
Communicators:Object-Based Multiparty Interactionsfor Parallel ProgrammingDror G. FeitelsonDepartment of Computer ScienceThe Hebrew University of Jerusalem91904 Jerusalem, Israeldrorf@cs.huji.ac.ilTechnical Report 91-12November 1991AbstractContemporary parallel programming languages often provide only few low-level primitives forpairwise communication and synchronization. These primitives are not always suitable for theinteractions being programmed. Programming would be easier if it was possible to tailor com-munication and synchronization mechanisms to �t the needs of the application, much as abstractdata types are used to create application-speci�c data structures and operations. This shouldalso include the possibility of expressing interactions among multiple processes at once. Com-municators support this paradigm by creating abstract communication objects that provide aframework for interprocess multiparty interactions. The behavior of these objects is de�ned interms of interactions, in which multiple processes can enrole. Interactions are performed whenall the roles are �lled by ready processes. Nondeterminism is used when the order of interac-tion performance is immaterial. Interactions can also be disabled, thereby creating a uniformqueueing mechanism where interactions may represent events.Keywords: Abstraction, Communication patterns, Multiparty interactions, Object-based pro-gramming, Parallel programming, Synchronization.

11 IntroductionObject-based programming is an important and growing in
uence in the software design �eld. Itprovides tools for modularity and data encapsulation, and enhances maintainability, portability,and reuse of code. It therefore seems reasonable to apply the concepts of object technology tonew �elds, such as the programming of communication and synchronization mechanisms in parallelsystems.Applying a new concept also provides an opportunity to rethink old approaches and implemen-tations. Speci�cally, before we apply object technology to existing communication and synchro-nization mechanisms, we should rethink the question of what sort of mechanisms we really want.In the context of tightly-coupled parallel systems, it seems that there is considerable space for im-provement. Most of the mechanisms now in use were designed for multiprogrammed uniprocessorsystems, or for loosely-coupled distributed systems. These mechanisms do not re
ect the multiwaysimultaneous activities that occur in tightly-coupled systems. A new mechanism is required inorder to express multiparty interactions.It should be pointed out from the outset that we are not following the conventional way inwhich \objects" are combined with \parallelism". Many object-based systems use the separationbetween objects to de�ne a natural parallel behavior, in which computations relating to distinctobjects may be done in parallel. In e�ect the objects become agents, and messages passed betweenthem drive the program execution forward. This approach is used in the Actors model and invarious parallel object-oriented languages (see [42]). Our approach, on the other hand, is to seekthe underlying concepts on which object technology is based and apply them to \conventional"parallel programming languages. Speci�cally, we take the ideas of abstraction and encapsulation,and apply them to the de�nition of constructs for multiparty interactions.The language constructs introduced in this paper are not radically new | they are mainlya new combination of proven good ideas with some extensions and enhancements. Well-knownresults and approaches are brought to bear on the new constructs, including dependence analysisand automatic parallelization, object technology and modularization. All this is done subject tothe guideline that the semantics have to be kept crisp and well de�ned. The �nal result is quitedi�erent from previous proposals.The motivation for using an object-based approach to implement multiparty interactions iselaborated in the next section. To study the possibility of a general formulation for abstract com-munication objects, the notion of communicators is introduced in section 3. These are abstractcommunication objects that provide a framework for interprocess multiparty interactions. Thebehavior of these objects is de�ned in terms of interactions, in which multiple processes can enrole.Interactions are performed when all the roles are �lled by ready processes. Nondeterministic enrole-ment is used when the order of interaction performance is immaterial. Section 4 then presents thefeatures that must be included in the communicator formalism in order to handle various well knowncommunication and synchronization schemes, assuming they are representative of user needs. Forexample, interactions can be disabled, thereby creating a uniform queueing mechanism. Section 5gives an application example. Implementation issues are discussed in section 6; it is shown thatcommunicators can utilize many existing practical results from the �eld of parallel programming.Section 7 compares communicators with other related proposals, and the conclusions of the studyare drawn in section 8.

22 Motivation2.1 Objects and AbstractionObject-based programming is an outgrowth of the concept of abstract data types (ADTs). Objectsoften embody various entities that are used to structure the application. The representation ofthese entities is encapsulated within the objects, resulting in the creation of new data types thatwere not provided as primitive data types by the system.Maybe the most important aspect of object technology is that it allows the user to create newabstractions. Speci�cally, ADTs allow a programmer to fashion his own data types, complete withthe operations that may be performed on them. Porting this idea to parallel environments, it isnatural to suggest that the user be allowed to de�ne his own abstract communication objects, ratherthan restricting him to use the primitives provided by the system directly. Such objects would havecertain communication and synchronization properties, that are useful for the application in whichthey are de�ned. For example, any number of processes could be synchronized and data passedbetween them in a certain pattern. The implementation of the desired behavior based on the systemprimitives would be encapsulated within the objects.The chief virtue of abstractions is that they lead to a separation of concerns. For example,consider the way in which parallelism is expressed. Concurrent systems provide a fork primitive,that enables one additional process to be created at a time. Each processor in a parallel machinecan also create only one additional process at a time. But parallel languages should provide aparbegin/parend construct instead of a fork. Such a closed construct is better both becauseit induces a structured programming style (as opposed to fork and join which are reminiscent ofgoto) [13], and because it provides a higher level of abstraction, allowing the programmer to expressthe degree of parallelism in the program directly. The underlying implementation might still bebased on a serial loop that performs one fork per iteration, or else the processes may be spawnedin a tree structure with logarithmic delay, or even using fetch-and-add or broadcasts to achieveconstant delay. Without the parbegin/parend abstraction, the programmer has to contend withthese options himself [40]. With it, these are implementation details that are delegated to thesystem.Returning to our abstract communication objects, we suggest that they induce a clean sep-aration between the implementation of the interactions on the one hand, and the bodies of theinteracting parallel processes on the other. The processes themselves are sequential, and may ben-e�t from the accumulated experience with sequential programming. Much of the implementationof the interactions is passed on to the system. This allows new and improved implementation tobe incorporated easily. Portability is also enhanced, because only the communication objects withtheir well-de�ned semantics would have to be recoded for the primitives of a new environment; theprocesses that use these objects would stay the same.2.2 Multiparty InteractionsA large number of abstractions have been designed to enhance the programming of concurrent(time sharing) systems [2]. As these abstractions were meant to be used on uniprocessor machines,their functionality is largely restricted to regulating the serial order of a number of operations.For example, semaphores can be used to provide mutual exclusion or a producer-consumer rela-

3
jjjjj???? jjjjj???? jjjjj???? jjjjj????, , ,

(a) �� �
j j j j j�� �
j j j j j�� �
j j j j j�� �
j j j j j???(b) j j j jj j j jj j j j? ? ? ?? ? ? ?? ? ? ?? ? ? ?�� �� j�� ��j (c)Figure 1: Three models of parallel programs.tionship between a pair of processes [13]. However, semaphores cannot express the semantics ofa barrier synchronization1. Parallel programming for multiprocessor machines, which employ realparallelism, should use abstractions of multiparty interactions.To understand the role of multiparty interactions, we must �rst characterize existing modelsof parallel programming. We restrict the discussion to languages with explicit parallelism. Usingterminology introduced by Blelloch [7], such languages can be classi�ed as belonging to either of twotypes. In processor-oriented languages, independent scalar operations are executed in parallel ondistinct (virtual) processors (�g. 1 (a)). This is similar to Flynn's MIMD model [15]. Interactionsbetween the instruction streams depend on the exact model of computation. In message passingsystems, interactions occur on a pairwise basis (horizontal arrows in the �gure). With sharedmemory, the interactions are implicit.The second type is collection-oriented languages. Here the control is serial, meaning thatinstructions are executed one after the other. Each instruction, however, operates on a collection ofdata elements in parallel (�g. 1 (b)). This approach includes Flynn's SIMD model [15], data-parallelprogramming [7, 22], and action systems [3]. The parallel instructions that are available dependon the model. Some might operate on each element in the collection independently, while othersinclude some interaction, e.g. performing a permutation or calculating a parallel pre�x. The chiefvirtue of this approach is that the control is strictly serial, matching it to the mental capabilitiesof human programmers who �nd it hard to \think in parallel".Multiparty interactions combine these two approaches. Part of the computation is carried outin the processor-oriented mode, with independent parallel streams of scalar operations. Whennecessary, any subset of these parallel streams can come together and interact in some way (�g. 1(c)). This approach has a number of advantages. First, whenever there is no need for interaction theparallel streams are completely independent of each other. Second, all interactions are explicit andencapsulated in some way, making the semantics easier to follow. Finally, multiparty interactionsprovide a higher level of abstraction than pairwise interaction. This makes programming easier,and allows many low-level implementation details to be delegated to the system.Consider the dining philosophers problem as an example. The crux of the problem is to convey1Of course, a barrier can be implemented using semaphores, but this is an implementation based on certainprimitives, not an abstraction.

