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Abstract

Contemporary parallel programming languages often provide only few low-level primitives for
pairwise communication and synchronization. These primitives are not always suitable for the
interactions being programmed. Programming would be easier if it was possible to tailor com-
munication and synchronization mechanisms to fit the needs of the application, much as abstract
data types are used to create application-specific data structures and operations. This should
also include the possibility of expressing interactions among multiple processes at once. Com-
municators support this paradigm by creating abstract communication objects that provide a
framework for interprocess multiparty interactions. The behavior of these objects is defined in
terms of interactions, in which multiple processes can enrole. Interactions are performed when
all the roles are filled by ready processes. Nondeterminism is used when the order of interac-
tion performance is immaterial. Interactions can also be disabled, thereby creating a uniform
queueing mechanism where interactions may represent events.

Keywords: Abstraction, Communication patterns, Multiparty interactions, Object-based pro-
gramming, Parallel programming, Synchronization.



1 Introduction

Object-based programming is an important and growing influence in the software design field. It
provides tools for modularity and data encapsulation, and enhances maintainability, portability,
and reuse of code. It therefore seems reasonable to apply the concepts of object technology to
new fields, such as the programming of communication and synchronization mechanisms in parallel
systems.

Applying a new concept also provides an opportunity to rethink old approaches and implemen-
tations. Specifically, before we apply object technology to existing communication and synchro-
nization mechanisms, we should rethink the question of what sort of mechanisms we really want.
In the context of tightly-coupled parallel systems, it seems that there is considerable space for im-
provement. Most of the mechanisms now in use were designed for multiprogrammed uniprocessor
systems, or for loosely-coupled distributed systems. These mechanisms do not reflect the multiway
simultaneous activities that occur in tightly-coupled systems. A new mechanism is required in
order to express multiparty interactions.

It should be pointed out from the outset that we are not following the conventional way in
which “objects” are combined with “parallelism”. Many object-based systems use the separation
between objects to define a natural parallel behavior, in which computations relating to distinct
objects may be done in parallel. In effect the objects become agents, and messages passed between
them drive the program execution forward. This approach is used in the Actors model and in
various parallel object-oriented languages (see [42]). Our approach, on the other hand, is to seek
the underlying concepts on which object technology is based and apply them to “conventional”
parallel programming languages. Specifically, we take the ideas of abstraction and encapsulation,
and apply them to the definition of constructs for multiparty interactions.

The language constructs introduced in this paper are not radically new — they are mainly
a new combination of proven good ideas with some extensions and enhancements. Well-known
results and approaches are brought to bear on the new constructs, including dependence analysis
and automatic parallelization, object technology and modularization. All this is done subject to
the guideline that the semantics have to be kept crisp and well defined. The final result is quite
different from previous proposals.

The motivation for using an object-based approach to implement multiparty interactions is
elaborated in the next section. To study the possibility of a general formulation for abstract com-
munication objects, the notion of communicators is introduced in section 3. These are abstract
communication objects that provide a framework for interprocess multiparty interactions. The
behavior of these objects is defined in terms of interactions, in which multiple processes can enrole.
Interactions are performed when all the roles are filled by ready processes. Nondeterministic enrole-
ment is used when the order of interaction performance is immaterial. Section 4 then presents the
features that must be included in the communicator formalism in order to handle various well known
communication and synchronization schemes, assuming they are representative of user needs. For
example, interactions can be disabled, thereby creating a uniform queueing mechanism. Section 5
gives an application example. Implementation issues are discussed in section 6; it is shown that
communicators can utilize many existing practical results from the field of parallel programming.
Section 7 compares communicators with other related proposals, and the conclusions of the study
are drawn in section 8.



2 Motivation

2.1 Objects and Abstraction

Object-based programming is an outgrowth of the concept of abstract data types (ADTs). Objects
often embody various entities that are used to structure the application. The representation of
these entities is encapsulated within the objects, resulting in the creation of new data types that
were not provided as primitive data types by the system.

Maybe the most important aspect of object technology is that it allows the user to create new
abstractions. Specifically, ADTs allow a programmer to fashion his own data types, complete with
the operations that may be performed on them. Porting this idea to parallel environments, it is
natural to suggest that the user be allowed to define his own abstract communication objects, rather
than restricting him to use the primitives provided by the system directly. Such objects would have
certain communication and synchronization properties, that are useful for the application in which
they are defined. For example, any number of processes could be synchronized and data passed
between them in a certain pattern. The implementation of the desired behavior based on the system
primitives would be encapsulated within the objects.

The chief virtue of abstractions is that they lead to a separation of concerns. For example,
consider the way in which parallelism is expressed. Concurrent systems provide a fork primitive,
that enables one additional process to be created at a time. Each processor in a parallel machine
can also create only one additional process at a time. But parallel languages should provide a
parbegin/parend construct instead of a fork. Such a closed construct is better both because
it induces a structured programming style (as opposed to fork and join which are reminiscent of
goto) [13], and because it provides a higher level of abstraction, allowing the programmer to express
the degree of parallelism in the program directly. The underlying implementation might still be
based on a serial loop that performs one fork per iteration, or else the processes may be spawned
in a tree structure with logarithmic delay, or even using fetch-and-add or broadcasts to achieve
constant delay. Without the parbegin/parend abstraction, the programmer has to contend with
these options himself [40]. With it, these are implementation details that are delegated to the
system.

Returning to our abstract communication objects, we suggest that they induce a clean sep-
aration between the implementation of the interactions on the one hand, and the bodies of the
interacting parallel processes on the other. The processes themselves are sequential, and may ben-
efit from the accumulated experience with sequential programming. Much of the implementation
of the interactions is passed on to the system. This allows new and improved implementation to
be incorporated easily. Portability is also enhanced, because only the communication objects with
their well-defined semantics would have to be recoded for the primitives of a new environment; the
processes that use these objects would stay the same.

2.2 Multiparty Interactions

A large number of abstractions have been designed to enhance the programming of concurrent
(time sharing) systems [2]. As these abstractions were meant to be used on uniprocessor machines,
their functionality is largely restricted to regulating the serial order of a number of operations.
For example, semaphores can be used to provide mutual exclusion or a producer-consumer rela-
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Figure 1: Three models of parallel programs.

tionship between a pair of processes [13]. However, semaphores cannot express the semantics of
a barrier synchronization!. Parallel programming for multiprocessor machines, which employ real
parallelism, should use abstractions of multiparty interactions.

To understand the role of multiparty interactions, we must first characterize existing models
of parallel programming. We restrict the discussion to languages with explicit parallelism. Using
terminology introduced by Blelloch [7], such languages can be classified as belonging to either of two
types. In processor-oriented languages, independent scalar operations are executed in parallel on
distinct (virtual) processors (fig. 1 (a)). This is similar to Flynn’s MIMD model [15]. Interactions
between the instruction streams depend on the exact model of computation. In message passing
systems, interactions occur on a pairwise basis (horizontal arrows in the figure). With shared
memory, the interactions are implicit.

