% of the re_sidencies that servi_eeﬁ4°/_o c_)f all
swim 112 | 3.89 || 10.68 | 13.95 references). The use of independent selection elimin&tes t
mgrid 1.56 | 21.55 | 13.00 | 40.77 need to maintain any past-use information. This also esable
mesa 472 | 87.24 || 19.19 | 94.28 ) . . .
galgel 058 | 29.04 3.86 | 57.06 easy mt_egratlon with other predlgtor types, such_as. those
art 0.24 | 20.82 2.38 | 23.53 addressing memory level parallelism and the criticality of
?niﬁzzc 1T %080 | 95| seae specific references for performance [11].
lucas 079 | 3172 || 744 | 3924 Extgnding this work, we have succgssful}y L_Jsed random
apsi 0.73 | 64.93 4.14 | 82.29 sampling to preferentially insert core residencies inodache
Average | 1.30 | 5101 || 8.25] 64.39 [4]. The proposed design services core residencies from a
Median 112 | 62.68 744 | 7419

direct-mapped cache, and transient ones from a small fier.
utilizing the direct-mapped cache’s low-latency and lomwer
traits, while eliminating most conflict misses, this design
Predicting temporal locality — and specifically identifgin achieves better performance and consumes less power than
the core working set — is an integral part of every blockp, equal size set-associative cache.
replacement policy and cache filtering mechanism. Either|n future work we intend to explore the use of random
implicitly or explicitly, several predictors have beendissed sampling for the design of shared L2 caches, attempting
as part of the research in cache design. to reduce cache pollution caused by transient residencies.

Variations of the Optlmal prediCtor were used by Sahuqui”pre”minary experiments show promising results.
and Pont [13] and by Rivers and Davidson [12], at a price of REFERENCES
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