4the message that a philosopher needs two forks simultaneously in order to eat. However, mostparallel programming languages can only express pairwise interactions. The programmer musttherefore contend with the di�culty of expressing a three-way interaction (philosopher and twoforks) with primitives for two-way interactions. Languages like CSP may help by providing themeans to model the two-way interactions and check if the resulting behavior is correct and dead-lock free [23], but they do not help very much in deriving the solution2. Parallel languages withmultiparty interactions, on the other hand, provide a more suitable abstraction: the three-wayinteraction can be expressed directly [17]. The implementation details are thereby delegated to thesystem, together with the problem of preventing deadlock.It is interesting to note that multiparty interactions create a generalization of the processor-oriented and collection-oriented approaches, and include them as special cases. The processor-oriented approach is obtained by only using pairwise interactions. The collection-oriented approachresults when all interactions involve all the elements, and there are no scalar operations betweensuccessive interactions. Using other types of multiparty interactions exposes a full spectrum ofpossibilities between these two extremes.2.3 User InterfaceThe main idea proposed in this paper is to combine object technology with multiparty interac-tions, and speci�cally to use abstract communication objects to implement multiparty interactions.Thus the user is given the opportunity to create communication and synchronization mechanismswith any desirable properties. The implementation is encapsulated within the objects, and only aprocedure-like interface is accessible from other parts of the program.The availability of such abstraction mechanisms can be expected to simplify parallel program-ming to a great extent. Contemporary languages typically provide a single, low-level, generalprimitive, which forces the programmer to �nd ingenious ways in which it can be used to imple-ment various types of interactions. An abstraction mechanism, on the other hand, provides theuser with the means to tailor the synchronization or interconnection scheme so as to best �t hisneeds. Therefore the programmer can concentrate on the solution of the problem at hand, ratherthan having to modify the algorithms to �t a certain primitive.It should be noted that the concept of multiparty interactions by itself is not new at all.Examples of multiparty interactions that are commonly used include the multicast and broadcastcommunication primitives [11, 6], the barrier synchronization [19], permutations of data elements[38], the scan operation [7], and paralation operations [36]. However, each is a speci�c primitivemultiparty interaction. If it �ts the programmer's needs, all is well. But if it does not, theprogrammer is again required to change the algorithm so that it �ts the available primitive. Moregeneral mechanisms are reviewed in section 7. However, none of them were designed in the contextof general purpose parallel languages for tightly coupled machines.As the system designer can never anticipate all what the users might want, it is necessary tosupply tools that allow the users to express their needs in a high level of abstraction. This paper isa �rst step towards the design and implementation of such a tool, which we call communicators. Itis expected that when programmers have the power to express multiparty interactions, this will also2Common solutions are either to break the symmetry by having one philosopher pick up the forks in the oppositeorder, or to add a footman that does not allow more than four philosophers to the table at once.

5lead to new algorithmic solutions for various problems. For example, Forman shows how multipartyinteractions were material in developing a new solution for the lift problem [16]. In his solution,lifts cooperate to �nd the one that can service a new request with minimal cost, but do so withoutsacri�cing the natural distributed control scheme.It should be noted that this study is practical in nature. We do not search for \su�cient"or \minimal" notations, but rather for language constructs that will be convenient, useful, andalso amenable to e�cient implementation. Hopefully, this approach will help parallel programmingadvance towards the maturity of sequential programming.3 CommunicatorsBefore delving into the details, let us be speci�c about the context of the discussion. Communica-tors are suggested as an extension to the expressiveness and structuring capabilities of imperativeprogramming languages with explicit parallelism, used on a tightly-coupled architecture. Such asystem would typically be used for transformational computations, i.e. terminating computationsof some input/output function, as opposed to reactive computations, such as embedded applica-tions that continuously react to stimuli from their environment [31]. The distinction is importantbecause practically all the work on multiparty interactions to date was done in the context of thedesign of reactive systems, e.g. a system of multiple lifts or a network of point-of-sale outlets (andsee section 7).The assumptions about the language and programming model are as follows. It is assumedthat independent processes may be created. In case processes are created dynamically, this is doneusing a parbegin/parend construct, and the parent process is suspended until all its descendantsterminate. Such constructs can be nested in each other and combined with conventional constructsfor control-
ow, e.g. loops and conditionals. A process has read-only access to the states of itsancestors. All processes have read-only access to the application's global state. This allows infor-mation that existed before the processes were created to be shared asynchronously without explicitinteractions. Communicators are instantiated like other objects, and observe similar scoping rules.In particular, all the descendants of a process that created a communicator may share its use. Allinteractions between processes are mediated by communicators. The exact details of the languageare immaterial. For example, the whole issue of variable typing is orthogonal to the possible use ofcommunicators, and is therefore ignored in this presentation. There are no assumptions about thenotation used for expressions, assignments, control
ow, function calls, etc. It can be the same asin Pascal, C, or any other imperative language. Hence the following description of communicatorsis generic rather than speci�c.In the description of how communicators are used, we shall focus on two main issues: the entryinto multiparty interactions, and the speci�cation of the semantics of such interactions.3.1 De�nitionsCommunicators provide a framework in which multiple processes can communicate and synchro-nize. Interactions3 occur only when all of the processes come together and possibly share some3This is similar but not identical to the interactions proposed by Evangelist et. al. [14]. The di�erences arediscussed below.

6data and computation | hence they are synchronous. The interactions are formally de�ned by thesequence of actions that describe how data is manipulated when all the processes come together.The participating processes need not be known in advance (hence communicators provide �rst-ordermultiparty interactions in the terminology of [25]). An interaction includes certain roles4 whichare assumed by the participating processes. A process may enrole4 by specifying the communica-tor, interaction, and role that it wishes to enrole in. The process is queued until all the requiredprocesses have enroled and the interaction can commence. Interactions are executed in a mutuallyexclusive manner; each execution is called a performance4. If a number of processes enrole forthe same role, they will have to wait for subsequent performances of the interaction.The syntax of a communicator de�nition is basically similar to that of objects in many modularlanguages:communicator namevar: identi�ers-listinitializationf initialization codeginteraction namef role: role-identi�er-listvar: identi�er-listinteraction bodygendcommA generic var is used to avoid the issue of typing when de�ning variables. The communicator'sglobal variables and the initialization are optional. there may be any number of interactions, andeach must have at least one role. Role identi�ers are identi�ers followed by a list of parametersbetween parentheses. Arrays of communicators, interactions, and roles are allowed. The dimensionsof the array must be known when the communicator is created, and we again avoid the issue ofwhether this is static or dynamic. When an array of interactions is speci�ed, an index variableshould be given if the di�erent interactions exhibit di�erent behaviors.Communicators extend the object-based concept of ADTs in a straightforward manner. Acommunicator may have encapsulated internal state, just like an ADT. Interactions are a multipartygeneralization of methods | the procedures used to access the ADT. Roles are introduced simplyto cope with the fact that each interaction has multiple entry points, for the di�erent participatingprocesses. Due to the di�erent environment, however, communicators have functionality that doesnot exist in ADTs. For example, in many cases the dynamics of interaction execution are allthat is needed, and the communicator does not need to save any internal state; an ADT withoutinternal state, on the other hand, would be meaningless. In addition there is the ability to disableinteractions temporarily, which is reminiscent of guarded commands in other languages. ADTsusually do not provide this capability, although it may be possible to block processes.4A conscientious e�ort was made to use existing terminology when possible, rather than introducing new terms.This terminology was introduced by [18, 17]. In particular, the new verb enrole means \to assume a role".

