
Effects of Clock Resolution on the Scheduling of
Interactive and Soft Real-Time Processes

Yoav Etsion� Dan Tsafrir Dror G. Feitelson
School of Computer Science and Engineering

The Hebrew University, 91904 Jerusalem, Israelfetsman,dants,feitg�s.huji.a.il
ABSTRACTIt is ommonly agreed that sheduling mehanisms in gen-eral purpose operating systems do not provide adequate sup-port for modern interative appliations, notably multime-dia appliations. The ommon solution to this problem is todevise speialized sheduling mehanisms that take the spe-i� needs of suh appliations into aount. A muh simpleralternative is to better tune existing systems. In partiu-lar, we show that onventional sheduling algorithms typ-ially only have little and possibly misleading informationregarding the CPU usage of proesses, beause inreasingCPU rates have aused the ommon 100 Hz lok interruptrate to be oarser than most appliation time quanta. Wetherefore ondut an experimental analysis of what happensif this rate is signi�antly inreased. Results indiate thatmuh higher lok interrupt rates are possible with aept-able overheads, and lead to muh better information. Inaddition we show that inreasing the lok rate an providea measure of support for soft real-time requirements, evenwhen using a general-purpose operating system. For ex-ample, we ahieve a sub-milliseond lateny under heavilyloaded onditions.
Categories and Subject DescriptorsD.4.1 [Proess Management℄: Sheduling; D.4.8 [Perfor-mane℄: Measurements; C.4 [Performane of Systems℄:Design studies
General TermsMeasurement, Performane
KeywordsClok interrupt rate, Interative proess, Linux, Overhead,Sheduling, Soft real-time, Tuning�Supported by a Usenix sholasti grant.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMETRICS’03, June 10–14, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-664-1/03/0006 ...$5.00.

1. INTRODUCTIONContemporary omputer workloads, espeially on the desk-top, ontain a signi�ant multimedia omponent: playingof musi and sound e�ets, displaying video lips and an-imations, et. These workloads are not well supported byonventional operating system shedulers, whih prioritizeproesses aording to reent CPU usage [18℄. This de�-ieny is often attributed to the lak of spei� support forreal-time features, and to the fat that multimedia applia-tions onsume signi�ant CPU resoures themselves.The ommon solution to this problem has been to designspeialized programming APIs that enable appliations torequest speial treatment, and shedulers that respet theserequests [19, 8, 22℄. For example, appliations may be re-quired to speify timing onstraints suh as deadlines. Tosupport suh deadlines, the onventional operating systemsheduler has to be modi�ed, or a real-time system an beused.While this approah solves the problem, it su�ers fromtwo drawbaks. One is prie. Real-time operating systemsare muh more expensive than ommodity desktop oper-ating systems like Linux or Windows. The prie reetsthe diÆulty of implementing industrial strength real-timesheduling. This diÆulty, and the requirement for are-ful testing of all important senarios, are the reasons thatmany interesting proposals made in aademia do not makeit into prodution systems. The other drawbak is the needfor speialized interfaes, that may redue the portability ofappliations, and require a larger learning and oding e�ort.An alternative is to stik with ommodity desktop op-erating systems, and tune them to better support modernworkloads. While this may lead to sub-optimal results, ithas the important bene�t of being immediately appliableto the vast majority of systems installed around the world.It is therefore worth while to perform a detailed analysisof this approah, inluding what an be done, what resultsmay be expeted, and what are its inherent limitations.
1.1 Commodity Scheduling AlgorithmsPrevalent ommodity systems (as opposed to researh sys-tems) use a simple sheduler that has not hanged muh in30 years. The basi idea is that proesses are run in pri-ority order. Priority has a stati omponent (e.g. operatingsystem proesses have a higher initial priority than user pro-esses) and a dynami part. The dynami part depends onCPU usage: the more CPU yles used by a proess, thelower its priority beomes. This negative feedbak (runningredues your priority to run more) ensures that all proesses

get a fair share of the resoures. CPU usage is forgotten af-ter some time, in order to fous on reent ativity and noton distant history.While the basi ideas are the same, spei� systems em-ploy di�erent variations. For example, in Solaris prioritiesof proesses that wake up after waiting for an event are setaording to a table, and the alloated quantum durationis longer if the priority is lower [17℄. In Linux the relation-ship goes the other way, with the same number serving asboth the alloation and the priority [5, 4℄. In Windows NTand 2000, the priority and quanta alloated to threads aredetermined by a set of rules rather than a formula, but thee�et is the same [24℄. For example, threads that seem tobe starved get a double quantum at the highest possible pri-ority, and threads waiting for I/O or user input also get apriority boost.In all ases, proesses that do not use the CPU very muh| suh as I/O-bound proesses | enjoy a higher priority forthose short bursts in whih they want it. This was suÆientfor the interative appliations of twenty years ago. It is nolonger suÆient for modern multimedia appliations (a lassof appliations that did not exist when these shedulers weredesigned), beause their CPU usage is relatively high.
1.2 The Resolution of Clock InterruptsComputer systems have two loks: a hardware lok thatgoverns the instrution yle, and an operating system lokthat governs system ativity. Unlike the hardware lok, thefrequeny of the system lok is not prede�ned: rather, itis set by the operating system on startup. Thus the systeman deide for itself what frequeny it wants to use. It isthis tunability that is the fous of the present paper.The importane of the system lok (also alled the timerinterrupt rate) lies in the fat that ommodity systems mea-sure time using this lok, inluding CPU usage and whentimers should go o�. The reason that timers are aligned withlok tiks is to simplify their implementation and bound theoverhead. The alternative of setting a speial interrupt foreah timer event requires more bookkeeping and risks highoverhead if many timers are set with very short intervals.The most ommon frequeny used today is 100 Hz: it isused in Linux, the BSD family, Solaris, the Windows family,and Ma OS X. This hasn't hanged muh in the last 30years. For example, bak in 1976 Unix version 6 running ona PDP11 used a lok interrupt rate of 60 Hz [16℄. Sinethat time the hardware lok rate has inreased by about 3orders of magnitude, from several megahertz to over 3 giga-hertz [23℄. As a onsequene, the size of an operating systemtik has inreased a lot, and is now on the order of 10 mil-lion yles or instrutions. Simple interative appliationssuh as text editors don't require that many yles per quan-tum1, making the tik rate obsolete | it is too oarse formeasuring the running time of an interative proess. Forexample, the operating system annot distinguish betweenproesses that run for a thousand yles and those that runfor a million yles, beause using 100 Hz tiks on a 1 GHzproessor both look like 0 time.A speial ase of time measurement is setting the time1Interestingly, this same onsideration has also motivatedthe approah of making the hardware lok slower, ratherthan making the operating system lok faster as we pro-pose. This has the bene�t of reduing power onsumption[10℄.