The second type is collection-oriented languages. Here the control is serial, meaning that
instructions are executed one after the other. Each instruction, however, operates on a collection of
data elements in parallel (fig. 1 (b)). This approach includes Flynn’s SIMD model [15], data-parallel
programming [7, 22], and action systems [3]. The parallel instructions that are available depend
on the model. Some might operate on each element in the collection independently, while others
include some interaction, e.g. performing a permutation or calculating a parallel prefix. The chief
virtue of this approach is that the control is strictly serial, matching it to the mental capabilities
of human programmers who find it hard to “think in parallel”.

Multiparty interactions combine these two approaches. Part of the computation is carried out
in the processor-oriented mode, with independent parallel streams of scalar operations. When
necessary, any subset of these parallel streams can come together and interact in some way (fig. 1
(c)). This approach has a number of advantages. First, whenever there is no need for interaction the
parallel streams are completely independent of each other. Second, all interactions are explicit and
encapsulated in some way, making the semantics easier to follow. Finally, multiparty interactions
provide a higher level of abstraction than pairwise interaction. This makes programming easier,
and allows many low-level implementation details to be delegated to the system.

Consider the dining philosophers problem as an example. The crux of the problem is to convey

'Of course, a barrier can be implemented using semaphores, but this is an implementation based on certain
primitives, not an abstraction.



the message that a philosopher needs two forks simultaneously in order to eat. However, most
parallel programming languages can only express pairwise interactions. The programmer must
therefore contend with the difficulty of expressing a three-way interaction (philosopher and two
forks) with primitives for two-way interactions. Languages like CSP may help by providing the
means to model the two-way interactions and check if the resulting behavior is correct and dead-

lock free [23], but they do not help very much in deriving the solution?

. Parallel languages with
multiparty interactions, on the other hand, provide a more suitable abstraction: the three-way
interaction can be expressed directly [17]. The implementation details are thereby delegated to the
system, together with the problem of preventing deadlock.

It is interesting to note that multiparty interactions create a generalization of the processor-
oriented and collection-oriented approaches, and include them as special cases. The processor-
oriented approach is obtained by only using pairwise interactions. The collection-oriented approach
results when all interactions involve all the elements, and there are no scalar operations between
successive interactions. Using other types of multiparty interactions exposes a full spectrum of
possibilities between these two extremes.

2.3 User Interface

The main idea proposed in this paper is to combine object technology with multiparty interac-
tions, and specifically to use abstract communication objects to implement multiparty interactions.
Thus the user is given the opportunity to create communication and synchronization mechanisms
with any desirable properties. The implementation is encapsulated within the objects, and only a
procedure-like interface is accessible from other parts of the program.

The availability of such abstraction mechanisms can be expected to simplify parallel program-
ming to a great extent. Contemporary languages typically provide a single, low-level, general
primitive, which forces the programmer to find ingenious ways in which it can be used to imple-
ment various types of interactions. An abstraction mechanism, on the other hand, provides the
user with the means to tailor the synchronization or interconnection scheme so as to best fit his
needs. Therefore the programmer can concentrate on the solution of the problem at hand, rather
than having to modify the algorithms to fit a certain primitive.

It should be noted that the concept of multiparty interactions by itself is not new at all.
Examples of multiparty interactions that are commonly used include the multicast and broadcast
communication primitives [11, 6], the barrier synchronization [19], permutations of data elements
[38], the scan operation [7], and paralation operations [36]. However, each is a specific primitive
multiparty interaction. If it fits the programmer’s needs, all is well. But if it does not, the
programmer is again required to change the algorithm so that it fits the available primitive. More
general mechanisms are reviewed in section 7. However, none of them were designed in the context
of general purpose parallel languages for tightly coupled machines.

As the system designer can never anticipate all what the users might want, it is necessary to
supply tools that allow the users to express their needs in a high level of abstraction. This paper is
a first step towards the design and implementation of such a tool, which we call communicators. Tt
is expected that when programmers have the power to express multiparty interactions, this will also

2Common solutions are either to break the symmetry by having one philosopher pick up the forks in the opposite
order, or to add a footman that does not allow more than four philosophers to the table at once.



lead to new algorithmic solutions for various problems. For example, Forman shows how multiparty
interactions were material in developing a new solution for the lift problem [16]. In his solution,
lifts cooperate to find the one that can service a new request with minimal cost, but do so without
sacrificing the natural distributed control scheme.

It should be noted that this study is practical in nature. We do not search for “sufficient”
or “minimal” notations, but rather for language constructs that will be convenient, useful, and
also amenable to efficient implementation. Hopefully, this approach will help parallel programming
advance towards the maturity of sequential programming.

3 Communicators

Before delving into the details, let us be specific about the context of the discussion. Communica-
tors are suggested as an extension to the expressiveness and structuring capabilities of imperative
programming languages with explicit parallelism, used on a tightly-coupled architecture. Such a
system would typically be used for transformational computations, i.e. terminating computations
of some input/output function, as opposed to reactive computations, such as embedded applica-
tions that continuously react to stimuli from their environment [31]. The distinction is important
because practically all the work on multiparty interactions to date was done in the context of the
design of reactive systems, e.g. a system of multiple lifts or a network of point-of-sale outlets (and
see section 7).

The assumptions about the language and programming model are as follows. It is assumed
that independent processes may be created. In case processes are created dynamically, this is done
using a parbegin/parend construct, and the parent process is suspended until all its descendants
terminate. Such constructs can be nested in each other and combined with conventional constructs
for control-flow, e.g. loops and conditionals. A process has read-only access to the states of its
ancestors. All processes have read-only access to the application’s global state. This allows infor-
mation that existed before the processes were created to be shared asynchronously without explicit
interactions. Communicators are instantiated like other objects, and observe similar scoping rules.
In particular, all the descendants of a process that created a communicator may share its use. All
interactions between processes are mediated by communicators. The exact details of the language
are immaterial. For example, the whole issue of variable typing is orthogonal to the possible use of
communicators, and is therefore ignored in this presentation. There are no assumptions about the
notation used for expressions, assignments, control flow, function calls, etc. It can be the same as
in Pascal, C, or any other imperative language. Hence the following description of communicators
is generic rather than specific.

In the description of how communicators are used, we shall focus on two main issues: the entry
into multiparty interactions, and the specification of the semantics of such interactions.

3.1 Definitions

Communicators provide a framework in which multiple processes can communicate and synchro-
nize. Interactions® occur only when all of the processes come together and possibly share some

®This is similar but not identical to the interactions proposed by Evangelist et. al. [14]. The differences are
discussed below.



data and computation — hence they are synchronous. The interactions are formally defined by the
sequence of actions that describe how data is manipulated when all the processes come together.
The participating processes need not be known in advance (hence communicators provide first-order
multiparty interactions in the terminology of [25]). An interaction includes certain roles* which
are assumed by the participating processes. A process may enrole? by specifying the communica-
tor, interaction, and role that it wishes to enrole in. The process is queued until all the required
processes have enroled and the interaction can commence. Interactions are executed in a mutually
exclusive manner; each execution is called a performance®. If a number of processes enrole for
the same role, they will have to wait for subsequent performances of the interaction.