7
?

time proc1?enrolepppppp? proc2?enroleppppppppppppp? proc3?enrole? commpppppppppppppppppppppppppppppppinteraction performanceFigure 2: Schematic representation of the dynamics of interaction performance. The manner inwhich data passes between the processes and the communicator depends on the de�nition of theinteraction.3.2 Model of ComputationA parallel program with communicators is composed of two types of entities: processes and com-municators. Processes are active entities. Each process executes a sequential block of code. Thecode may, however, include closed constructs (e.g. parbegin/parend) to spawn additional pro-cesses. When such a construct is encountered, the process is suspended until all of its descendantsterminate. The code may also include instructions to enrole in the interactions of various commu-nicators.The communicators are passive entities, not schedulable processes. They only provide theframework for interactions between processes. The performances of distinct interactions in thesame communicator are mutually exclusive. The code in the body of an interaction is executedby one or more of the participating processes, depending on the nature of the interaction and onthe implementation. In any case, the programmer has no control over such details. As far as eachprocess is concerned, data is passed to and received from the interaction in the form of enrolementparameters. It is up to the system to implement the interaction itself in the most e�cient manner.The dynamics of an interaction are shown in �g. 2.3.3 EnrolementRecall that communicators embody abstract communication objects. Just like ADTs, they can bedeclared in various places in the program, and used by processes within their scope. Depending onthe system environment, it might also be possible to pass capabilities for access to communicatorsfrom one process to another.A process enroles by specifying the communicator, interaction, and role, and supplying therequired arguments to match the formal role parameters:enrole@communicator.interaction.role(arg 1, � � � , arg k)If the communicator, interaction, and/or role were declared to be an array, the desired elementshould be speci�ed. The parameters are passed either by value or by reference. This distinction is

8orthogonal to the issue of using communicators, being the same as passing arguments to proceduresand functions.A process may propose to enrole in a number of di�erent roles, which might belong to di�erent in-teractions and di�erent communicators. This is expressed by the select enrole and multi enroleinstructions:select enrole@� � �or enrole@� � �or enrole@� � �endselect multi enrole@� � �and enrole@� � �and enrole@� � �endmultiWhen the system �nds that any one of these interactions may commence, the relevant enrolement isconsummated. If more than one is possible, one is chosen nondeterministically. The others are eitheraborted (in a select enrolement), or just delayed until the current performance terminates (in amulti enrolement). This behavior is similar to that of nondeterministic constructs in CSP, Occam,and Ada, and expresses a deliberate decision to ignore details such as the order of execution at thislevel of abstraction. It is necessary in order to allow the system su�cient freedom in scheduling thevarious interactions, thus relieving the programmer of the need to de�ne the sequence of interactionsin advance [23].A similar construct providing nondeterministic choice has been included in practically all of thelanguages supporting multiparty interactions (section 7). However, there is an important di�erence.The other proposals are for a construct that combines nondeterministic choice with iteration: oneof the ready interactions is executed each time, and the construct terminates only when noneare ready. Thus there is no control over the number of times each interaction will be executed.While this is probably the correct construct for reactive systems, where the external stimuli areunknown in advance, it seems ill-suited for transformational languages, which are used to implementa terminating algorithm. We therefore favor the two constructs suggested above: one speci�es thatexactly one interaction will be performed, and the other speci�es that each interaction will beperformed exactly once. An example of the usefulness of this construct is given in section 5.3.4 InteractionsThe behavior of a communicator is de�ned by the interactions which it provides. The interactionsare described in a sequential language. Like other issues, the exact syntax is immaterial and is notdiscussed. Data transfer is simply handled by assignments between role parameters. This allowsthe following patterns to be expressed:� Data transfer from one role to another.� Data divergence, where a datum from one role is routed to a number of other roles.� Data reduction, where several data items (possibly form di�erent sources) are combined tocreate a single new value.� Data bu�ering, by assigning to the communicator's global variables. This provides the pos-sibility of storing data in one interaction and retrieving it in another.

9Special instructions need be added to deal with synchronization. In ADTs, this is done by ex-plicit waiting on an event queue. Such queueing can be interpreted either as blocking the process,or as blocking the execution of the operation it is performing on the ADT. The two interpretationsare equivalent in the context of ADTs, because there is exactly one process involved in the oper-ation. But when the concept is generalized to multiparty interactions on communicators, the twointerpretations di�er. Blocking and unblocking of individual enroled processes is problematic, as itcauses semantic di�culties. For example, what happens if only part of the enroled processes block?What happens when they are subsequently resumed? It therefore seems that the correct interpre-tation is that blocking and unblocking should apply to an interaction performance. Blocking blocksall the enroled processes, but leaves the interaction enabled. Thus another group of processes canengage in another performance of the same interaction.Another possible synchronization mechanism is the disabling and enabling of interactions. Dis-abling prevents new performances of a interaction. If an interaction disables itself, there is no e�ecton the current performance. Interactions can disable each other, as opposed to blocking where aninteraction can only block a performance of itself.The possibility of disabling interactions is a new synchronization mechanism. It is interestingbecause it has the potential for increased concurrency and improved performance. If an explicitblocking command is used, the interaction must �rst be performed. During the performance, theprocesses will �nd that actually they cannot proceed, so the performance would block itself. Thiscosts extra overhead, as the processes are enqueued twice: �rst waiting for the performance tocommence, and then waiting for the event. It also causes an unnecessary delay for other processesthat could perform other interactions at the same time.By disabling interactions, processes that cannot perform useful work are blocked from enteringthe communicator in the �rst place. In e�ect, events are represented by interactions. This results ina uniform queuing mechanism, where The same queue is used for processes waiting for a interactionto commence as well as processes waiting for an event to occur. It is therefore suggested thatonly the disabling of interactions be used as a synchronization mechanism in the communicatorformalism, and that the option to block interactions not be provided. The use of these options andthe resulting expressive power are further discussed in section 4.Finally, we relate our proposal with the interactions proposed by Evangelist et. al. [14]. The�rst and most obvious di�erence is that ours are �rst-order interactions in which processes mustenrole; they come in the context of communicators, and may include synchronization operations asdescribed above. Those proposed by Evangelist et. al. are independent zero-order primitives, andtheir performance is controlled by Boolean guards. As for the �ve required properties that wereproposed,1. Synchronization upon entry: this is the same in both proposals.2. Split bodies: we feel this is a drawback rather than a virtue. This important point is elaboratedin section 3.5 below.3. Interprocess access only within interactions: the same. Processes are completely decoupledwhen not engaged in an interaction.4. Frozen state: this is a direct consequence of enrolement using a procedure-call interface. Theoutcome of the interaction depends only on the values passed into it as parameters.