desired frames per second
20 30 40 50 60

ac
hi

ev
ed

 fr
am

es
 p

er
 s

ec
on

d

20

30

40

50

60 1000 Hz

100 Hz

Figure 1: Desired and ahieved frame rate for the XineMPEG viewer, on systems with 100 Hz and 1000 Hz lokinterrupt rates.that a proess may run before it is preempted. This du-ration, alled the alloation quantum, is also measured inlok tiks. Changing the lok resolution therefore impli-itly e�ets the quantum size. However in reality these twoparameters need not be orrelated, and they an be set in-dependently of eah other. The question is how to set eahone.A related issue is providing support for soft real-time ap-pliations suh as games with realisti video rendering, thatrequire aurate timing down to several milliseonds. Theseappliations require signi�ant CPU resoures, but in a frag-mented manner, and are barely served by a 100 Hz tik rate.In some ases, the limited lok interrupt rate may atuallyprevent the operating system from providing required ser-vies.An example is given in Figure 1. This shows the desiredand ahieved frame rates of the Xine MPEG viewer showing500 frames of a short lip that is already loaded into memory,when running on a Linux system with lok interrupt rates of100 Hz and 1000 Hz. For this benhmark the disk and CPUpower are not bottleneks, and the desired frame rates anall be ahieved. However, when using a 100 Hz system, theviewer repeatedly disards frames beause the system doesnot wake it up in time to display them if the desired framerate is 60 frames per seond. This is an important de�ieny,as 60 frames/se is mandated by the MPEG standard.Even �ner timing servies are required in other, non-desktopappliations. Video rates of up to 1000 frames per seond areused for reording high-speed events, suh as vehile rashexperiments [26℄. Similar high rates an also be expetedfor sampling sensors in various situations. Even higher ratesare neessary in networking, for the implementation of rate-based transmission [25, 2℄. Full utilization of a 100 Mb/sFast Ethernet with 1500-byte pakets requires a paket tobe transmitted every 120 �s, i.e. 8333 times a seond. On agigabit link, the interval drops to 12 �s, and the rate jumpsup to 83,333 times a seond.Inreasing the lok interrupt rate may be expeted toprovide muh better timing support than that available to-day with 100 Hz. However, this omes at the possible ex-pense of additional overhead, and has therefore been dis-

ouraged by Linux developers (this will probably hange asthe 2.5 development kernel has swithed to 1000 Hz for theprevalent Intel arhiteture; in the past, suh a rate wasreommended only for the Alpha proessor, whih aord-ing to the kernel mailing list was \strong enough to handleit") and by Sun doumentation (\exerise great are if youare onsidering setting high-resolution tiks2 ... this settingshould never, ever be made on a prodution system withoutextensive testing �rst" [17, p. 56℄). Our goal is to investigatethis tradeo� more thoroughly.
1.3 Related WorkOther approahes to improving the soft real-time servieprovided by ommodity systems inlude RT-Linux, one-shottimers, soft timers, �rm timers, and priority adjustments.The RT-Linux projet uses virtual mahine tehnology torun a real-time exeutive under Linux, only allowing Linuxto run when there are no urgent real-time tasks that need theproessor [3℄. Thus Linux does not run on the native hard-ware, but on a virtual mahine. The result is a juxtapositionof a hard real-time system and a Linux system. In parti-ular, the real-time servies are not available for the Linuxproesses, so real time appliations must be partitioned intotwo independent parts. However, ommuniation betweenthe two parts is supported.One-shot timers do not have a pre-de�ned periodiity. In-stead, they are set aording to need. The system storestimer requests sorted by time. Whenever a timer event is�red, the system sets a timer interrupt for the next event.Variants of one-shot timers have been used in several sys-tems, inluding the Pebble operating system, the Nemesisoperating system for multimedia [15℄, and the KURT real-time system [25℄. The problem is that this may lead tohigh overhead if many timing events are requested with �neresolution.In soft timers the timing of system events is also not tiedto periodi lok interrupts [2℄. Instead, the system oppor-tunistially makes use of onvenient irumstanes in orderto provide higher-resolution servies. For example, on eahreturn from a system all the system may hek whetherany timer has beome ready, and �re the respetive events.As suh opportunities our at a muh higher rate than thetimer interrupts, the average resolution is muh improved(in other words, soft timers are suh a good idea spei�allybeause the resolution of lok interrupts is so outdated).However, the timing of a spei� event annot be guaran-teed, and the original low-resolution timer interrupts serveas a fallbak. Using a higher lok rate, as we suggest, anguarantee a muh smaller maximal deviation from the de-sired time.Firm timers ombine soft timers with one-shot timers [13℄.This ombination redues the need for timer interrupts, alle-viating the risk of exessive overheads. Firm timers togetherwith a preemptible kernel and suitable sheduling have beenshown to be e�etive in supporting time-sensitive applia-tions on a ommodity operating system.Priority adjustments allow a measure of ontrol over whenproesses will run, enabling the emulation of real-time ser-vies [1℄. This is essentially similar to the implementationof hard real-time support in the kernel, exept for the fatthat it is done by an external proess, and an only use theprimitives provided by the underlying ommodity system.2This spei�ally means 1000 Hz.

Finally, there are also various programming projets toimprove the responsiveness and performane of the Linuxkernel. One is the preemptible kernel path, whih has beenadopted as part of the 2.5 development kernel. It reduesinterrupt proessing lateny by allowing long kernel opera-tions to be preempted.A major di�erene between the above approahes and oursis that they either require speial APIs, make non-trivialmodi�ations to the system, or both. Suh modi�ationsannot be made by any user, and require a substantial re-view proess before they are inorporated in standard soft-ware releases (if at all). For example, one-shot timers andsoft timers have been known sine the mid '90s, but are yetto be inorporated in a major system. By ontradistin-tion, we fous on a single simple tuning knob | the lokinterrupt rate, and investigate the bene�ts and the osts ofturning it to muh higher values than ommonly done. Pre-vious work on multimedia sheduling, with the exeption of[19℄, has made no mention of the underlying system lok,and foused on designs for meeting deadline and latenyonstraints.
1.4 Preview of ResultsOur goal is to show that inreasing the lok interrupt rateis both possible and desirable. Measurements of the over-heads involved in interrupt handling and ontext swithingindiate that urrent CPUs an tolerate muh higher lokinterrupt rates than those ommon today (Setion 3). Wethen go on to demonstrate the following:� Using a higher tik rate allows the system to performmuh more aurate billing, thus giving a better dis-rimination among proesses with di�erent CPU usagelevels (Setion 4).� Using a higher tik rate also allows the system to pro-vide a ertain \best e�ort" style of real-time proess-ing, in whih appliations an obtain high-resolutiontiming measurements and alarms (as exempli�ed inFigure 1, and expanded in Setion 5). For applia-tions that use time sales that are related to humanpereption, a modest inrease in tik rate to 1000 Hzmay suÆe. Appliations that operate at smaller timesales, e.g. to monitor ertain sensors, may requiremuh higher rates and shortening of sheduling quan-tum lengths (Setion 7).We onlude that improved lok resolution | and the shorterquanta that it makes possible | should be a part of any solu-tion to the problem of sheduling soft real-time appliations,and should be taken into aount expliitly.
2. METHODOLOGY AND APPLICATIONSBefore presenting detailed measurement results, we �rstdesribe the experimental platform and introdue the appli-ations used in the measurements.
2.1 The Test PlatformMost measurements were done on a 664 MHz Pentium-III mahine, equipped with 256 MB RAM, and a 3DFXVoodoo3 graphis aelerator with 16 MB RAM that sup-ports OpenGL in hardware. In addition, we performedross-platform omparisons using mahines ranging from Pen-tium 90 to Pentium-IV 2.4 GHz. The operating system is