The syntax of a communicator definition is basically similar to that of objects in many modular
languages:

communicator name
var: identifiers-list
initialization

{
}

interaction name

{

initialization code

role: role-identifier-list
var: identifier-list
interaction body

}

endcomm

A generic var is used to avoid the issue of typing when defining variables. The communicator’s
global variables and the initialization are optional. there may be any number of interactions, and
each must have at least one role. Role identifiers are identifiers followed by a list of parameters
between parentheses. Arrays of communicators, interactions, and roles are allowed. The dimensions
of the array must be known when the communicator is created, and we again avoid the issue of
whether this is static or dynamic. When an array of interactions is specified, an index variable
should be given if the different interactions exhibit different behaviors.

Communicators extend the object-based concept of ADTs in a straightforward manner. A
communicator may have encapsulated internal state, just like an ADT. Interactions are a multiparty
generalization of methods — the procedures used to access the ADT. Roles are introduced simply
to cope with the fact that each interaction has multiple entry points, for the different participating
processes. Due to the different environment, however, communicators have functionality that does
not exist in ADTs. For example, in many cases the dynamics of interaction execution are all
that is needed, and the communicator does not need to save any internal state; an ADT without
internal state, on the other hand, would be meaningless. In addition there is the ability to disable
interactions temporarily, which is reminiscent of guarded commands in other languages. ADTs
usually do not provide this capability, although it may be possible to block processes.

*A conscientious effort was made to use existing terminology when possible, rather than introducing new terms.
This terminology was introduced by [18, 17]. In particular, the new verb enrole means “to assume a role”.
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Figure 2: Schematic representation of the dynamics of interaction performance. The manner in
which data passes between the processes and the communicator depends on the definition of the
interaction.

3.2 Model of Computation

A parallel program with communicators is composed of two types of entities: processes and com-
municators. Processes are active entities. Each process executes a sequential block of code. The
code may, however, include closed constructs (e.g. parbegin/parend) to spawn additional pro-
cesses. When such a construct is encountered, the process is suspended until all of its descendants
terminate. The code may also include instructions to enrole in the interactions of various commu-
nicators.

The communicators are passive entities, not schedulable processes. They only provide the
framework for interactions between processes. The performances of distinct interactions in the
same communicator are mutually exclusive. The code in the body of an interaction is executed
by one or more of the participating processes, depending on the nature of the interaction and on
the implementation. In any case, the programmer has no control over such details. As far as each
process is concerned, data is passed to and received from the interaction in the form of enrolement
parameters. It is up to the system to implement the interaction itself in the most efficient manner.
The dynamics of an interaction are shown in fig. 2.

3.3 Enrolement

Recall that communicators embody abstract communication objects. Just like ADTs, they can be
declared in various places in the program, and used by processes within their scope. Depending on
the system environment, it might also be possible to pass capabilities for access to communicators
from one process to another.

A process enroles by specifying the communicator, interaction, and role, and supplying the
required arguments to match the formal role parameters:

enrole@communicator.interaction.role( arg 1, --- , arg k)

If the communicator, interaction, and/or role were declared to be an array, the desired element
should be specified. The parameters are passed either by value or by reference. This distinction is



orthogonal to the issue of using communicators, being the same as passing arguments to procedures
and functions.

A process may propose to enrole in a number of different roles, which might belong to different in-
teractions and different communicators. This is expressed by the select _enrole and multi_enrole
instructions:

select_enrole@- - - multi_enrole@-. ..
or_enrole@-. - - and_enrole@-. - -
or_enrole@-. - - and_enrole@-. - -

endselect endmulti

When the system finds that any one of these interactions may commence, the relevant enrolement is
consummated. If more than oneis possible, one is chosen nondeterministically. The others are either
aborted (in a select enrolement), or just delayed until the current performance terminates (in a
multi enrolement). This behavior is similar to that of nondeterministic constructs in CSP, Occam,
and Ada, and expresses a deliberate decision to ignore details such as the order of execution at this
level of abstraction. It is necessary in order to allow the system sufficient freedom in scheduling the
various interactions, thus relieving the programmer of the need to define the sequence of interactions
in advance [23].

A similar construct providing nondeterministic choice has been included in practically all of the
languages supporting multiparty interactions (section 7). However, there is an important difference.
The other proposals are for a construct that combines nondeterministic choice with iteration: one
of the ready interactions is executed each time, and the construct terminates only when none
are ready. Thus there is no control over the number of times each interaction will be executed.
While this is probably the correct construct for reactive systems, where the external stimuli are
unknown in advance, it seems ill-suited for transformational languages, which are used to implement
a terminating algorithm. We therefore favor the two constructs suggested above: one specifies that
exactly one interaction will be performed, and the other specifies that each interaction will be
performed exactly once. An example of the usefulness of this construct is given in section 5.

3.4 Interactions

The behavior of a communicator is defined by the interactions which it provides. The interactions
are described in a sequential language. Like other issues, the exact syntax is immaterial and is not
discussed. Data transfer is simply handled by assignments between role parameters. This allows
the following patterns to be expressed:

e Data transfer from one role to another.
e Data divergence, where a datum from one role is routed to a number of other roles.

e Data reduction, where several data items (possibly form different sources) are combined to
create a single new value.

e Data buffering, by assigning to the communicator’s global variables. This provides the pos-
sibility of storing data in one interaction and retrieving it in another.



Special instructions need be added to deal with synchronization. In ADTs, this is done by ex-
plicit waiting on an event queue. Such queueing can be interpreted either as blocking the process,
or as blocking the execution of the operation it is performing on the ADT. The two interpretations
are equivalent in the context of ADTs, because there is exactly one process involved in the oper-
ation. But when the concept is generalized to multiparty interactions on communicators, the two
interpretations differ. Blocking and unblocking of individual enroled processes is problematic, as it
causes semantic difficulties. For example, what happens if only part of the enroled processes block?
What happens when they are subsequently resumed? It therefore seems that the correct interpre-
tation is that blocking and unblocking should apply to an interaction performance. Blocking blocks
all the enroled processes, but leaves the interaction enabled. Thus another group of processes can
engage in another performance of the same interaction.

Another possible synchronization mechanism is the disabling and enabling of interactions. Dis-
abling prevents new performances of a interaction. If an interaction disables itself, there is no effect
on the current performance. Interactions can disable each other, as opposed to blocking where an
interaction can only block a performance of itself.

The possibility of disabling interactions is a new synchronization mechanism. It is interesting
because it has the potential for increased concurrency and improved performance. If an explicit
blocking command is used, the interaction must first be performed. During the performance, the
processes will find that actually they cannot proceed, so the performance would block itself. This
costs extra overhead, as the processes are enqueued twice: first waiting for the performance to
commence, and then waiting for the event. It also causes an unnecessary delay for other processes
that could perform other interactions at the same time.