10 5. Bounded duration: this is another di�erence. Our interactions may include any block of code,even if this means that they cannot be called \primitive". Thus we allow the user morefreedom in structuring the parallel application.3.5 Syntax and SemanticsAs stated before, the exact syntactical details so not concern us at the moment. However, someof the more salient features deserve to be highlighted. The main one is the way in which thecode that describes interactions is encapsulated, and the clean interface with the code that de-scribes the parallel processes themselves. Actually this is nothing new: it is just a straightforwardgeneralization to multiple participants of the well known and widely accepted interface for callingsubroutines. Similar syntax has been used in other proposals for �rst-order multiparty interactions,e.g. scripts [18]. It deserves mention mainly to contrast it with proposals for zero-order multipartyinteractions, which reject the advantages of this interface (e.g. interactions in [14]). Instead, suchproposals specify multiparty interactions by placing the following clause in each of the interactingprocesses:name [loc var = exp]The interaction name serves to identify corresponding clauses in the di�erent processes. The bodyof the clause contains any number of assignments to local variables, where the expressions may usevariables that are local to the other participating processes; this is where the interaction comes in.However, when looking at the code of a speci�c process, one has no indication of where the othervariables are de�ned, or what their types are. The subroutine-like interface used for communicatorssolves this problem: it improves the structure of the code and makes it more readable. As shown insection 6, it may also make implementation easier by allowing the use of automatic parallelizationtechniques.As for semantics, communicators are designed to keep their semantics crisp and free of sidee�ects. Despite the fact that programs with communicators use explicit parallelism, the parallelprocesses are strictly separated and cannot interfere with each other. In this sense, communicatorsfollow the lead of languages such as CSP, Occam, and Ada. As in those languages, this featureallows formal techniques to be used to reason about the parallel programs. The nondeterminisminvolved in select or multi enrolement is explicit, and can also be included in the formalism (see,e.g., [23]).The multiparty interactions are also well de�ned. Interactions are performed in a mutuallyexclusive manner, one after the other. This is similar to the invocation of operations on monitorsor abstract data types. Enroling processes are synchronized from the moment they enrole untilthe interaction terminates. During the performance, the processes share some of their local states.However, the description of how this sharing takes place leaves nothing unde�ned, as it is based on asequential block of code. This enables the programmer to provide the desired operational semantics,without having to \think in parallel". There is no indeterministic parallel code involved.4 Features and Expressive PowerIn this section we review several features that are included in the de�nition of interactions, andshow how these features are used to express various well known synchronization and communication

11communicator barrierinteraction syncf role: participant[n]gendcomm communicator bin semaphoreinteraction Pf role: procdisable Pginteraction Vf role: procenable PgendcommFigure 3: Communicators that implement a barrier synchronization and a binary semaphore.schemes. It is assumed that these schemes are representative of what users might want, andtherefore the ability to express them in the communicator formalism indicates that this formalismhas su�cient expressive power to be useful. The implementation with communicators is comparedwith other notations.Some syntactic shortcuts are taken in the examples, to avoid cluttering them with immaterialdetails. For example, \8i" is used rather than an explicit loop that iterates over the range ofvalues that i may assume. As a side note, however, it is worth mentioning that such notationalshorthands may ultimately be used to de�ne a language that allows communication patterns to beexpressed in a very high level of abstraction. This would have an advantage over languages wherethe communication pattern must be expressed in terms of pairwise transfers (i.e. assignments),which might lead to unnecessary serialization.4.1 SynchronizationSeveral synchronization e�ects can be achieved without any data transfer, and also without anysaved state. The simplest and most obvious is the empty interaction, which induces a barrier syn-chronization on the participating processes (�g. 3 left). If multiparty interactions are not available,the user would have to program barrier synchronizations explicitly5 . As a barrier synchronizationis required at the beginning of every interaction, support for communicators motivates the use ofhardware support for this operation. Other languages would have to include barriers as languageprimitives in order to bene�t from such support.A binary semaphore may be created by a communicator with two interactions: P and V. The Pinteraction disables itself, and the V interaction enables it (�g. 3 right). Recall that the semantics ofdisabling are that a new performance of the interaction will not be started as long as it is disabled;5In systems that support both MIMD and SIMD modes of computation, a barrier may be induced by an emptyblock of SIMD [8].

12it has no e�ect on the current performance. Thus processes that try to enter a closed semaphore areblocked by the disabled P interaction. As explained above, such an implementation holds promisefor improved e�ciency and concurrency. The way to implement a counting semaphore is mentionedbelow.The option to cause processes to wait for an interaction to be enabled also improves programstructure and readability. Systems where the only event a process can wait for is communication,such as CSP or Occam, require the program to use communication in unnatural ways. For exam-ple, a semaphore can be implemented in CSP by a special process that always performs pairs ofcommunications with the same partner: the �rst represents a P and the second a V. This restrictsthe semantics of semaphores by requiring that the process that gains access to the semaphore bethe one that releases it. In addition, it incurs the overhead of an additional process, and also hasthe disadvantage that all the potential users of the semaphore must be named in advance.4.2 Data TransferWhile synchronization is certainly an important aspect of parallel programming, interactions be-tween cooperating parallel processes nearly always involve transfer of data as well as transfer ofcontrol. Numerous parallel algorithms are designed as phases of local computation interspersed byphases of data transfer in certain patterns. This is especially common in algorithms designed forspecial architectures that support speci�c patterns in hardware, such as the perfect shu�e permu-tation [38] or transfer along a certain dimension of a hypercube [35, 5]. Communicators are wellsuited to express such structures. Any pattern of communication can be expressed in a high levelof abstraction, and later translated into primitives provided by the hardware.Examples of how to express a broadcast, a perfect shu�e, or an exchange along a dimension ofa hypercube are given in �g. 4. In these examples, each participant enters the interaction with onevariable and receives one value; this is expressed by the role name with an extension of the variablename. In general, roles may be associated with any number of variables. The use of an array of rolesallows for a simple expression of a generic behavior. For example, in the broadcast communicatorall the receiving roles are assigned the value of the sending role. This is similar to repeated processesin Occam or other languages. The same goes for an array of interactions, except that here we mustde�ne the index variable in advance (this is done by the notation [index:bottom..top], as shownin the hypercube example). The operator � signi�es a left shift, and � is exclusive or.Pairwise synchronous message passing, as in CSP, is a special case of multiparty data transfer.It can be expressed by a communicator like that used for the broadcast, except that there is only onereceiving role. The same communicator may be used by many processes, depending on its scope,thus alleviating the need for explicit naming of communication partners. This is useful for theimplementation of servers that do not know the identities of all their potential clients in advance,and can therefore support processes that are created dynamically. The same communicator canalso be used to distribute work among a number of servers, thus e�ectively providing the semanticsof a mailbox.A simple communicator with one message-passing interaction, which is used by many sendingprocesses and one receiving process, implements the CSP choice between di�erent inputs (and itsderivatives, the Ada select and Occam ALT statements), but without Boolean expressions in theguards. This is actually the server mentioned above. A select with Boolean guards can also beimplemented, but this requires an independent interaction for each sending process. As the guards

13communicator broadcastinteraction transferf role: send(in), rec[n](out)8i rec[i].out := send.ingendcommcommunicator shuffleinteraction transferf role: proc[n](in,out)8i proc[i� 1].out := proc[i].ingendcommcommunicator hypercubeinteraction dim[j:0:: lgn� 1]f role: proc[n](in,out)8i proc[i� (1� j)].out := proc[i].ingendcommFigure 4: Examples of communicators that implement various communication patterns.depend only on the internal state of the receiving process, it can calculate them by itself and usethe results to disable or enable various input interactions.In some cases the processes participating in a data transfer do not actually require the raw datavalues, but rather some functions thereof. It is then useful to combine the data transfer with someoperations on the data. An example is given in �g. 5. This is a communicator that expresses thescan operation with addition, which is similar to a parallel-pre�x sums [7]. Each participant receivesthe sum of the inputs from lower-indexed participants. Likewise, it is easy to write a communicatorthat implements operations that are typical in image processing or numerical solutions to partialdi�erential equations. In this case, the participating processes are logically arranged in a two-

14 communicator scaninteraction sumf role: proc[n](in,out)8i proc[i].out := i�1Xj=0 proc[j].ingendcommFigure 5: Example of a communicator that combines data transfer with operations on the datavalues. communicator paralationvar: map[n]interaction matchf role: f1[n](key), f2[n](key)1. match key values to derivemapping from f1 to f22. store the mappingginteraction movef role: f1[n](out), f2[n](in)1. retrieve the mapping2. for each case where manyinputs map to the sameoutput, apply the reductionfunction3. assign output values ordefault valuesgendcommFigure 6: A communicator with data-dependent communication patterns.