a 2.4.8 Linux kernel (RedHat 7.0), with the XFree86 4.1 Xserver. The same kernel was ompiled for all the di�erentarhitetures, whih may result in minor di�erenes in thegenerated ode due to arhiteture-spei� ifdefs. The de-fault lok interrupt rate is 100 Hz. We modi�ed the kernelto run at up to 20,000 Hz. The modi�ations were essen-tially straightforward, and involved extending kernel ifdefsto this range and orreting the alulation of bogomips3.The measurements were onduted using klogger, a kernellogger we developed that supports �ne-grain events. Whilethe ode is integrated into the kernel, its ativation at run-time is ontrolled by applying a speial systl all using the/pro �le system. In order to redue interferene and over-head, logged events are stored in a sizeable bu�er in memory(we typially use 4 MB), and only exported at large inter-vals. This export is performed by a daemon that wakes upevery few seonds (the interval is redued for higher lokrates to ensure that events are not lost). The implemen-tation is based on inlined ode to aess the CPU's yleounter and store the logged data. Eah event has a 20-byte header inluding a serial number and timestamp withyle resolution, followed by event-spei� data. The over-head of eah event is only a few hundred yles (we estimatethat at 100 Hz the overhead for logging is 0.63%, at 1000Hz it is 0.95%, and at 20,000 Hz 1.18%). In our use, welog all sheduling-related events: ontext swithing, real-ulation of priorities, forks, exes, and hanging the state ofproesses.
2.2 The WorkloadThe system's behavior was measured with di�erent lokrates and di�erent workloads. The workloads were om-posed of the following appliations:� A lassi interative appliation | the Emas text ed-itor. During the test the editor was used for standardtyping at a rate of about 8 haraters per seonds.� The Xine MPEG viewer, whih was used to show ashort video lip in a loop. Xine's implementation ismultithreaded, making it a suitable representative ofthis growing lass of appliations [11℄. Spei�ally,Xine uses 6 distint proesses. The two most impor-tant ones are the deoder, whih reads the data streamfrom the disk and generates frames for display, and thedisplayer, whih displays the frames at the appropriaterate. The displayer keeps trak of time using alarmswith a resolution of 4 ms. On eah alarm it hekswhether the next frame should be displayed, and if so,sends the frame to the X server. If it is too late, theframe is disarded. If it is very late, the displayer analso notify the deoder to skip ertain frames.In the experiments, audio output was sent to /dev/nullrather than to the sound ard, to allow fous on inter-ations with the X server.� Quake 3, whih represents a modern interative appli-ation (role playing game). Quake uses the X server'sDiret Rendering Infrastruture (DRI) [21℄ feature whihenables the OpenGL graphis library to aess thehardware diretly, without proxying all the requests3Bogomips are an estimate of the lok rate omputed bythe Linux kernel upon booting. The orretion preventsdivision by zero in this alulation.

through the X server. This results in some of thegraphis proessing being done by the Graphial Pro-essor Unit (GPU) on the aelerator.Another interesting feature of Quake is that it is adap-tive: it an hange its frame rate based on how muhCPU time it gets. Thus when Quake ompetes withother proesses, its frame rate will drop. In our exper-iments, when running alone it is always ready to runand an use all available CPU time.� CPU-bound proesses that serve as a bakground loadthat an absorb any number of available CPU yles,and ompete with the interative and real-time pro-esses.In addition, the system ran a host of default proesses,mostly various daemons. Of these, the most important withregard to interative proesses is obviously the X server.
3. CLOCK RESOLUTION AND

OVERHEADSA major onern regarding inreasing the lok interruptrate is the resulting inrease in overheads: with more lokinterrupts more time will be wasted on proessing them,and there may also be more ontext swithes (as will beexplained below in Setion 6), whih in turn lead to reduedahe and TLB eÆieny. This is the reason why today onlythe Alpha version of Linux employs a rate of 1024 Hz bydefault. This is ompounded by the onern that operatingsystems in general beome less eÆient on mahines withhigher hardware lok rates [20℄. We will show that theseonerns are unfounded, and a lok interrupt rate of 1000Hz or more is perfetly possible.The overhead aused by lok interrupts may be dividedinto two parts: diret overhead for running the interrupthandling routine, and indiret overhead due to redued aheand TLB eÆieny. The diret overhead an easily be mea-sured using klogger. We have performed suh measurementson a range of Pentium proessors with lok rates from 90MHz to 2.4 GHz, and on an Athlon XP1700+ at 1.467 GHzwith DDR-SDRAM memory.The results are shown in Table 1. We �nd that the over-head for interrupt proessing is dropping at a muh slowerrate than expeted aording to the CPU lok rate | infat, it is relatively stable in terms of absolute time. This isdue to an optimization in the Linux implementation of get-timeofday(), whereby overhead is redued by aessing the8253 timer hip on eah lok interrupt | rather than whengettimeofday() itself is alled | and extrapolating using theyle ounter register. This takes a onstant amount of timeand therefore adds overhead to the interrupt handling thatis not related to the CPU lok rate. Even so, the overheadis still short enough to allow many more interrupts thanare used today, up to an order of 10,000 Hz. Alternatively,by removing this optimization, the overhead of lok inter-rupt proessing an be redued onsiderably, to allow muhhigher rates. A good ompromize might be to inrease thelok interrupt rate but leave the rate at whih the 8253 isaessed at 100 Hz. This will amortize the overhead of theo�-hip aess, thus reduing the overhead per lok inter-rupt.A related issue is the overhead for running the sheduler.More lok interrupts imply more alls to the sheduler.

Default Without 8253Proessor Cyles �s Cyles �sP-90 814�180 9.02 498�466 5.53PP-200 1654�553 8.31 462�762 2.32PII-350 2342�303 6.71 306�311 0.88PIII-664 3972�462 5.98 327�487 0.49PIII-1.133 6377�602 5.64 426�914 0.38PIV-2.4 14603�436 6.11 445�550 0.19A1.467 10494�396 7.15 202�461 0.14Table 1: Interrupt proessing overheads on di�erent pro-essor generations (average�standard deviation).Context swith Cahe BW TrapProessor Cyles �s MB/s Cyles �sP-90 1871�656 20.75 28�1 153�24 1.70PP-200 1530�389 7.69 705�26 379�75 1.91PII-350 1327�331 3.80 1314�29 343�68 0.98PIII-664 1317�424 1.98 2512�32 348�163 0.52PIII-1.133 1330�441 1.18 4286�82 364�278 0.32PIV-2.4 3792�857 1.59 3016�47 1712�32 0.72A1.467 1436�477 0.98 3962�63 274�20 0.19Table 2: Other overheads on di�erent proessor generations(average�standard deviation).More serious is the fat that in Linux the sheduler over-head is proportional to the number of proesses in the readyqueue. However, this only beomes an important fator forvery large numbers of proesses. It is also partly o�set bythe fat that with more ready proesses it takes longer toomplete a sheduling epoh, and therefore priority realu-lations are done less frequently.As a side note, it is interesting to ompare lok interruptproessing overhead to other types of overhead. Ouster-hout has laimed that in general operating systems do notbeome faster as fast as hardware [20℄. We have repeatedsome of his measurements on the platforms listed above.The results (Table 2) show that the overhead for ontextswithing (measured using two proesses that exhange abyte via a pipe) takes roughly the same number of yles,regardless of CPU lok speed (exept on the P-IV, whih isusing DDR-SDRAMmemory at 266 MHz and not the newerRDRAM). It therefore does beome faster as fast as thehardware. We also found that the trap overhead (measuredby the repeated invoation of getpid) and ahe bandwidth(measured using mempy) behave similarly. This is moreoptimisti than Ousterhout's results. The di�erene may bedue to the fat that Ousterhout ompared RISC vs. CISCarhitetures, and there is also a di�erene in methodology:we measure time and yles diretly, whereas Ousterhoutbased his results on performane relative to a MirovaxIIand on estimated MIPS ratings.The indiret overhead of lok interrupt proessing anonly be assessed by measuring the total overhead in the on-text of a spei� appliation (as was done, for example, in[2℄). The appliation we used is sorting of a large array thatoupies about half of the L2 ahe (the L2 ahe was 256KB on all platforms exept for the P-II 350 whih had anL2 ahe of 512 KB). The sorting algorithm was introsort,whih is used by STL that ships with g. The sorting wasdone repeatedly, where eah iteration �rst initializes the ar-