By disabling interactions, processes that cannot perform useful work are blocked from entering
the communicator in the first place. In effect, events are represented by interactions. This results in
a uniform queuing mechanism, where The same queue is used for processes waiting for a interaction
to commence as well as processes waiting for an event to occur. It is therefore suggested that
only the disabling of interactions be used as a synchronization mechanism in the communicator
formalism, and that the option to block interactions not be provided. The use of these options and
the resulting expressive power are further discussed in section 4.

Finally, we relate our proposal with the interactions proposed by Evangelist et. al. [14]. The
first and most obvious difference is that ours are first-order interactions in which processes must
enrole; they come in the context of communicators, and may include synchronization operations as
described above. Those proposed by Evangelist et. al. are independent zero-order primitives, and
their performance is controlled by Boolean guards. As for the five required properties that were
proposed,

1. Synchronization upon entry: this is the same in both proposals.

2. Split bodies: we feel this is a drawback rather than a virtue. This important point is elaborated
in section 3.5 below.

3. Interprocess access only within interactions: the same. Processes are completely decoupled
when not engaged in an interaction.

4. Frozen state: this is a direct consequence of enrolement using a procedure-call interface. The
outcome of the interaction depends only on the values passed into it as parameters.
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5. Bounded duration: this is another difference. Our interactions may include any block of code,
even if this means that they cannot be called “primitive”. Thus we allow the user more
freedom in structuring the parallel application.

3.5 Syntax and Semantics

As stated before, the exact syntactical details so not concern us at the moment. However, some
of the more salient features deserve to be highlighted. The main one is the way in which the
code that describes interactions is encapsulated, and the clean interface with the code that de-
scribes the parallel processes themselves. Actually this is nothing new: it is just a straightforward
generalization to multiple participants of the well known and widely accepted interface for calling
subroutines. Similar syntax has been used in other proposals for first-order multiparty interactions,
e.g. scripts [18]. It deserves mention mainly to contrast it with proposals for zero-order multiparty
interactions, which reject the advantages of this interface (e.g. interactions in [14]). Instead, such
proposals specify multiparty interactions by placing the following clause in each of the interacting
processes:

name [ locvar = exp ]

The interaction name serves to identify corresponding clauses in the different processes. The body
of the clause contains any number of assignments to local variables, where the expressions may use
variables that are local to the other participating processes; this is where the interaction comes in.
However, when looking at the code of a specific process, one has no indication of where the other
variables are defined, or what their types are. The subroutine-like interface used for communicators
solves this problem: it improves the structure of the code and makes it more readable. As shown in
section 6, it may also make implementation easier by allowing the use of automatic parallelization
techniques.

As for semantics, communicators are designed to keep their semantics crisp and free of side
effects. Despite the fact that programs with communicators use explicit parallelism, the parallel
processes are strictly separated and cannot interfere with each other. In this sense, communicators
follow the lead of languages such as CSP, Occam, and Ada. As in those languages, this feature
allows formal techniques to be used to reason about the parallel programs. The nondeterminism
involved in select or multi enrolement is explicit, and can also be included in the formalism (see,
e.g., [23]).

The multiparty interactions are also well defined. Interactions are performed in a mutually
exclusive manner, one after the other. This is similar to the invocation of operations on monitors
or abstract data types. Enroling processes are synchronized from the moment they enrole until
the interaction terminates. During the performance, the processes share some of their local states.
However, the description of how this sharing takes place leaves nothing undefined, as it is based on a
sequential block of code. This enables the programmer to provide the desired operational semantics,
without having to “think in parallel”. There is no indeterministic parallel code involved.

4 Features and Expressive Power

In this section we review several features that are included in the definition of interactions, and
show how these features are used to express various well known synchronization and communication



communicator barrier

interaction sync

{
¥

role: participant[n]

communicator bin_semaphore

interaction P

{

role: proc
disable P

}

interaction V

{

11

endcomm role: proc
enable P
}
endcomm

Figure 3: Communicators that implement a barrier synchronization and a binary semaphore.

schemes. It is assumed that these schemes are representative of what users might want, and
therefore the ability to express them in the communicator formalism indicates that this formalism
has sufficient expressive power to be useful. The implementation with communicators is compared
with other notations.

Some syntactic shortcuts are taken in the examples, to avoid cluttering them with immaterial
details. For example, “V¢” is used rather than an explicit loop that iterates over the range of
values that ¢ may assume. As a side note, however, it is worth mentioning that such notational
shorthands may ultimately be used to define a language that allows communication patterns to be
expressed in a very high level of abstraction. This would have an advantage over languages where
the communication pattern must be expressed in terms of pairwise transfers (i.e. assignments),
which might lead to unnecessary serialization.

4.1 Synchronization

Several synchronization effects can be achieved without any data transfer, and also without any
saved state. The simplest and most obvious is the empty interaction, which induces a barrier syn-
chronization on the participating processes (fig. 3 left). If multiparty interactions are not available,
the user would have to program barrier synchronizations explicitly®. As a barrier synchronization
is required at the beginning of every interaction, support for communicators motivates the use of
hardware support for this operation. Other languages would have to include barriers as language
primitives in order to benefit from such support.

A binary semaphore may be created by a communicator with two interactions: P and V. The P
interaction disables itself, and the V interaction enables it (fig. 3 right). Recall that the semantics of
disabling are that a new performance of the interaction will not be started as long as it is disabled;

°In systems that support both MIMD and SIMD modes of computation, a barrier may be induced by an empty
block of SIMD [8].
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it has no effect on the current performance. Thus processes that try to enter a closed semaphore are
blocked by the disabled P interaction. As explained above, such an implementation holds promise
for improved efficiency and concurrency. The way to implement a counting semaphore is mentioned
below.

The option to cause processes to wait for an interaction to be enabled also improves program
structure and readability. Systems where the only event a process can wait for is communication,
such as CSP or Occam, require the program to use communication in unnatural ways. For exam-
ple, a semaphore can be implemented in CSP by a special process that always performs pairs of
communications with the same partner: the first represents a P and the second a V. This restricts
the semantics of semaphores by requiring that the process that gains access to the semaphore be
the one that releases it. In addition, it incurs the overhead of an additional process, and also has
the disadvantage that all the potential users of the semaphore must be named in advance.

4.2 Data Transfer

While synchronization is certainly an important aspect of parallel programming, interactions be-
tween cooperating parallel processes nearly always involve transfer of data as well as transfer of
control. Numerous parallel algorithms are designed as phases of local computation interspersed by
phases of data transfer in certain patterns. This is especially common in algorithms designed for
special architectures that support specific patterns in hardware, such as the perfect shuffle permu-
tation [38] or transfer along a certain dimension of a hypercube [35, 5]. Communicators are well
suited to express such structures. Any pattern of communication can be expressed in a high level
of abstraction, and later translated into primitives provided by the hardware.