15dimensional grid, and each receives some function of the inputs from its immediate neighbors. Theexample in section 5 is of this type.The routing of data does not have to follow a prede�ned pattern. Data-dependent data trans-fers are also possible. As an example, consider the paralation model introduced in [36]. Thiscommunication mechanism is captured by the communicator that is schematically described in �g.6. No claim is made that it would be easy to implement such a communicator; it is just as easy(or hard) as the implementation of paralations directly in any other system. The point is that thisabstraction can be expressed using communicators.4.3 Asynchronous InteractionsPrograms written for MIMD parallel computers allow the processes to execute with di�erent rates.In some cases, the di�erent rates have to be counteracted by explicit synchronization; this can beexpressed by the synchronous interactions of communicators as shown in the preceding subsections.But in other cases full synchronization would cause a performance degradation, and correctness canbe achieved with a lower level of coordination. This is done by asynchronous interactions, in whichprocesses may deposit data which is subsequently used by other processes.In order to support asynchronous interactions, communicators must have the capacity to saveinternal state from one interaction to another. This leads directly to a generalization of ADTs andmonitors, where encapsulated internal state is accessed through mutually exclusive procedures. Infact, monitors and ADTs are similar to communicators with the restriction that each interactiononly have one role. This capability exists in most object-based languages.The di�erence between communicators and ADTs is in the mechanism for blocking processes.Communicators do so by disabling interactions, whereas ADTs typically have the capacity to blockprocesses explicitly, using mechanisms similar to event variables in monitors [24]. While disablinginteractions is less general, it seems to be su�cient for most practical purposes. For example,�g. 7 shows how a bounded bu�er may be expressed using communicators. This description isexceptionally transparent and readable. Note that a bu�er of size 1 is equivalent to a sharedmemory location which is accessed subject to the state of a full/empty bit, so this too may beexpressed with communicators. Other asynchronous objects with internal state, such as countingsemaphores, can be expressed with equal ease. As explained above, the ability to block processesbefore they enter the communicator also has certain performance bene�ts.The advantages of expressing asynchronous interactions with communicators are even more ap-parent when compared with other languages such as CSP [23] or Raddle87 [16]. Using the boundedbu�er example for concreteness, we �nd that in these languages the bu�er must be implemented byan additional active process. Thus each insert and delete operation requires the run time systemto schedule the bu�er process to perform it. As a result the completion of the operation is delayedand the overhead associated with scheduling and context switching is paid.As another example, let us consider the fuzzy barrier [21]. This synchronization mechanism isan extension of the barrier synchronization described above. The di�erence is that instead of abarrier point, the programmer de�nes a barrier region. The semantics are that no process may leavethe region before all processes have entered it. A communicator that implements this mechanismis shown in �g. 8. In order to decouple the processes, arrays of interactions are used with onerole each. The end region interactions are enabled only after all the processes performed theirrespective begin region interactions.

16 communicator bounded buffervar: buffer[n]initializationf initialize bufferdisable deleteginteraction insertf role: producer(in)insert producer.in into bufferif buffer is fulldisable insertenable deleteginteraction deletef role: consumer(out)assign consumer.out from bufferif buffer is emptydisable deleteenable insertgendcommFigure 7: A communicator that implements a bounded bu�er.4.4 Things that Communicators Cannot ExpressIt should be noted, however, that disabling interactions is not powerful enough to express all possibleasynchronous interactions. Speci�cally, it cannot express situations in which the decision whetheror not to block the process is data dependent. Such a situation exists in the primitives providedby the Linda notation, where data transfer is based on pattern matching between tuples [1]. If amatching tuple is not found in the global tuple space, the process is blocked. In order to express thisin the communicator notation, the capability to block an instance of an interaction performance isneeded. The performance would subsequently be unblocked when another interaction outputs thedesired value.While it is straightforward to add this capability to the communicator notation, we refrain fromdoing so at present. It is felt that it would be better to �rst implement the more limited interfacedescribed above, and based on experience with it, to consider extensions.Other interactions that cannot be expressed in the communicator framework include various

17communicator fuzzyvar: countinitializationf 8i disable end region[i]count := 0ginteraction begin region[n]f role: proccount := count + 1if count = n8i enable end region[i]ginteraction end region[n]f role: procgendcommFigure 8: A communicator that implements a fuzzy barrier.forms of control over the participating processes. Two types of control that have been mentioned inthe literature are \chosen partners" and \required sets" [18, 25]. With the chosen partners option,a process that enroles for a certain role may dictate which processes it wants as partners for theinteraction. If the desired processes do not enrole, the interaction will not be performed, even ifother processes do enrole. While this option is not provided by communicators, the same e�ect canbe achieved by declaring distinct communicators for use by di�erent sets of processes.The option of a required set allows the programmer to de�ne interactions that can be performedeven if all the roles have not been �lled. There is a subset of roles that are required, and the restare optional. While this option might be important to cope with the highly asynchronous nature ofreactive systems, which are the target environment for other proposals of languages with multipartyinteractions, it seems to be unnecessary in communicators, which are targeted at transformationalsystems.5 An Application ExampleTo illustrate the use of communicators, we now give a short application example. The applicationis a PDE solver using the Jacobi method on the Laplace equation. The domain is an n � n grid.Each gridpoint is allocated to a distinct process. In each iteration of the computation, the gridpointvalue is replaced by the average of its four neighbors. The iterations continue until the maximum

18 communicator neighborhood[n; n]interaction updatef role: C(new val), N(val), S(val), E(val), W(val)C.new val := (N.val + S.val + E.val + W.val)/4gendcommcommunicator terminateinteraction checkf role: element[n; n](delta,flag)if (maxi;j f element[i; j].delta g < ACCURACY)8i; j element[i; j].flag := TRUEelse8i; j element[i; j].flag := FALSEgendcommparfor i := 0 to n� 1parfor j := 0 to n� 1f var: old, new, change, flagold := initial value(i, j)repeat fmulti enrole@neighborhood[i; j].update.C(new)and enrole@neighborhood[i� 1; j].update.N(old)and enrole@neighborhood[i+ 1; j].update.S(old)and enrole@neighborhood[i; j� 1].update.E(old)and enrole@neighborhood[i; j+ 1].update.W(old)endmultichange := j new � old jold := newenrole@terminate.check.element[i; j](change, flag)g until (flag = TRUE)record final value(i, j, new)gparendparendFigure 9: Example of a PDE solver using communicators.

19change over all gridpoints falls below a prede�ned accuracy. The example is written in pseudocodein a style similar to that conventionally used to describe algorithms (�g. 9).We start by de�ning the communicator that is used to calculate the average of the neighbors.Note that this is a square array of n2 communicators, because we need a distinct one for eachneighborhood. As in previous examples, the variables belonging to each role are given in parenthesesafter the role declaration. The special cases along the boundaries are omitted for brevity. Nextcomes the communicator used for the termination detection. In this case, there is one communicatorand a square array of n� n roles.The program itself creates the n2 processes, and starts the iterations. The communicators weredeclared before the processes are spawned, so they are shared by all. The variables declared withinthe process blocks (old, new, etc.) are local and private. In each iteration, every process engages in�ve interactions with its neighbors in an unspeci�ed order; this is expressed by the multi enroleconstruct. The system is free to perform these interactions in any way it �nds convenient. Thenthe processes compute their change and engage in the global interaction to check the terminationcondition. The enrole (andmulti enrole) directives accept a variable number of parameters. The�rst, after the@, identi�es the communicator, interaction, and role. The rest (between parentheses)are substituted for the formal parameters.This example is very �ne-grained in order to show a lot of communicators in a short piece ofcode. Such �ne-grain interactions place a heavy burden in the compiler and run-time system thathave to implement them e�ciently. Programs with less frequent interactions are obviously simpler.Implementation issues are discussed in the next section.6 Implementation StrategyNo communicator language has been implemented yet, but the implementation strategy is quiteclear. Many parts of the implementation can be based on previous research in various areas ofparallel computing. This section reviews known algorithms and results that can be put to use, andidenti�es those aspects of the implementation that require further research.An implementation of communicators has to contend with two major issues: the coordinationof interaction performance, and the implementation of the interaction bodies. We review both inturn.6.1 Coordinating Interaction PerformancesInteractions can be performed when processes enrole in all their roles. However, a process mayenrole in a number of roles, possibly belonging to di�erent communicators and interactions. Theproblem is therefore one of instantiating a certain enrolement. This must be coordinated with otherprocesses, so that indeed all the roles of one speci�c interaction are instantiated.The di�culty of doing this is illustrated by �g. 10. This is a bipartite graph, with processeson one side and roles on the other. Arcs denote the enrolement of processes in roles. A processwith two or more outgoing arcs is using a multi or select enrole. Take process #1 for example.It can immediately cause interaction I1 to be performed, because this interaction only has onerole. But that would prevent interaction I2 from being performed, frustrating processes 2, 4, and5. Interaction I3, on the other hand, cannot be performed in any case, even though all of its roles