1 process

clock interrupt rate [Hz]
1000 5000 10000 20000

ov
er

he
ad

 a
bo

ve
 1

00
H

z
[%

]

0

10

20

30 P−90

PP−200

PII−350

PIII−664
PIII−1.133

PIV−2.4

8 process

clock interrupt rate [Hz]
1000 5000 10000 20000

ov
er

he
ad

 a
bo

ve
 1

00
H

z
[%

]
0

10

20

30

P−90

PP−200

PII−350

PIII−664
PIII−1.133

PIV−2.4

Figure 2: Inrease in overhead due to inreasing the lokinterrupt rate from a base ase of 100 Hz. The basi quan-tum is 50 ms.ray randomly and then sorts it (but the same random se-quenes were used to ompare the di�erent platforms). Bymeasuring the time per iteration under di�erent onditions,we an fator out the added total overhead due to addi-tional lok interrupts (as is shown below). To also hekthe overhead aused by additional ontext swithing amongproesses, we used di�erent multiprogramming levels, run-ning 1, 2, 4, or 8 opies of the test appliation at the sametime. All this was repeated for di�erent CPU generationswith di�erent (hardware) lok rates.Assuming that the amount of work to sort the array oneis essentially �xed, measuring this time as a funtion of thelok interrupt rate will show how muh time was addeddue to overhead. Figure 2 shows this added overhead as aperentage of the total time required at 100 Hz. From thiswe see that the added overhead at 1000 Hz is negligible, andeven at 5000 Hz it is quite low. Note, however, that this isafter removing the gettimeofday() optimization, i.e. withoutaessing the 8253 hip on eah interrupt. For higher lokrates, the overhead inreases linearly, with a slope that be-omes atter with eah new proessor generation (exept forthe P-IV). Essentially the same results are obtained with amultiporgramming level of 8. Thus we an expet higherlok interrupt rates to be inreasingly aeptable.The overhead also depends on the length of the quanta,i.e. on how muh time is alloated to a proess eah time itruns. In Linux, the default alloation is 50 ms, whih trans-

1 process

clock interrupt rate [Hz]
1000 5000 10000 20000

ov
er

he
ad

 a
bo

ve
 1

00
H

z
[%

]

0

10

20

30

40

50

60

70

P−90

PP−200

PII−350
PIII−664
PIII−1.133
PIV−2.4

8 process

clock interrupt rate [Hz]
1000 5000 10000 20000

ov
er

he
ad

 a
bo

ve
 1

00
H

z
[%

]

0

10

20

30

40

50

60

70 P−90

PP−200

PII−350

PIII−664
PIII−1.133

PIV−2.4

Figure 3: Inrease in overhead due to inreasing the lokinterrupt rate from a base ase of 100 Hz. Quanta are 6lok tiks, so they beome shorter for high lok rates.lates to 5 tiks4. When raising the lok interrupt rate, thequestion is whether to stik with the alloation of 50 ms, orto redue it by de�ning the alloation in terms of tiks, soas to improve responsiveness. The results shown in Figure 2were for 50 ms. Figure 3 shows the same experiments whenusing 5 tiks, meaning that the quanta are 10 or 100 timesshorter when using 1000 Hz or 10,000 Hz interrupt rates,respetively. As shown in the graphs this leads to muhhigher overheads, espeially under higher loads, probablybeause there are many more ontext swithes. This maylimit the realisti lok interrupt rate to 1000 Hz or a bitmore, but probably not as high as 5000 Hz (in this ase theP-IV is substantially better than the other platforms, butthis is due to using performane relative to 100 Hz, whihwas worse than for other platforms for an unknown reason).Note, however, that 1000 Hz is an order of magnitude abovewhat is ommon today, and already leads to signi�ant ben-e�ts, as shown in subsequent setions; the added overheadin this ase is just a few perentage points, muh less thanthe 10{30% whih were the norm a mere deade ago [7℄.Our measurements also allow for an assessment of the rel-ative osts of diret and indiret overhead. For example,when swithing from 100 Hz to 10,000 Hz, the extra time4The atual alloation is 5 tiks plus one, to ensure that thealloation is stritly positive, as the 5 is derived from theintegral quotient of two onstants.

Billing ratio Missed quantaAppliation �100Hz �1000Hz �100Hz �1000HzEmas 1.0746 0.9468 95.96% 73.42%Xine 1.2750 1.0249 89.46% 74.81%Quake 1.0310 1.0337 54.17% 23.23%X ServerÆ 0.0202 0.9319 99.43% 64.05%CPU-bound 1.0071 1.0043 7.86% 7.83%CPU+Quake 1.0333 1.0390 26.71% 2.36%Æ When running XineTable 3: Sheduler billing suess rate.an be attributed to 9900 additional lok interrupts eahseond. By subtrating the ost of 9900 alls to the interruptproessing routine (from Table 1), we an �nd how muh ofthis extra time should be attributed to indiret overhead,that is mainly to ahe e�ets.For example, onsider the ase of a P-III 664 MHz ma-hine running a single sorting proess with 50 ms quanta.The average time to sort an array one is 12.675 ms onthe 100 Hz system, and 13.397 ms on the 10,000 Hz sys-tem. During this time the 10,000 Hz system su�ered anadditional 9900 � 0:013397 = 133 interrupts. Aording toTable 1 the overhead for eah one (without aessing the8253 hip) is 0.49 �s, so the total additional overhead was133� 0:49 = 65�s. But the di�erene in the time to sort anarray is 13397� 12675 = 722�s! Thus 722� 65 = 657�s areunaounted for, and should be attributed to ahe e�etsand sheduler overhead. In other words, 657=722 = 91% ofthe overhead is indiret, and only 9% is diret. This numberis typial of many of the on�gurations heked. The indi-ret overhead on the P-IV and Athlon mahines, and whenusing shorter quanta on all mahines, are higher, and mayeven reah 99%. This means that the �gures given in Table1 should be multiplied by at least 10 (and in some extremeases by as muh as 100) to derive the real ost of inreasingthe lok interrupt rate.
4. CLOCK RESOLUTION AND BILLINGPratially all ommodity operating systems use priority-based shedulers, and fator CPU usage into their priorityalulations. CPU usage is measured in tiks, and is basedon sampling: the proess running when a lok interruptours is billed for this tik. But the oarse granularityof tiks implies that billing may be inaurate, leading toinaurate information used by the sheduler.The relationship between atual CPU onsumption andbilling on a 100 Hz system is shown at the top of Figure 4.The X axis in these graphs is the e�etive quantum length:the exat time from when the proess is sheduled to rununtil when it is preempted or bloked. While the e�etivequantum tends to be widely distributed, billing is done inan integral numbers of tiks. In partiular, for Emas and Xthe typial quantum is very short, and they are pratiallynever billed!Using klogger, we an tabulate all the times eah applia-tion is sheduled, for how muh time, and whether or not thiswas billed. The data is summarized in Table 3. The billingratio is the time for whih an appliation was billed by thesheduler, divided by the total time atually onsumed byit during the test. The miss perentage is the perentage