Examples of how to express a broadcast, a perfect shuffle, or an exchange along a dimension of
a hypercube are given in fig. 4. In these examples, each participant enters the interaction with one
variable and receives one value; this is expressed by the role name with an extension of the variable
name. In general, roles may be associated with any number of variables. The use of an array of roles
allows for a simple expression of a generic behavior. For example, in the broadcast communicator
all the receiving roles are assigned the value of the sending role. This is similar to repeated processes
in Occam or other languages. The same goes for an array of interactions, except that here we must
define the index variable in advance (this is done by the notation [index:bottom. .top], as shown
in the hypercube example). The operator < signifies a left shift, and & is exclusive or.

Pairwise synchronous message passing, as in CSP, is a special case of multiparty data transfer.
It can be expressed by a communicator like that used for the broadcast, except that there is only one
receiving role. The same communicator may be used by many processes, depending on its scope,
thus alleviating the need for explicit naming of communication partners. This is useful for the
implementation of servers that do not know the identities of all their potential clients in advance,
and can therefore support processes that are created dynamically. The same communicator can
also be used to distribute work among a number of servers, thus effectively providing the semantics
of a mailbox.

A simple communicator with one message-passing interaction, which is used by many sending
processes and one receiving process, implements the CSP choice between different inputs (and its
derivatives, the Ada select and Occam ALT statements), but without Boolean expressions in the
guards. This is actually the server mentioned above. A select with Boolean guards can also be
implemented, but this requires an independent interaction for each sending process. As the guards
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communicator broadcast

interaction transfer

{

role: send(in), rec[n] (out)

Vi rec[i].out := send.in

}

endcomm

communicator shuffle

interaction transfer

{

role: proc[n] (in,out)

Vi proclt <« 1].out := procli].in

}

endcomm

communicator hypercube

interaction dim[j:0..1gn — 1]

{

role: proc[n] (in,out)
Vi proc[i® (1 < j)l.out := proc[i].in

}

endcomm

Figure 4: Examples of communicators that implement various communication patterns.

depend only on the internal state of the receiving process, it can calculate them by itself and use
the results to disable or enable various input interactions.

In some cases the processes participating in a data transfer do not actually require the raw data
values, but rather some functions thereof. It is then useful to combine the data transfer with some
operations on the data. An example is given in fig. 5. This is a communicator that expresses the
scan operation with addition, which is similar to a parallel-prefix sums [7]. Each participant receives
the sum of the inputs from lower-indexed participants. Likewise, it is easy to write a communicator
that implements operations that are typical in image processing or numerical solutions to partial
differential equations. In this case, the participating processes are logically arranged in a two-
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communicator scan

interaction sum
{
role: proc[n] (in,out)
i—1
Vi procl[i].out := 2: proc[jl.in
=0

}

endcomm

Figure 5: Example of a communicator that combines data transfer with operations on the data
values.

communicator paralation
var: map [n]
interaction match

{

role: £1[n] (key), f£2[n] (key)

1. match key values to derive
mapping from f1 to f2
2. store the mapping

}

interaction move

{

role: f1[n](out), f2[n] (in)

1. retrieve the mapping

2. for each case where many
inputs map to the same
output, apply the reduction
function

3. assign output values or
default values

}

endcomm

Figure 6: A communicator with data-dependent communication patterns.
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dimensional grid, and each receives some function of the inputs from its immediate neighbors. The
example in section 5 is of this type.

The routing of data does not have to follow a predefined pattern. Data-dependent data trans-
fers are also possible. As an example, consider the paralation model introduced in [36]. This
communication mechanism is captured by the communicator that is schematically described in fig.
6. No claim is made that it would be easy to implement such a communicator; it is just as easy
(or hard) as the implementation of paralations directly in any other system. The point is that this
abstraction can be expressed using communicators.

4.3 Asynchronous Interactions

Programs written for MIMD parallel computers allow the processes to execute with different rates.
In some cases, the different rates have to be counteracted by explicit synchronization; this can be
expressed by the synchronous interactions of communicators as shown in the preceding subsections.
But in other cases full synchronization would cause a performance degradation, and correctness can
be achieved with a lower level of coordination. This is done by asynchronous interactions, in which
processes may deposit data which is subsequently used by other processes.

In order to support asynchronous interactions, communicators must have the capacity to save
internal state from one interaction to another. This leads directly to a generalization of ADTs and
monitors, where encapsulated internal state is accessed through mutually exclusive procedures. In
fact, monitors and ADTs are similar to communicators with the restriction that each interaction
only have one role. This capability exists in most object-based languages.

The difference between communicators and ADTs is in the mechanism for blocking processes.
Communicators do so by disabling interactions, whereas ADTs typically have the capacity to block
processes explicitly, using mechanisms similar to event variables in monitors [24]. While disabling
interactions is less general, it seems to be sufficient for most practical purposes. For example,
fig. 7 shows how a bounded buffer may be expressed using communicators. This description is
exceptionally transparent and readable. Note that a buffer of size 1 is equivalent to a shared
memory location which is accessed subject to the state of a full/empty bit, so this too may be
expressed with communicators. Other asynchronous objects with internal state, such as counting
semaphores, can be expressed with equal ease. As explained above, the ability to block processes
before they enter the communicator also has certain performance benefits.

The advantages of expressing asynchronous interactions with communicators are even more ap-
parent when compared with other languages such as CSP [23] or Raddle87 [16]. Using the bounded
buffer example for concreteness, we find that in these languages the buffer must be implemented by
an additional active process. Thus each insert and delete operation requires the run time system
to schedule the buffer process to perform it. As a result the completion of the operation is delayed
and the overhead associated with scheduling and context switching is paid.

As another example, let us consider the fuzzy barrier [21]. This synchronization mechanism is
an extension of the barrier synchronization described above. The difference is that instead of a
barrier point, the programmer defines a barrier region. The semantics are that no process may leave
the region before all processes have entered it. A communicator that implements this mechanism
is shown in fig. 8. In order to decouple the processes, arrays of interactions are used with one
role each. The end_region interactions are enabled only after all the processes performed their
respective begin region interactions.
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communicator bounded buffer
var: buffer[n]
initialization
{

initialize buffer
disable delete

}

interaction insert

{

role: producer(in)

insert producer.in into buffer
if buffer is full

disable insert
enable delete

}

interaction delete

{

role: consumer(out)

assign consumer.out from buffer
if buffer is empty

disable delete
enable insert

}

endcomm

Figure 7: A communicator that implements a bounded buffer.

4.4 Things that Communicators Cannot Express

It should be noted, however, that disabling interactions is not powerful enough to express all possible
asynchronous interactions. Specifically, it cannot express situations in which the decision whether
or not to block the process is data dependent. Such a situation exists in the primitives provided
by the Linda notation, where data transfer is based on pattern matching between tuples [1]. If a
matching tuple is not found in the global tuple space, the process is blocked. In order to express this
in the communicator notation, the capability to block an instance of an interaction performance is
needed. The performance would subsequently be unblocked when another interaction outputs the
desired value.