20 Processesmmmmmmmmm
123456789

-XXXXXXXXXXXXXXXXzPPPPPPPPPPPPPPPPq����������������:HHHHHHHHHHHHHHHHj����������������1����������������:-����������������1
Com1����I1m1����I2mmm234
Com2����I3mmm567����I4mm89Figure 10: Bipartite graph representing enrolement of processes in roles.have ready processes. the reason is that roles 5 and 7 have the same process enroled, but a processcan only play one role when the interaction is performed.Simple Interaction PatternsIn some cases there is actually no need to coordinate between enrolements from distinct processes.These cases can be recognized at compile time. The compiler can then generate simple code tohandle the performance of interactions, rather than generating code for the general case. Forexample, if the processes only use the enrole instruction, and do not use multi or select enrole,then each process is only willing to participate in one speci�c interaction. Starting the performanceof an interaction is then reduced to a simple barrier synchronization of the enroling processes.Simple interaction patterns that can be handled at compile time can also be found when non-deterministic enrolement is used. For example, the multi enrole used in the PDE solver of �g. 9is repeated by all the processes in the system. Thus it allows the square array of processes to bytiled by +-shaped tiles of �ve adjacent processes, representing a set of update interactions fromdistinct neighborhood communicators that can be performed simultaneously. Using �ve shiftedversions of this tiling pattern, all the interactions are performed. If the compiler recognizes this

21possibility, it can determine the order in which each process should enrole to the �ve interactions itparticipates in, and again the actual initiation of the performances of these interactions is reducedto a simple barrier synchronization. Note that the compiler can use a brute-force algorithm tocreate the schedule, as the overhead is paid only at compile time and does not in
uence the runtime.The General CaseIn the general case, the coordination of interaction performances is an instance of the \committeecoordination" problem [9, chap. 14]. This archetypical problem involves a number of professors,each of whom is a member in a number of committees. A professor is occasionally willing toparticipate in a meeting of any committee in which he is a member6. The problem is to schedulecommittee meetings when all their members are willing, under the obvious restriction that no twocommittees with a common member may convene at the same time. In our case, each processis a professor, and each interaction is a committee. The problem is to know when all the rolesof a interaction have been �lled by ready processes, subject to the complication that processesmay enrole to a number of interactions simultaneously, but participate only in one performance.Therefore the performance of one interaction may invalidate the readiness of another.The committee coordination problem has received only scant attention in the literature. Chandyand Misra, who formally introduced it, show how committee coordination can be reduced to aninstance of the dining philosophers problem [9, chap. 14]. Each committee is represented by aphilosopher, and each professor by a fork. The fork is shared by all the philosophers that representcommittees in which the professor is a member. A philosopher needs all his forks to eat, just asa committee needs all its members to convene; doing so prevents neighboring philosophers fromeating, just as committees with common members are prevented from convening.Bagrodia presents a family of algorithms for committee coordination [4]. The �rst is a centralizedalgorithm, where a designated manager maintains the information about the whole system. Theothers distribute the solution, by de�ning a set of managers that are responsible for di�erentcommittees. The managers coordinate their activities by passing a token, or by a passing messagesthat implement a drinking philosophers protocol. In the context of communicators, it would benatural to associate a manager with each communicator, and let it deal with all the interactionsde�ned in that communicator. All these algorithms (both by Chandy and Misra and by Bagrodia)are designed for the zero-order case.Joung and Smolka have designed an algorithm for the �rst-order case [25]. This is a symmetricalalgorithm, in which any process that enroles to a certain role becomes the manager for that interac-tion. It then tries to secure a quorum of other processes to �ll the other roles. If it fails, it becomesidle and waits for some other process to initiate the performance. The overhead of the coordinationis linear in the number of processes that may potentially enrole. While this is a promising result,the overhead is still large enough to motivate research into the automatic identi�cation of simplerspecial cases, like those mentioned above.6As pointed out by Joung and Smolka, the membership of professors in committees is known in advance in theoriginal formulation. This represents zero-order multiparty interactions, but not �rst-order ones [25]. To capture thecomplications of �rst-order multiparty interactions (including communicators), professors must be allowed to joinvarious committees on a whim.

22 It should be noted that the above algorithms do not cover all the aspects of communicatorimplementation. Speci�cally, with communicators there is the added di�culty of ensuring mu-tual exclusion between interactions from the same communicator, and knowing about disabledinteractions. However, this only requires a small amount of additional information relative to theinformation required to deal with enrolement.Mutual Exclusion Between InteractionsAn additional restriction on the performance of interactions is that interactions belonging to thesame communicator must be performed with mutual exclusion. This does not necessarily mean thatthey must actually be performed one after the other. It is enough to coordinate the performancesso that the �nal e�ect is as if they were serialized. Thus performances of communicator interactionscan use the same concurrency control techniques that were developed to guarantee the serializabilityof transactions on databases [30].In some cases, simple or no concurrency control is su�cient. Communicators may be classi�edinto two types: those with internal state and those that are stateless. Internal state consists ofcommunicator global variables and disabled interactions, so it is easy to identify stateless commu-nicators at compile time. An interesting point about stateless communicators is that the operationsin one interaction have absolutely no e�ect on other interactions or on subsequent performances ofthe same interaction. Therefore the interactions do not have to be executed in a mutually exclusivemanner. The communicator can be shared by a large number of processes, and service disjointsubsets of them concurrently.The communicators with internal state can be further classi�ed into two types, based on theirinteractions. The simple case involves communicators with interactions that may be categorized as\reading" or \writing". Reading interaction are those that do not assign to communicator globalvariables, and do not disable any interaction. However, they may enable interactions. Writinginteractions are those that do assign to global variables and do disable interactions. For example,The match interaction in the paralation communicator of �g. 6 is writing, because it saves thefound mapping in a global array. the move interaction, on the other hand, is reading. Many moveinteractions may be performed simultaneously, using the same stored mapping. The end regioninteraction in the fuzzy barrier example of �g. 8 is also a reading interaction. Thus processes donot need to be serialized when they exit the barrier region.The importance of this distinction is that the interactions can then be performed according toa readers-writers locking scheme [20, 27]: any number of reading interactions may be performed si-multaneously, while only writing interactions require mutual exclusion. Note that the identi�cationof the interactions as reading or writing is part of the implementation, and so is the readers-writersprotocol. The programmer is shielded by the communicator abstraction from having to deal withthese issues himself.The other type of communicators with internal state have general interactions (alternatively,all interactions are writing). In this case, database concurrency control techniques may be used.This approach has been proposed in the past for the implementation of shared memory [39] andfor the implementation of shared abstract data types [41].