xine

53700 quanta

0 1 2

0

1

2

3

100Hz

quake

21810 quanta

0 1 2 3

0

1

2

3

emacs

2634 quanta

0 1 2

0

1

2

3

X (w/xine)

8205 quanta

0 1 2

0

1

2

3

xine

73200 quanta

effective quantum [ticks]

0 10 20

bi
lli

ng
 [t

ic
ks

]

0

10

20

30

1000Hz

quake

30390 quanta

0 10 20 30

0

10

20

30

emacs

4050 quanta

0 10 20

0

10

20

30

X (w/xine)

16005 quanta

0 10 20

0

10

20

30

Figure 4: The relationship between e�etive quanta durations and how muh the proess is billed, for di�erent appliations,using a kernel running at 100 Hz and at 1000 Hz. Conentrations of data points are rendered as larger disks; otherwise thegraphs would have a lean steps shape, beause the billing (Y axis) is in whole tiks. Note also that the optimal would be adiagonal line with slope 1.of the appliation's quanta that were totally missed by thesheduler and not billed for at all.The table shows that even though very many quanta aretotally missed by the sheduler, espeially for interative ap-pliations, most appliations are atually billed with reason-able auray in the long run. This is a result of the proba-bilisti nature of the sampling. Sine most of the quanta areshorter than one lok tik, and the sheduler an only ountin omplete tik units, many of the quanta are not billed atall. But when a short quantum does happen to inlude alok interrupt, it is over billed and harged a full tik. Onaverage, these two e�ets tend to anel out, beause theprobability that a quantum inludes a tik is proportionalto its duration. The same averaging happens also for quantathat are longer than a tik: some are rounded up to the nextwhole tik, while others are rounded down.A notable exeption is the X server when running withXine (we used Xine beause it intensively uses the X server,as opposed to Quake whih uses DRI). As shown belowin Setion 6, when running at 100 Hz this appliation hasquanta that are either extremely short (around 68% of thequanta), or 0.8{0.9 of a tik (the remaining 32%). Given thedistribution of quanta, we should expet over 30% of themto inlude a tik and be ounted. But the sheduler missesover 99% of them, and only bills about 2% of the onsumedtime! This turns out to be the result of synhronization withthe operating system tiks. Spei�ally, the long quanta al-ways our after a very short quantum of a Xine proessthat was ativated by a timer alarm. This is the displayer,

whih heks whether to display the next frame. When itdeides that the time is right, it passes the frame to X. TheX server then awakes and takes a relatively long time to a-tually display the frame, but just less than a full tik. Asthe timer alarm is arried out on a tik, these long quantaalways start very soon after one tik, and omplete just be-fore the next tik. Thus, despite being nearly a tik long,they are hardly ever ounted.When running the kernel at 1000 Hz we an see that thesituation improves dramatially | the e�etive quantumlength, even for interative appliations, is typially severaltiks long, so the sheduler bills the proess an amount thatreets the atual onsumed time muh more aurately. Inpartiular, on a 1000 Hz system X is billed for over 93% ofthe time it onsumed, with the missed quanta perentagedropping to 64% | the fration of quanta that are indeedvery short.An alternative to this whole disussion is of ourse theoption to measure runtime aurately, rather than samplingon lok interrupts. This an be done easily by aessingthe CPU yle ounter [6℄. However, this involves modifyingthe operating system, whereas we are only interested in thee�ets obtainable by simple tuning of the lok interruptrate.
5. CLOCK RESOLUTION AND TIMINGInreasing the kernel's lok resolution also yields a majorbene�t in terms of the system's ability to provide auratetiming servies. Spei�ally, with a high-resolution lok it

desired frame display times

clock interrupts

10ms

ok ok okskip skip skip

tick1 tick2 tick3 tick4

frame2 frame3frame1

T0+8 1
3 T0+

2
316 T0+25 T0+

1
333 T0+

2
341 T0+50

T0+S+10 T0+S+20 T0+S+30 T0+S+40T0+S

2
3 ms16

T0

5 5
6=S ms

shift

Figure 5: Relationship of lok interrupts to frame displaytimes that auses frames to be skipped. In this example therelative shift is 5 56 ms, and frame 2 is skipped.is possible to deliver high-resolution timer interrupts. Thisis espeially signi�ant for soft real-time appliations suhas multimedia players, whih rely on timer events to keeporret time.A striking example was given in the introdution, whereit was shown that the Xine MPEG player was sometimesunable to display a movie at a rate of 60 frames per seond(whih is mandated by the MPEG standard). This is some-what surprising, beause the underlying system lok rateis 100 Hz | higher than the desired rate.The problem stems from the relative timing of the lokinterrupts and the times at whih frames are to be displayed.Xine operates aording to two rules: it does not display aframe ahead of its time, and it skips frames that are late bymore than half a frame duration. A frame will therefore bedisplayed only if the lok interrupt that auses Xine's timersignal to be delivered ours in the �rst half of a frame'ssheduled display time. In the ase of 60 frames per seondon a 100 Hz system, the smallest ommon multiple of theframe duration (100060 = 16 23 ms) and lok interval (10 ms)is 50 ms. Suh an interval is shown in Figure 5. In thisexample frame 2 will be skipped, beause interrupt 2 is a bittoo early, whereas interrupt 3 is already too late. In general,the question of whether this will indeed happen depends onthe relative shift between the sheduled frame times and thelok interrupts. A simple inspetion of the �gure indiatesthat frame 1 will be skipped if the shift (between the �rstlok interrupt and the �rst frame) is in the range of 8 13{10ms, frame 2 will be skipped for shifts in the range 5{6 23 ms,and frame 3 will be skipped for shifts in the range 1 23{3 13 ms,for a total of 5 ms out of the 10 ms between tiks. Assumingthe initial shift is random, there is therefore a 50% hane ofentering a pattern in whih a third of the frames are skipped,leading to the observed frame rate of about 40 frames perseond (in reality, though, this happens muh less than 50%of the time, beause the initial program startup tends to besynhronized with a lok tik).To hek this analysis we also tried a muh more extremease: running a movie at 50 frames per seond on a 50 Hzsystem. In this ase, either all lok interrupts fall in the �rsthalf of their respetive frames, and all frames are shown, orelse all interrupts fall in the seond half of their frames, andall are skipped. And indeed, we observed runs in whih all