While it is straightforward to add this capability to the communicator notation, we refrain from
doing so at present. It is felt that it would be better to first implement the more limited interface
described above, and based on experience with it, to consider extensions.

Other interactions that cannot be expressed in the communicator framework include various
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communicator fuzzy
var: count
initialization

Vi disable end_region[:]
count := 0

¥
interaction begin region[n]

{

role: proc

count := count + 1
if count = n
Vi enable end_region[:]

}

interaction end region[n]

{
¥

endcomm

role: proc

Figure 8: A communicator that implements a fuzzy barrier.

forms of control over the participating processes. Two types of control that have been mentioned in
the literature are “chosen partners” and “required sets” [18, 25]. With the chosen partners option,
a process that enroles for a certain role may dictate which processes it wants as partners for the
interaction. If the desired processes do not enrole, the interaction will not be performed, even if
other processes do enrole. While this option is not provided by communicators, the same effect can
be achieved by declaring distinct communicators for use by different sets of processes.

The option of a required set allows the programmer to define interactions that can be performed
even if all the roles have not been filled. There is a subset of roles that are required, and the rest
are optional. While this option might be important to cope with the highly asynchronous nature of
reactive systems, which are the target environment for other proposals of languages with multiparty
interactions, it seems to be unnecessary in communicators, which are targeted at transformational
systems.

5 An Application Example

To illustrate the use of communicators, we now give a short application example. The application
is a PDE solver using the Jacobi method on the Laplace equation. The domain is an n X n grid.
Each gridpoint is allocated to a distinct process. In each iteration of the computation, the gridpoint
value is replaced by the average of its four neighbors. The iterations continue until the maximum
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communicator neighborhood[n, n]

interaction update

{

role: C(new_val), N(val), S(val), E(val), W(val)
C.newval := (N.val + S.val + E.val + W.val)/4

}

endcomm

communicator terminate

interaction check

{

role: element[n,n] (delta,flag)

if (max;; { element[i,j].delta } < ACCURACY)
Vi,7 element[¢,j].flag := TRUE
else
Vi,7 element[¢,j].flag := FALSE
}

endcomm

parfor ¢ := 0 to n—1
parfor j := 0 to n—1

{

var: old, new, change, flag

old := initial_value( ¢, j )
repeat {
multi_enrole@neighborhood[:, j].update.C( new )
and_enrole@neighborhood[¢ — 1, j].update.N( old )
and_enrole@neighborhood[¢+ 1, j].update.S( old )
and_enrole@neighborhood[¢,j — 1].update.E( old )
and_enrole@neighborhood[¢,j+ 1].update.W( old )
endmulti
change := | new — old |
old := new
enrole@terminate.check.element[¢,j] ( change, flag )
} until (flag = TRUE)
record final value( ¢, j, new )
}
parend
parend

Figure 9: Example of a PDE solver using communicators.
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change over all gridpoints falls below a predefined accuracy. The example is written in pseudocode
in a style similar to that conventionally used to describe algorithms (fig. 9).

We start by defining the communicator that is used to calculate the average of the neighbors.
Note that this is a square array of n? communicators, because we need a distinct one for each
neighborhood. Asin previous examples, the variables belonging to each role are given in parentheses
after the role declaration. The special cases along the boundaries are omitted for brevity. Next
comes the communicator used for the termination detection. In this case, there is one communicator
and a square array of n X n roles.

The program itself creates the n? processes, and starts the iterations. The communicators were
declared before the processes are spawned, so they are shared by all. The variables declared within
the process blocks (old, new, etc.) are local and private. In each iteration, every process engages in
five interactions with its neighbors in an unspecified order; this is expressed by the multi_enrole
construct. The system is free to perform these interactions in any way it finds convenient. Then
the processes compute their change and engage in the global interaction to check the termination
condition. The enrole (and multi_enrole) directives accept a variable number of parameters. The
first, after the @, identifies the communicator, interaction, and role. The rest (between parentheses)
are substituted for the formal parameters.

This example is very fine-grained in order to show a lot of communicators in a short piece of
code. Such fine-grain interactions place a heavy burden in the compiler and run-time system that
have to implement them efliciently. Programs with less frequent interactions are obviously simpler.
Implementation issues are discussed in the next section.

6 Implementation Strategy

No communicator language has been implemented yet, but the implementation strategy is quite
clear. Many parts of the implementation can be based on previous research in various areas of
parallel computing. This section reviews known algorithms and results that can be put to use, and
identifies those aspects of the implementation that require further research.

An implementation of communicators has to contend with two major issues: the coordination
of interaction performance, and the implementation of the interaction bodies. We review both in
turn.

6.1 Coordinating Interaction Performances

Interactions can be performed when processes enrole in all their roles. However, a process may
enrole in a number of roles, possibly belonging to different communicators and interactions. The
problem is therefore one of instantiating a certain enrolement. This must be coordinated with other
processes, so that indeed all the roles of one specific interaction are instantiated.

The difficulty of doing this is illustrated by fig. 10. This is a bipartite graph, with processes
on one side and roles on the other. Arcs denote the enrolement of processes in roles. A process
with two or more outgoing arcs is using a multi_ or select_enrole. Take process #1 for example.
It can immediately cause interaction I1 to be performed, because this interaction only has one
role. But that would prevent interaction I2 from being performed, frustrating processes 2, 4, and
5. Interaction I3, on the other hand, cannot be performed in any case, even though all of its roles
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Figure 10: Bipartite graph representing enrolement of processes in roles.

have ready processes. the reason is that roles 5 and 7 have the same process enroled, but a process
can only play one role when the interaction is performed.

Simple Interaction Patterns

In some cases there is actually no need to coordinate between enrolements from distinct processes.
These cases can be recognized at compile time. The compiler can then generate simple code to
handle the performance of interactions, rather than generating code for the general case. For
example, if the processes only use the enrole instruction, and do not use multi_ or select_enrole,
then each process is only willing to participate in one specific interaction. Starting the performance
of an interaction is then reduced to a simple barrier synchronization of the enroling processes.
Simple interaction patterns that can be handled at compile time can also be found when non-
deterministic enrolement is used. For example, the multi_enrole used in the PDE solver of fig. 9
is repeated by all the processes in the system. Thus it allows the square array of processes to by
tiled by +-shaped tiles of five adjacent processes, representing a set of update interactions from
distinct neighborhood communicators that can be performed simultaneously. Using five shifted
versions of this tiling pattern, all the interactions are performed. If the compiler recognizes this
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possibility, it can determine the order in which each process should enrole to the five interactions it
participates in, and again the actual initiation of the performances of these interactions is reduced
to a simple barrier synchronization. Note that the compiler can use a brute-force algorithm to
create the schedule, as the overhead is paid only at compile time and does not influence the run
time.