236.2 Implementing InteractionsOnce the required processes have enroled and committed themselves to the performance of a certaininteraction, the body of the interaction has to be executed. This can be done serially by one of theprocesses, or in parallel by some or all of them. A methodology for choosing a single process toexecute the common code was presented by Ramesh [32].Using only one process might seem wasteful at �rst glance. After all, we know that all theparticipating processes are available when the interaction commences. However, some or even mostof them may not be executing. It is certainly plausible that there would be more processes thanprocessors in the system. In this case, processes that arrive early would probably be suspendedwhile waiting for the performance of an interaction. Causing them to be scheduled simultaneouslyto execute the interaction might be more trouble than it is worth. However, the possibility ofexecuting the interaction by a set of parallel processes should not be ruled out.Recall that the body of interactions is speci�ed in a conventional serial programming language.Therefore a parallel execution must be based on the automatic parallelization of this code. Luckily,a large body of research has been done on this problem. The basic approach is as follows. First,a data
ow graph of the required computation is generated. This graph is then partitioned intomodules that may execute in parallel. Arcs contained within such a module dictate the order ofthe operations in it, whereas arcs between modules indicate that interprocessor communication isneeded. Finally, the modules are mapped to processors, or in our case, to processes [29, 12, 37].While signi�cant progress has been made in the �eld of automatic parallelization in recent years,not all codes can be parallelized e�ciently. However, it is felt that this approach may be quite usefulin the context of communicators. The reason is that communicators foster a programming stylein which communication between processes is localized in the bodies of interactions. Assumingthat the program and algorithm are well structured, this should lead to structured and modularcommunication patterns. Such code is easier to parallelize than the general code that is found inthe implementation of numerical algorithms.Finally, it is not reasonable to expect an automatic parallelization tool to be perfect in everycase. The programmer has to be reasonable, and express the interaction body in the most easilyparallelizable manner. For example, the sum interaction from the scan communicator in �g 5 maybe written in two equivalent ways. The �rst isproc[1].out = 0for i := 2 to nproc[i]out := proc[i-1].out + proc[i-1].inThis is very concise, but gives the impression of being inherently serial. An alternative form isfor i := 1 to nproc[i].out = 0for j := 1 to i-1proc[i]out := proc[i].out + proc[j].inWhile this is slightly more cumbersome, it makes the available parallelism completely transparent.

247 Comparison with Related WorkThe preceding section showed that certain parts in the implementation of communicators can beidenti�ed with previous research. This section reviews previous work that is related to the conceptof communicators as a whole.The concept of sequential processes that interact through synchronous communication wasintroduced by Hoare in his work on CSP [23]. However, CSP only allows pairwise interactions.Several extensions to multiparty interactions have been proposed over the years. The most directis CSPS, proposed by Roman and Day [34], which introduces a notation that allows subsets ofprocesses to synchronize; in e�ect, this is simply a barrier synchronization. However, there is nomultiparty data transfer.Francez et. al. introduced scripts as a method for abstracting patterns of communication withmore than two participants [18]. However, this was not considered an addition to the language butrather a high level description that would be translated into the base language. Many propertiesof scripts were therefore left to be de�ned by the language being used. The shared actions ofRamesh and Mehndiratta represent a similar approach; their emphasis is on the transformation intoa distributed implementation [33]. Charlesworth introduced the compact, a language constructsthat is used to establish a communication pact between any number of processes; the resultinginteraction is called a multiway rendezvous [10]. He shows that the support provided by CSPand other languages is inadequate for the implementation of multiway rendezvous, and suggestsextensions. All of these proposals are close to the style and spirit of CSP, whereas communicatorsdepart from that style. For example, the notion of di�erent interactions that are associated withthe same communicator is absent from the other proposals. Thus there is no option of savinginternal state from one interaction to another (unless this is done externally by the participatingprocesses). Naturally, the option to disable an interaction also does not exist.The language Raddle, presented by Forman, also provides a capability for design with multipartyinteractions, which should later be re�ned and decomposed manually to use the pairwise interactionsprovided by the hardware [16]. This is combined with another level of modularization, namely teamsof roles. Only roles in the same team can participate in a multiparty interaction; interactions amongteams are essentially mediated by remote procedure calls. While this turns the original zero-ordermultiparty interactions into more abstract �rst-order interactions, it also adds the restriction ofmaking it necessary to de�ne an active process in a team that is only used to abstract a patternof communication. Adding unnecessary processes like this complicates the program and places aheavier load on the run-time system. The IP language, designed by Francez and Forman [17],su�ers from the same drawback. On the other hand, it adds the possibility for superimposition ofdi�erent activities among the same set of processes, e.g. termination detection superimposed on adistributed computation.Back and Kurki-Suonio take the concept of multiparty interactions to the extreme. In theiraction systems, the whole program is expressed in terms of possible interactions [3]. The modelof execution is that interactions are performed continuously in sequence until none are enabledany more. This is implemented in the DisCo language [26], which also includes object-orientedfeatures. The data-parallel vector model of Blelloch is similar, except for not using nondeterminism[7]. Communicators take a much more conservative approach, based on sequential processes thatinteract.Many of the abovementioned proposals for multiparty interactions are intended for use in the

25design of distributed reactive systems7; much research is devoted to procedures for the subsequentre�nement of the multiparty interactions, replacing them with pairwise interactions. The processesrepresent real-world entities, and the program implements their interactions and reactions to outsidestimuli. Nondeterminism is used to cope with the unpredictable nature of the environment. Com-municators, on the other hand, are a structuring mechanism for regular (transformational) parallelprograms. Their expressive power is intentionally limited, so as to enable automatic compilationand e�cient run-time support. The intended environment is tightly-coupled parallel computers,not distributed systems. Therefore transformations into pairwise interactions may be unnecessary.Nondeterminism is used only as part of the abstraction, when the exact sequencing is not importantand may be left to the system.It should be noted that communicators are not completely new with respect to using multipartyinteractions in transformational parallel programs. For one thing, some systems support primitivessuch as multicast [11, 6]. In addition, there are initial attempts at more expressive constructsincorporated into a language. Examples include the CAB construct [28] and paralations [36].However, these are much more restricted than communicators in the sense of limiting the patternof data transfer. As shown above, communicators can be used to express any pattern. On theother hand, there are some patterns of interaction between processes that cannot be expressed bythe communicator notation.Another important distinction di�erentiates between communicators and other language exten-sions that introduce parallelism into an existing base language. For example, the Linda notationis an add-on that is independent and orthogonal to the base language. All it needs is a run-timelibrary that is linked with the source code. With communicators, however, there are certain require-ments on the language. The use of communicators is blended with the mechanism for expressingthe parallelism, and static scoping rules are used to determine the accessibility of processes tocommunicators. Thus communicators are integrated into the language, and their support requiresa specialized compiler.8 ConclusionsCommunicators may be viewed as a study of how to apply the principles of ADTs to parallelprogramming in new ways. The conventional object-based model was augmented with two mainfeatures to create them. The �rst was interactions, which are actually procedures with multipleentry points that serve to synchronize the participating processes. The second was the ability todisable and enable interactions, so as to control the execution of other processes. It seems thatmost useful interaction patterns may be expressed by this augmented model. The model opens theway for abstraction, improved portability, and easier programming.Communicators also provide a framework in which di�erent interactions can be described andcompared. The diversity of interactions that can be expressed testi�es to the richness of the designspace. The features that are needed in the interactions also serve to expose the inherent propertiesof various interaction patterns and to de�ne a certain hierarchy among them.Programming with communicators exposes a whole spectrum of possible program structures,from sequential processes with simple and primitive interactions, to a sequence of complex interac-tions with nothing in between. This wide range of possibilities indicates that communicators have7The distinction between reactive an transformational computations is due to Pnueli [31].

26a high expressive power, and can be used for di�erent programming styles.The detailed design and implementation of communicators are yet to be done. However, it isalready possible to envision certain bene�ts of using them. These bene�ts include:� Easier programming. Communicators provide a higher level of abstraction than most contem-porary languages, by not limiting the programmer to pairwise interactions between processes.� Better program structure. Using communicators, there is a crisp separation between inde-pendent serial blocks of code and parallel interactions. The localization of the parallel codeimproves the possibility of using automatic parallelization and veri�cation techniques.� E�cient execution. The simple features incorporated in communicators alleviate the needfor additional processes that are necessary for the interactions but were not part of theoriginal problem solution; such processes are needed in most other proposals for multipartyinteractions. The possibility of disabling interactions provides a uniform blocking mechanism.� Improved portability and reusability. A library of common communicators could be de�nedand implemented on various systems.Much of the promise of communicators can be traced to the fact that they allow users to delegatevarious responsibilities to the system. Such delegation of authority requires two issues to be re-solved: �rst, one must de�ne an interface by which the user can express what he wants the systemto do. Second, system algorithms that implement this interface must be designed and implemented.For example, semaphores were introduced as a means to tell the system that a process is waitingfor an abstract event, and they were easily implemented by maintaining a queue of waiting pro-cesses. Communicators provide a much richer interface, and allow the user to tell the system aboutmore involved patterns of interprocess interaction. While the study of implementation is still in itsinfancy, there are indications that e�cient implementation would be possible by bringing togetherprevious research on many diverse issues in parallel programming.References[1] S. Ahuja, N. Carriero, and D. Gelernter, \Linda and friends". Computer 19(8), pp. 26{34,Aug 1986.[2] G. R. Andrews and F. B. Schneider, \Concepts and notations for concurrent programming".ACM Comput. Surv. 15(1), pp. 3{43, Mar 1983.[3] R. J. R. Back and R. Kurki-Suonio, \Distributed cooperation with action systems". ACMTrans. Prog. Lang. & Syst. 10(4), pp. 513{554, Oct 1988.[4] R. Bagrodia, \Process synchronization: design and performance evaluation of distributed al-gorithms". IEEE Trans. Softw. Eng. 15(9), pp. 1053{1065, Sep 1989.[5] P. Banerjee, M. H. Jones, and J. S. Sargent, \Parallel simulated annealing algorithms for cellplacement on hypercube multiprocessors". IEEE Trans. Parallel & Distributed Syst. 1(1),pp. 91{106, Jan 1990.