Quanta/seAppliation �100Hz �1000HzEmas 22.36 34.60Xine (all proesses) 470.67 695.94Quake 187.88 273.85X Server (w/Xine) 71.35 148.21CPU-bound 28.81 38.97Table 4: Average quanta per seond ahieved by eah ap-pliation when running in isolation.CPU usageAppliation �100Hz �1000HzXine 39.42% 40.42%X Server 20.10% 20.79%idle loop 31.46% 31.58%other 9.02% 7.21%Table 5: CPU usage distribution when running Xine.frames were skipped and the sreen remained blak through-out the entire movie.The impliation of the above is that the timing servie hasto have muh �ner resolution than that of the requests. ForXine to display a movie at 60 Hz, the timing servie needsa resolution of 4 ms. This is required for the appliation tofuntion orretly, not for the atual viewing, and thereforeapplies despite the fat that this lok resolution is muhhigher than the sreen refresh rate.
6. CLOCK RESOLUTION AND THE

INTERLEAVING OF APPLICATIONSReall that we de�ne the e�etive quantum length to bethe interval from when a proess is sheduled until it is de-sheduled for some reason. On our Linux system, the allo-ation for a quantum is 50 ms plus one tik. However, aswe an see from Figures 4 and 6 (introdued below), our in-terative appliations never even approah this limit. Theyare always preempted or bloked muh sooner, often quitesoon in their �rst tik. In other words, the e�etive quan-tum length is very short. This enables the system to supportmore than 100 quanta per seond, even if the lok interruptrate is only 100 Hz, as shown in Table 4. It also explainsthe suess of soft timers [2℄.The distributions of the e�etive quantum length for thedi�erent appliations are shown in Figure 6, for 100 Hz and1000 Hz systems. An interesting observation is that whenrunning the kernel at 1000 Hz the e�etive quanta beomeeven shorter. This happens beause the system has moreopportunities to intervene and preempt a proess, either be-ause it woke up another proess that has higher priority, ordue to a timer alarm that has expired. However, the totalCPU usage does not hange signi�antly (Table 5). Thusinreasing the lok rate did not hange the amount of om-putation performed, but the way in whih it is partitionedinto quanta, and the granularity at whih the proesses areinterleaved with eah other.A spei� example is provided by Xine. One of the Xineproesses sets a 4 ms alarm, that is used to synhronizethe video stream. In a 100 Hz system, the alarm signal isonly delivered every 10 ms, beause this is the size of a tik.But when using a 1000 Hz lok the system an atually

Xine

0 10 20 30

0

0.2

0.4

0.6

0.8

1
Emacs

0 10 20 30

0

0.2

0.4

0.6

0.8

1
CPU bound (alone)

0 10 20 30 40 50 60

0

0.2

0.4

0.6

0.8

1

X (with Xine)

Milliseconds

0 10 20 30

P
ro

ba
bi

lit
y

0

0.2

0.4

0.6

0.8

1

100HZ

1000HZ

Quake

0 10 20 30

0

0.2

0.4

0.6

0.8

1
CPU bound (with quake)

0 10 20 30 40 50 60

0

0.2

0.4

0.6

0.8

1

Figure 6: Cumulative distribution plots of the e�etive quantum durations of the di�erent appliations.deliver the signals on time. As a result the maximal e�etivequanta of X and the other Xine proesses are redued to 4ms, beause they get interrupted by the Xine proess withthe 4 ms timer.Likewise, the servie reeived by CPU-bound appliationsis not independent of the interative proesses that aom-pany them. To investigate this e�et, these proesses weremeasured alone and running with Quake. When runningalone, their quanta are typially indeed an integral numberof tiks long. Most of the time the number of tiks is lessthan the full alloation, due to interruptions from systemdaemons or klogger, but a sizeable fration do ahieve thealloated 50 ms plus one tik (whih is an additional 10 msat 100 Hz, but only 1 ms at 1000 Hz). But when Quake isadded, the quanta of the CPU-bound proesses are short-ened to the same range as those of Quake, and moreover,they beome less preditable. This also leads to an inreasein the number of quanta that are missed for billing (Table3), unless the higher lok rate of 1000 Hz is used.
7. TOWARDS BEST-EFFORT SUPPORT

FOR REAL-TIMEIn this setion we set out to explore how lose a generalpurpose system an ome to supporting real-time proessesin terms of timing delays, only by tuning the lok interruptrate and reduing the alloated quanta. The metri that weuse in order to perform suh an evaluation is lateny: thedi�erene between the time in whih an alarm requested bya proess should expire, and the time in whih this proesswas atually assigned a CPU.

Without worrying about overhead (for the moment), ouraim is to show that under loads of up to 8 proesses, we anbound the lateny to be less than 1 milliseond. As thereare very many types of soft real-time appliations, we samplethe possible spae by onsidering three types of proesses:1. BLK: A proess repeatedly sets alarms without per-forming any type of omputation. Our experimentsinvolved proesses that requested an alarm signal 500times, with delays that are uniformly distributed be-tween 1 and 1000 milliseonds.2. N%: Same as BLK, with the di�erene that a proessomputed for a ertain fration (N%) of the time tillthe next alarm. Spei�ally, we heked omputationof N = 1, 2, 4, and 8% out of this interval. Note forexample that a ombination of 8 proesses omputingfor 8% of the time leads to an average of 64% CPUutilization. To hek what happens when the CPU isnot left idle, we also added CPU-bound proesses thatdo not set timers.3. CONT: Same as N% where N=100% i.e. the proessomputes ontinuously.For eah of the above 3 types, we heked ombinationsof 1, 2, 4, and 8 proesses. All the proesses that set timerswere assigned to the (POSIX) Round-Robin lass. Note thata ombination of more than one CONT-proess onstitutesthe worst-ase senario, beause | ontrary to the otherworkloads | the CPU is always busy and there are alwaysalternative proesses with similar priorities (in the Round-Robin queue) that are waiting to run.