The General Case

In the general case, the coordination of interaction performances is an instance of the “committee
coordination” problem [9, chap. 14]. This archetypical problem involves a number of professors,
each of whom is a member in a number of committees. A professor is occasionally willing to
participate in a meeting of any committee in which he is a member®. The problem is to schedule
committee meetings when all their members are willing, under the obvious restriction that no two
committees with a common member may convene at the same time. In our case, each process
is a professor, and each interaction is a committee. The problem is to know when all the roles
of a interaction have been filled by ready processes, subject to the complication that processes
may enrole to a number of interactions simultaneously, but participate only in one performance.
Therefore the performance of one interaction may invalidate the readiness of another.

The committee coordination problem has received only scant attention in the literature. Chandy
and Misra, who formally introduced it, show how committee coordination can be reduced to an
instance of the dining philosophers problem [9, chap. 14]. Fach committee is represented by a
philosopher, and each professor by a fork. The fork is shared by all the philosophers that represent
committees in which the professor is a member. A philosopher needs all his forks to eat, just as
a committee needs all its members to convene; doing so prevents neighboring philosophers from
eating, just as committees with common members are prevented from convening.

Bagrodia presents a family of algorithms for committee coordination [4]. The first is a centralized
algorithm, where a designated manager maintains the information about the whole system. The
others distribute the solution, by defining a set of managers that are responsible for different
committees. The managers coordinate their activities by passing a token, or by a passing messages
that implement a drinking philosophers protocol. In the context of communicators, it would be
natural to associate a manager with each communicator, and let it deal with all the interactions
defined in that communicator. All these algorithms (both by Chandy and Misra and by Bagrodia)
are designed for the zero-order case.

Joung and Smolka have designed an algorithm for the first-order case [25]. This is a symmetrical
algorithm, in which any process that enroles to a certain role becomes the manager for that interac-
tion. It then tries to secure a quorum of other processes to fill the other roles. If it fails, it becomes
idle and waits for some other process to initiate the performance. The overhead of the coordination
is linear in the number of processes that may potentially enrole. While this is a promising result,
the overhead is still large enough to motivate research into the automatic identification of simpler
special cases, like those mentioned above.

As pointed out by Joung and Smolka, the membership of professors in committees is known in advance in the
original formulation. This represents zero-order multiparty interactions, but not first-order ones [25]. To capture the
complications of first-order multiparty interactions (including communicators), professors must be allowed to join
various committees on a whim.
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It should be noted that the above algorithms do not cover all the aspects of communicator
implementation. Specifically, with communicators there is the added difficulty of ensuring mu-
tual exclusion between interactions from the same communicator, and knowing about disabled
interactions. However, this only requires a small amount of additional information relative to the
information required to deal with enrolement.

Mutual Exclusion Between Interactions

An additional restriction on the performance of interactions is that interactions belonging to the
same communicator must be performed with mutual exclusion. This does not necessarily mean that
they must actually be performed one after the other. It is enough to coordinate the performances
so that the final effect is as if they were serialized. Thus performances of communicator interactions
can use the same concurrency control techniques that were developed to guarantee the serializability
of transactions on databases [30].

In some cases, simple or no concurrency control is sufficient. Communicators may be classified
into two types: those with internal state and those that are stateless. Internal state consists of
communicator global variables and disabled interactions, so it is easy to identify stateless commu-
nicators at compile time. An interesting point about stateless communicators is that the operations
in one interaction have absolutely no effect on other interactions or on subsequent performances of
the same interaction. Therefore the interactions do not have to be executed in a mutually exclusive
manner. The communicator can be shared by a large number of processes, and service disjoint
subsets of them concurrently.

The communicators with internal state can be further classified into two types, based on their
interactions. The simple case involves communicators with interactions that may be categorized as
“reading” or “writing”. Reading interaction are those that do not assign to communicator global
variables, and do not disable any interaction. However, they may enable interactions. Writing
interactions are those that do assign to global variables and do disable interactions. For example,
The match interaction in the paralation communicator of fig. 6 is writing, because it saves the
found mapping in a global array. the move interaction, on the other hand, is reading. Many move
interactions may be performed simultaneously, using the same stored mapping. The end_region
interaction in the fuzzy barrier example of fig. 8 is also a reading interaction. Thus processes do
not need to be serialized when they exit the barrier region.

The importance of this distinction is that the interactions can then be performed according to
a readers-writers locking scheme [20, 27]: any number of reading interactions may be performed si-
multaneously, while only writing interactions require mutual exclusion. Note that the identification
of the interactions as reading or writing is part of the implementation, and so is the readers-writers
protocol. The programmer is shielded by the communicator abstraction from having to deal with
these issues himself.

The other type of communicators with internal state have general interactions (alternatively,
all interactions are writing). In this case, database concurrency control techniques may be used.
This approach has been proposed in the past for the implementation of shared memory [39] and
for the implementation of shared abstract data types [41].
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6.2 Implementing Interactions

Once the required processes have enroled and committed themselves to the performance of a certain
interaction, the body of the interaction has to be executed. This can be done serially by one of the
processes, or in parallel by some or all of them. A methodology for choosing a single process to
execute the common code was presented by Ramesh [32].

Using only one process might seem wasteful at first glance. After all, we know that all the
participating processes are available when the interaction commences. However, some or even most
of them may not be executing. It is certainly plausible that there would be more processes than
processors in the system. In this case, processes that arrive early would probably be suspended
while waiting for the performance of an interaction. Causing them to be scheduled simultaneously
to execute the interaction might be more trouble than it is worth. However, the possibility of
executing the interaction by a set of parallel processes should not be ruled out.

Recall that the body of interactions is specified in a conventional serial programming language.
Therefore a parallel execution must be based on the automatic parallelization of this code. Luckily,
a large body of research has been done on this problem. The basic approach is as follows. First,
a dataflow graph of the required computation is generated. This graph is then partitioned into
modules that may execute in parallel. Arcs contained within such a module dictate the order of
the operations in it, whereas arcs between modules indicate that interprocessor communication is
needed. Finally, the modules are mapped to processors, or in our case, to processes [29, 12, 37].

While significant progress has been made in the field of automatic parallelization in recent years,
not all codes can be parallelized efficiently. However, it is felt that this approach may be quite useful
in the context of communicators. The reason is that communicators foster a programming style
in which communication between processes is localized in the bodies of interactions. Assuming
that the program and algorithm are well structured, this should lead to structured and modular
communication patterns. Such code is easier to parallelize than the general code that is found in
the implementation of numerical algorithms.

Finally, it is not reasonable to expect an automatic parallelization tool to be perfect in every
case. The programmer has to be reasonable, and express the interaction body in the most easily
parallelizable manner. For example, the sum interaction from the scan communicator in fig 5 may
be written in two equivalent ways. The first is

proc[i].out = 0
fori :=2 ton
procl[iJout := proc[i-1].out + proc[i-1].in

This is very concise, but gives the impression of being inherently serial. An alternative form is
for i := 1 ton
procl[i].out = 0
for j := 1 to i-1

procl[iJout := procl[il].out + proc[jl.in

While this is slightly more cumbersome, it makes the available parallelism completely transparent.
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7 Comparison with Related Work

The preceding section showed that certain parts in the implementation of communicators can be
identified with previous research. This section reviews previous work that is related to the concept
of communicators as a whole.