27[6] K. P. Birman and T. A. Joseph, \Reliable communication in the presence of failures". ACMTrans. Comput. Syst. 5(1), pp. 47{76, Feb 1987.[7] G. E. Blelloch, Vector Models for Data-Parallel Computing. MIT Press, 1990.[8] E. C. Bronson, T. L. Casavant, and L. H. Jamieson, \Experimental application-driven ar-chitecture analysis of an SIMD/MIMD parallel processing system". IEEE Trans. Parallel &Distributed Syst. 1(2), pp. 195{205, Apr 1990.[9] M. K. Chandy and J. Misra, Parallel Program Design: A Foundation. Addison-Wesley, 1987.[10] A. Charlesworth, \The multiway rendezvous". ACM Trans. Prog. Lang. & Syst. 9(3), pp. 350{366, Jul 1987.[11] D. R. Cheriton and W. Zwaenepoel, \Distributed process groups in the V kernel". ACM Trans.Comput. Syst. 3(2), pp. 77{107, May 1985.[12] R. Cytron, M. Hind, and W. Hsieh, \Automatic generation of DAG parallelism". In Proc.Conf. Prog. Lang. Design & Implementation, pp. 54{68, SIGPLAN, Jun 1989.[13] E. W. Dijkstra, \Co-operating sequential processes". In Programming Languages, F. Genuys(ed.), pp. 43{112, Academic Press, 1968.[14] M. Evangelist, N. Francez, and S. Katz, \Multiparty interactions for interprocess communica-tion and synchronization". IEEE Trans. Softw. Eng. 15(11), pp. 1417{1426, Nov 1989.[15] M. J. Flynn, \Very high-speed computing systems". Proceedings of the IEEE 54(12), pp. 1901{1909, Dec 1966.[16] I. R. Forman, \Design by decomposition of multiparty interactions in Raddle87". In 5th Intl.Workshop Software Speci�cation & Design, pp. 2{10, May 1989.[17] N. Francez and I. R. Forman, \Interacting Processes: a language for coordinated distributedprogramming". In 5th Jerusalem Conf. Information Technology, pp. 146{161, IEEE ComputerSociety Press, Oct 1990.[18] N. Francez, B. Hailpern, and G. Taubenfeld, \Script: a communication abstraction mecha-nism". Sci. Comput. Programming 6(1), pp. 35{88, Jan 1986.[19] P. O. Frederickson, R. E. Jones, and B. T. Smith, \Synchronization and control of parallelalgorithms". Parallel Comput. 2(3), pp. 255{264, 1985.[20] A. Gottlieb, B. Lubachevsky, and L. Rudolph, \Basic techniques for the e�cient coordinationof very large numbers of cooperating sequential processes". ACM Trans. Prog. Lang. & Syst.5(2), pp. 164{189, Apr 1983.[21] R. Gupta, \The fuzzy barrier: a mechanism for high speed synchronization of processors". In3rd Intl. Conf. Architect. Support for Prog. Lang. & Operating Syst., pp. 54{63, Apr 1989.[22] W. D. Hillis and G. L. Steele, Jr., \Data parallel algorithms". Comm. ACM 29(12), pp. 1170{1183, Dec 1986.

28[23] C. A. R. Hoare, Communicating Sequential Processes. Prentice-Hall International, 1985.[24] C. A. R. Hoare, \Monitors: an operating system structuring concept". Comm. ACM 17(10),pp. 549{557, Oct 1974.[25] Y-J. Joung and S. A. Smolka, \Coordinating �rst-order multiparty interactions". In 18th Ann.Symp. Principles of Programming Languages, pp. 209{220, Jan 1991.[26] R. Kurki-Suonio and H-M. J�arvinen, \Action system approach to the speci�cation and designof distributed systems". In 5th Intl. Workshop Software Speci�cation & Design, pp. 34{40,May 1989.[27] J. M. Mellor-Crummey and M. L. Scott, \Synchronization without contention". In 4th Intl.Conf. Architect. Support for Prog. Lang. & Operating Syst., pp. 269{278, Apr 1991.[28] P. A. Nelson and L. Snyder, \Programming paradigms for nonshared memory parallel com-puters". In The Characteristics of Parallel Algorithms, L. H. Jamieson, D. B. Gannon, andR. J. Douglass (eds.), pp. 3{20, MIT Press, 1987.[29] D. A. Padua, D. J. Kuck, and D. H. Lawrie, \High speed multiprocessors and compilationtechniques". IEEE Trans. Comput. C-29, pp. 763{776, Sep 1980.[30] C. H. Papadimitriou, \The serializability of concurrent database updates". J. ACM 26(4),pp. 631{653, Oct 1979.[31] A. Pnueli, \Applications of temporal logic to the speci�cation and veri�cation of reactivesystems: a survey of current trends". In Current Trends in Concurrency, J. W. de Bakker,W-P. de Roever, and G. Rozenberg (eds.), pp. 510{584, Springer-Verlag, 1986. Lecture Notesin computer Science, Vol. 224.[32] S. Ramesh, \A new and e�cient implementation of multiprocess synchronization". In ParallelArch. & Lang. Europe, vol. II, pp. 387{401, Springer-Verlag, 1987. Lecture Notes in ComputerScience Vol. 259.[33] S. Ramesh and S. L. Mehndiratta, \A methodology for developing distributed programs".IEEE Trans. Softw. Eng. SE-13(8), pp. 967{976, Aug 1987.[34] G-C. Roman and M. S. Day, \Multifaceted distributed systems speci�cation using processesand event synchronization". In 7th Intl. Conf. Softw. Eng., pp. 44{55, Mar 1984.[35] K. W. Ryu and J. J�aJ�a, \E�cient algorithms for list ranking and for solving graph problemson the hypercube". IEEE Trans. Parallel & Distributed Syst. 1(1), pp. 83{90, Jan 1990.[36] G. W. Sabot, The Paralation Model: Architecture-Independent Parallel Programming. MITPress, 1988.[37] V. Sarkar, Partitioning and Scheduling Parallel Programs for Multiprocessors. MIT Press,1989.

29[38] J. T. Schwartz, \Ultracomputers". ACM Trans. Prog. Lang. & Syst. 2(4), pp. 484{521, Oct1980.[39] D. Shasha and M. Snir, \E�cient and correct execution of parallel programs that share mem-ory". ACM Trans. Prog. Lang. & Syst. 10(2), pp. 282{312, Apr 1988.[40] D. Vrsalovic, Z. Segall, D. Siewiorek, F. Gregoretti, E. Caplan, C. Fineman, S. Kravitz, T. Lehr,and M. Russinovich, \MPC - multiprocessor C language for consistent abstract shared datatype paradigms". In 22nd Ann. Hawaii Intl. Conf. System Sciences, vol. I, pp. 171{180, Jan1989.[41] W. E. Weihl, \Commutativity-based concurrency control for abstract data types". IEEETrans. Comput. 37(12), pp. 1488{1505, Dec 1988.[42] A. Yonezawa and M. Tokoro (eds.), Object-Oriented Concurrent Programming. MIT Press,1987.