100Hz, default time quanta (60 ms)

Microseconds

0

60
00

0

12
00

00

18
00

00

24
00

00

30
00

00

36
00

00

42
00

00

48
00

00

P
ro

ba
bi

lit
y

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 process

2 processes

4 processes

8 processes

20000Hz, 100 µs time quanta

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Figure 7: Distributions of latenies till a timer signal is delivered, for proesses that ompute ontinuously and also settimers for random intervals of up to one seond.The base system we used is the default on�guration ofLinux, with 100 Hz lok interrupt rate and a 60 ms (6 tiks)maximal quantum duration. In order to ahieve our sub-milliseond lateny goal, we ompared this with a ratheraggressive alternative: 20,000 Hz lok interrupt rate and100 �s (2 tiks) quantum (note that we are hanging twoparameters at one: both the lok resolution and the num-ber of tiks in a quantum). Theoretially, for this on�gura-tion the maximal lateny would be 100�s � 7 = 700�s < 1ms, beause even if a proess is positioned at the end of therun-queue it only needs to wait for seven other proesses torun for 100�s eah.The results shown in Figure 7 on�rm our expetations.This �gure is assoiated with the worst-ase senario of aworkload omposed solely of CONT proesses. Examiningthe results for the original 100 Hz system (left of Figure 7),we see that a single proess reeives the signal within onetik, as may be expeted. When more proesses are present,there is also a positive probability that a proess will nev-ertheless reeive the signal within a tik: 12 , 14 and 18 for2, 4 and 8 proesses, respetively. The Y-axis of the �gureshows that the atual frations were 0.53, 0.30, and 0.16 (re-spetively), slightly more than the assoiated probabilities.But, a proess may also be fored to wait for other proessesthat preede it to exhaust their quanta. This leads to thestep-like shape of the graphs, beause the wait is typiallyan integral number of tiks. The maximal wait is a fullquantum for eah of the other proesses. In the ase of 8ompeting proesses, for example, the maximum is 60 msfor eah of the other 7, for a total of 420 ms (=420,000 �s).The situation on the 20,000 Hz system is essentially thesame, exept that the time sale is muh muh shorter |the lateny is almost always less than a milliseond, as ex-peted. In other words, the high lok interrupt rate andrapid ontext swithing allow the system to deliver timersignals in a timely manner, despite having to yle throughall ompeting proesses.Table 6 shows that this is the ase for all our experiments(for brevity only seleted experiments are shown). Note thatusing the higher lok rate also provides signi�antly im-proved latenies to the experiments where proesses only

platform

P−90
PP−200

PII−350

PIII−664

PIII−1.133

PIV−2.4

A1.467

so
rt

ed
 n

um
be

rs
 p

er
 s

ec
. [

m
ill

io
ns

]

0

1

2

3

4

5

base config

extreme config

Figure 8: Throughput of the sort appliation, measured ashow many millions of numbers were sorted per seond, with8 ompeting proesses.ompute for a fration of the time till the timer event. With100 Hz even this senario sometimes auses onits, despitethe relatively low overall CPU utilization. The relatively fewlong-lateny events that remain in the high lok-rate aseare attributed to onits with system daemons that per-form disk I/O, suh as the pager. Similar e�ets have beennoted in other systems [14℄. These problems are expetedto go away in the next Linux kernel, whih is preemptive;they should not be an issue in other kernels that are alreadypreemptive (suh as Solaris).But what about overheads? As shown in Figure 3, whenrunning ontinuously omputing proesses (in that ase, asorting appliation) with a 20,000 Hz lok interrupt rateand quanta of 6 tiks, the additional overhead an reah35% on ontemporary arhitetures. The overhead for theshorter 2-tik quanta used here may be even higher. This

Proesses �100Hz �20,000HzType Number 0.9 0.95 0.99 max 0.9 0.95 0.99 maxBLK 2 5 8 11 40 13 14 21 23BLK 8 5 12 22 420 7 9 13 25CONT 2 50,003 60,003 60,004 160,006 102 103 18,468 60,448CONT 8 370,014 400,014 420,015 740,025 656 706 15,096 68,1392% 2 6 9 9,193 19,153 13 15 23 8372% 8 2,910 8,419 17,940 32,944 12 52 53 1,8098% 2 9 12,431 39,512 60,003 14 19 53 3,7978% 8 40,003 60,005 130,006 294,291 53 53 54 37,3284% 1+2CPU 50,003 50,003 50,004 50,005 55 56 200 2564% 1+8CPU 50,003 50,003 170,014 280,010 56 57 59 856Table 6: Tails of distributions of latenies to deliver timer signals in di�erent experimental settings. Table values are lateniesin miroseonds, for various perentiles of the distribution.seems like an expensive and unaeptable prie to pay. How-ever, if we examine the appliation throughput on di�erentplatforms the piture is not so bleak. Figure 8 ompares theahieved throughput, as measured by numbers sorted perseond, for two on�gurations. The base on�guration uses100 Hz interrupts and 60 ms quanta. The extreme on�gu-ration uses 20,000 Hz interrupts and 100 �s quanta. Whileperformane dramatially drops when omparing the twoon�gurations on the same platform, the extreme on�gu-ration of eah platform still typially outperforms the baseon�guration on the previous platform. For example, PIII-664 running the base on�guration manages to sort about2,559,000 numbers per seond, while the PIII-1.133 with theextreme on�guration sorts about 3,136,000 numbers perseond (the P-IV onsistently performs worse than previousgenerations). This is an optimisti result whih means thatin order to get the same or even improve the performaneof an existing platform, while ahieving sub-milliseond la-teny, all one has to do is upgrade to the next generation.This is usually muh heaper than purhasing the industrialhard real-time alternative.
8. CONCLUSIONS AND FUTURE WORKGeneral purpose systems, suh as Linux and Windows,are already often used for soft real-time appliations suha viewing video, playing musi, or burning CDs. Otherless ommon appliations inlude various ontrol funtions,ranging from laboratory experiment ontrol to traÆ-lightontrol. Suh appliations are not ritial to the degree thatthey require a full-edged real-time system. However, theymay fae problems on a typial ommodity system due tothe lak of adequate support for high-resolution timing ser-vies. A speial ase is \timeline gaps", where the proessoris totally unavailable for a relatively long time [14℄.Various solutions have been proposed for this problem,typially based on expliit support for timing funtions. Inpartiular, very good results are obtained by using soft timersor one-shot timers. The idea there is to hange the kernel'stiming mehanism from the urrent periodi time samplingto event-based time sampling. However, sine this event-based approah alls for a massive redesign of a major ker-nel subsystem, it has remained more of an aademi exeriseand has yet to make it into the world of mainstream oper-ating systems.The goal of this paper is to hek the degree to whihexisting systems an provide reasonable soft real-time ser-

vies, spei�ally for interative appliations, just by lever-aging the very fast hardware that is now routinely available,without any sophistiated modi�ations to the system. Themehanism is simply to inrease the frequeny of the pe-riodi timer sampling. We show that this solution | al-though su�ering from non-negligible overhead | is a viablesolution on today's ultra-fast CPUs. We also show that im-plementing this solution in mainstream operating systems isas trivial as turning a tuning knob, possibly even at systemruntime.We started with the observation that there is a large andgrowing gap between the CPU lok rates, whih grow ex-ponentially, and the system lok interrupt rates, whih arerather stable at 100 Hz. We showed that by inreasing thelok interrupt rate by a mere order of magnitude, to 1000Hz, one ahieves signi�ant advantages in terms of timingand billing servies, while keeping the overheads aeptablylow. The modi�ations required to the system are rathertrivial: to inrease the lok interrupt rate, and redue thedefault quantum length. As multimedia appliations typi-ally operate in this range (i.e. with timers of several mil-liseonds), suh an inrease may be enough to satisfy thisimportant lass of appliations. A similar observation hasbeen made by Nieh and Lam with regard to the shedulingof multimedia appliations in the SMART sheduler [19℄. Arate of 1000 Hz is used in the experimental Linux 2.5 kernel,and also on personal systems of some kernel hakers [12℄.For more demanding appliations, we experimented withraising the lok interrupt rate up to 20,000 Hz, and foundthat by doing so appliations are guaranteed to reeive timersignals within one milliseond of the orret times with highprobability, even under loaded onditions.In addition to suggesting that 1000 Hz be used as theminimal default lok rate, we also propose that the HZvalue and the quantum length be settable parameters, ratherthan ompiled onstants. This will enable users of systemsthat are dediated to a time-sensitive task to on�gure themso as to bound the lateny, by shortening the quantum sothat when multiplied by the expeted number of proessesin the system the produt is less than the desired bound.Of ourse, this funtionality has to be traded o� with theoverhead it entails. Suh detailed onsiderations an onlybe made by knowledgeable users on a ase-by-ase basis.Even so, this is expeted to be ost e�etive relative to thealternative of prouring a hard real-time system.The last missing piee is the orret prioritization of ap-