The concept of sequential processes that interact through synchronous communication was
introduced by Hoare in his work on CSP [23]. However, CSP only allows pairwise interactions.
Several extensions to multiparty interactions have been proposed over the years. The most direct
is CSPS, proposed by Roman and Day [34], which introduces a notation that allows subsets of
processes to synchronize; in effect, this is simply a barrier synchronization. However, there is no
multiparty data transfer.

Francez et. al. introduced scripts as a method for abstracting patterns of communication with
more than two participants [18]. However, this was not considered an addition to the language but
rather a high level description that would be translated into the base language. Many properties
of scripts were therefore left to be defined by the language being used. The shared actions of
Ramesh and Mehndiratta represent a similar approach; their emphasis is on the transformation into
a distributed implementation [33]. Charlesworth introduced the compact, a language constructs
that is used to establish a communication pact between any number of processes; the resulting
interaction is called a multiway rendezvous [10]. He shows that the support provided by CSP
and other languages is inadequate for the implementation of multiway rendezvous, and suggests
extensions. All of these proposals are close to the style and spirit of CSP, whereas communicators
depart from that style. For example, the notion of different interactions that are associated with
the same communicator is absent from the other proposals. Thus there is no option of saving
internal state from one interaction to another (unless this is done externally by the participating
processes). Naturally, the option to disable an interaction also does not exist.

The language Raddle, presented by Forman, also provides a capability for design with multiparty
interactions, which should later be refined and decomposed manually to use the pairwise interactions
provided by the hardware [16]. This is combined with another level of modularization, namely teams
of roles. Only roles in the same team can participate in a multiparty interaction; interactions among
teams are essentially mediated by remote procedure calls. While this turns the original zero-order
multiparty interactions into more abstract first-order interactions, it also adds the restriction of
making it necessary to define an active process in a team that is only used to abstract a pattern
of communication. Adding unnecessary processes like this complicates the program and places a
heavier load on the run-time system. The IP language, designed by Francez and Forman [17],
suffers from the same drawback. On the other hand, it adds the possibility for superimposition of
different activities among the same set of processes, e.g. termination detection superimposed on a
distributed computation.

Back and Kurki-Suonio take the concept of multiparty interactions to the extreme. In their
action systems, the whole program is expressed in terms of possible interactions [3]. The model
of execution is that interactions are performed continuously in sequence until none are enabled
any more. This is implemented in the DisCo language [26], which also includes object-oriented
features. The data-parallel vector model of Blelloch is similar, except for not using nondeterminism
[7]. Communicators take a much more conservative approach, based on sequential processes that
interact.

Many of the abovementioned proposals for multiparty interactions are intended for use in the
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7 much research is devoted to procedures for the subsequent

design of distributed reactive systems
refinement of the multiparty interactions, replacing them with pairwise interactions. The processes
represent real-world entities, and the program implements their interactions and reactions to outside
stimuli. Nondeterminism is used to cope with the unpredictable nature of the environment. Com-
municators, on the other hand, are a structuring mechanism for regular (transformational) parallel
programs. Their expressive power is intentionally limited, so as to enable automatic compilation
and efficient run-time support. The intended environment is tightly-coupled parallel computers,
not distributed systems. Therefore transformations into pairwise interactions may be unnecessary.
Nondeterminism is used only as part of the abstraction, when the exact sequencing is not important
and may be left to the system.

It should be noted that communicators are not completely new with respect to using multiparty
interactions in transformational parallel programs. For one thing, some systems support primitives
such as multicast [11, 6]. In addition, there are initial attempts at more expressive constructs
incorporated into a language. FExamples include the CAB construct [28] and paralations [36].
However, these are much more restricted than communicators in the sense of limiting the pattern
of data transfer. As shown above, communicators can be used to express any pattern. On the
other hand, there are some patterns of interaction between processes that cannot be expressed by
the communicator notation.

Another important distinction differentiates between communicators and other language exten-
sions that introduce parallelism into an existing base language. For example, the Linda notation
is an add-on that is independent and orthogonal to the base language. All it needs is a run-time
library that is linked with the source code. With communicators, however, there are certain require-
ments on the language. The use of communicators is blended with the mechanism for expressing
the parallelism, and static scoping rules are used to determine the accessibility of processes to
communicators. Thus communicators are integrated into the language, and their support requires
a specialized compiler.

8 Conclusions

Communicators may be viewed as a study of how to apply the principles of ADTs to parallel
programming in new ways. The conventional object-based model was augmented with two main
features to create them. The first was interactions, which are actually procedures with multiple
entry points that serve to synchronize the participating processes. The second was the ability to
disable and enable interactions, so as to control the execution of other processes. It seems that
most useful interaction patterns may be expressed by this augmented model. The model opens the
way for abstraction, improved portability, and easier programming.

Communicators also provide a framework in which different interactions can be described and
compared. The diversity of interactions that can be expressed testifies to the richness of the design
space. The features that are needed in the interactions also serve to expose the inherent properties
of various interaction patterns and to define a certain hierarchy among them.

Programming with communicators exposes a whole spectrum of possible program structures,
from sequential processes with simple and primitive interactions, to a sequence of complex interac-
tions with nothing in between. This wide range of possibilities indicates that communicators have

"The distinction between reactive an transformational computations is due to Pnueli [31].
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a high expressive power, and can be used for different programming styles.
The detailed design and implementation of communicators are yet to be done. However, it is
already possible to envision certain benefits of using them. These benefits include:

o Fasier programming. Communicators provide a higher level of abstraction than most contem-
porary languages, by not limiting the programmer to pairwise interactions between processes.

o Better program structure. Using communicators, there is a crisp separation between inde-
pendent serial blocks of code and parallel interactions. The localization of the parallel code
improves the possibility of using automatic parallelization and verification techniques.

e Flfficient execution. The simple features incorporated in communicators alleviate the need
for additional processes that are necessary for the interactions but were not part of the
original problem solution; such processes are needed in most other proposals for multiparty
interactions. The possibility of disabling interactions provides a uniform blocking mechanism.

e Improved portability and reusability. A library of common communicators could be defined
and implemented on various systems.

Much of the promise of communicators can be traced to the fact that they allow users to delegate
various responsibilities to the system. Such delegation of authority requires two issues to be re-
solved: first, one must define an interface by which the user can express what he wants the system
to do. Second, system algorithms that implement this interface must be designed and implemented.
For example, semaphores were introduced as a means to tell the system that a process is waiting
for an abstract event, and they were easily implemented by maintaining a queue of waiting pro-
cesses. Communicators provide a much richer interface, and allow the user to tell the system about
more involved patterns of interprocess interaction. While the study of implementation is still in its
infancy, there are indications that efficient implementation would be possible by bringing together
previous research on many diverse issues in parallel programming.
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