pliations under heavy load onditions. The problem is thatmodern interative appliations may use quite a lot of CPUpower to generate realisti graphis and video in real-time,and may therefore be hard to distinguish from low prior-ity CPU-bound appliations. This is espeially hard whenfaed with multi-threaded appliations (like Xine), or if ap-pliations are adaptive (as Quake is) and an always useadditional ompute power to improve their output. Our fu-ture work therefore deals with alternative mehanisms forthe identi�ation of interative proesses. The mehanismswe are onsidering involve traking the interations of appli-ations with the X server, and thus with input and outputdevies that represent the loal user [9℄.
AcknowledgementsMany thanks are due to Danny Braniss and Tomer Klainerfor providing aess to various platforms and helping makethem work.
9. REFERENCES[1℄ B. Adelberg, H. Garia-Molina, and B. Kao,\Emulating soft real-time sheduling using traditionaloperating system shedulers". In Real-Time SystemSymp., Ot 1994.[2℄ M. Aron and P. Drushel, \Soft timers: eÆientmiroseond software timer support for networkproessing". ACM Trans. Comput. Syst. 18(3),pp. 197{228, Aug 2000.[3℄ M. Barabanov and V. Yodaiken, \Introduingreal-time Linux". Linux Journal 34, Feb 1997.http://www.linuxjournal.om/artile.php?sid=0232.[4℄ M. Bek, H. Bohme, M. Dziadzka, U. Kunitz,R. Magnus, and D. Verworner, Linux KernelInternals. Addison-Wesley, 2nd ed., 1998.[5℄ D. P. Bovet and M. Cesati, Understanding the LinuxKernel. O'Reilly, 2001.[6℄ J. B. Chen, Y. Endo, K. Chan, D. Mazi�eres, A. Dias,M. Seltzer, and M. D. Smith, \The measuredperformane of personal omputer operating systems".ACM Trans. Comput. Syst. 14(1), pp. 3{40, Feb 1996.[7℄ R. T. Dimpsey and R. K. Iyer, \Modeling andmeasuring multiprogramming and system overheadson a shared memory multiproessor: ase study". J.Parallel & Distributed Comput. 12(4), pp. 402{414,Aug 1991.[8℄ K. J. Duda and D. R. Cheriton,\Borrowed-virtual-time (BVT) sheduling: supportinglateny-sensitive threads in a general-purposesheduler". In 17th Symp. Operating SystemsPriniples, pp. 261{276, De 1999.[9℄ Y. Etsion, D. Tsafrir, and D. G. Feitelson,Human-Centered Sheduling of Interative andMultimedia Appliationson a Loaded Desktop. Tehnial Report, HebrewUniversity, Mar 2003.[10℄ K. Flautner and T. Mudge, \Vertigo: automatiperformane-setting for Linux". In 5th Symp.Operating Systems Design & Implementation,pp. 105{116, De 2002.[11℄ K. Flautner, R. Uhlig, S. Reinhardt, and T. Mudge,\Thread-level parallelism and interative performaneof desktop appliations". In 9th Intl. Conf. Arhitet.

Support for Prog. Lang. & Operating Syst.,pp. 129{138, Nov 2000.[12℄ FreeBSD Doumentation Server, Thread on \lokgranularity (kernel option HZ)". URLhttp://dos.freebsd.org/mail/arhive/2002/freebsd-hakers/20020203.freebsd-hakers.html, Feb2002.[13℄ A. Goel, L. Abeni, C. Krasi, J. Snow, andJ. Walpole, \Supporting time-sensitive appliations ona ommodity OS". In 5th Symp. Operating SystemsDesign & Implementation, pp. 165{180, De 2002.[14℄ J. Gwinn, \Some measurements of timeline gaps inVAX/VMS". Operating Syst. Rev. 28(2), pp. 92{96,Apr 1994.[15℄ I. Leslie, D. MAuley, R. Blak, T. Rosoe, P. Barham,D. Evers, R. Fairbairns, and E. Hyden, \The designand implementation of an operating system to supportdistributed multimedia appliations". IEEE J. SeletAreas in Commun. 14(7), pp. 1280{1297, Sep 1996.[16℄ J. Lions, Lions' Commentary on UNIX 6th Edition,with Soure Code. Annabooks, 1996.[17℄ J. Mauro and R. MDougall, Solaris Internals.Prentie Hall, 2001.[18℄ J. Nieh, J. G. Hanko, J. D. Northutt, andG. A. Wall, \SVR4 UNIX sheduler unaeptable formultimedia appliations". In 4th Int'l WorkshopNetwork & Operating System Support for DigitalAudio and Video, Nov 1993.[19℄ J. Nieh and M. S. Lam, \The design, implementationand evaluation of SMART: a sheduler for multimediaappliations". In 16th Symp. Operating SystemsPriniples, pp. 184{197, Ot 1997.[20℄ J. K. Ousterhout, \Why aren't operating systemsgetting faster as fast as hardware?". In USENIXSummer Conf., pp. 247{256, Jun 1990.[21℄ B. Paul, \Introdution to the Diret RenderingInfrastruture".http://dri.soureforge.net/do/DRIintro.html, August2000.[22℄ M. A. Rau and E. Smirni, \Adaptive CPU shedulingpoliies for mixed multimedia and best-e�ortworkloads". In Modeling, Anal. & Simulation ofComput. & Teleomm. Syst., pp. 252{261, Ot 1999.[23℄ R. Ronen, A. Mendelson, K. Lai, S-L. Lu, F. Pollak,and J. P. Shen, \Coming hallenges inmiroarhiteture and arhiteture". Pro. IEEE89(3), pp. 325{340, Mar 2001.[24℄ D. A. Solomon and M. E. Russinovih, InsideMirosoft Windows 2000. Mirosoft Press, 3rd ed.,2000.[25℄ B. Srinivasan, S. Pather, R. Hill, F. Ansari, andD. Niehaus, \A �rm real-time system implementationusing ommerial o�-the-shelf hardware and freesoftware". In 4th IEEE Real-Time Tehnology & App.Symp., pp. 112{119, Jun 1998.[26℄ D. Tyrell, K. Severson, A. B. Perlman, B. Brikle, andC. Vaningen-Dunn, \Rail passenger equipmentrashworthiness testing requirements andimplementation". In Intl. Mehanial EngineeringCongress & Exposition, Nov 2000.

