
Barrier Synhronization on a Loaded SMPusing Two-Phase Waiting AlgorithmsDan Tsafrir and Dror G. FeitelsonShool of Computer Siene and EngineeringThe Hebrew University, 91904 Jerusalem, IsraelAbstratLittle work has been done on the performane of barriersynhronization using two-phase bloking, as the ommonwisdom is that it is useless to spin if the total number ofthreads in the system exeeds the number of proessors. Wehallenge this and show that it may be bene�ial to spin-wait even if the number of threads is up to double the num-ber of proessors, espeially if the waiting time is at leasttwie the ontext swith overhead (rather than being equalto it). We also haraterize the alternating synhronizationpattern that appliations based on barriers tend to fall into,whih is quite different from the patterns typially assumedin theoretial analyses.1 IntrodutionSymmetri multiproessors (SMPs) are the most om-mon parallel mahines on the market [2℄. The two mainsynhronization onstruts used by parallel appliations onsuh mahines are loks and barriers. Loks are used toprotet shared data strutures in isolation. Barriers are usedto delimit phases of the omputation, and ensure that all thedata strutures from the previous phase are up to date.The nature of synhronization is that proesses may haveto wait for eah other. This an be done in either of twoways: a proess an spin, using the CPU to repeatedly hekthe synhronization ondition, or it an blok, inurring theontext swith overhead (denoted CS) but freeing the CPUfor the bene�t of other proesses. This hoie is very impor-tant, as synhronization overhead is a major ause of perfor-mane degradation; one study of the SPLASH2 benhmarksfound that some appliations spend half of their time wait-ing for synhronization [5℄, while another found that someappliations spend a third of their time on ontext swithingif they always hoose to blok [7℄.A promising solution to this dilemma is to use two-phasebloking, in whih the proess spins for a ertain time andthen bloks if synhronization is not yet ahieved [9℄. Whenwaiting for a lok, spinning for a time equal to CS is 2-ompetitive, meaning that it results in an exeution that isat most a fator of two from that of an optimal exeution

in whih wait times are known in advane [6℄. This isthe best possible result for a deterministi algorithm, buta randomized algorithm an ahieve a ompetitive fator ofee�1 � 1:58. The advantage of two-phase bloking has alsobeen demonstrated experimentally [7℄.Different synhronization mehanisms, however, havedifferent wait-time distributions. Spei�ally, assumingPoisson arrivals, the expeted wait times at loks are expo-nentially distributed, whereas the wait times at a barrier areuniformly distributed. Given that the distribution is known,better spin times an be found. Spei�ally, for loks (ex-ponential distribution) spinning for ln(e � 1) � 0:54 ofCS leads to a ompetitive fator of ee�1 , and for barriers(uniform distribution) spinning for 12 �p5� 1� � 0:62 thatoverhead results in a ompetitive ratio of 12 �p5 + 1� �1:62 [8℄. However, when the number of proesses exeedsthe number of proessors, spinning was onluded not to beuseful for barriers, and immediate bloking was preferred.An important fator that is laking in previous work istaking a global view of the system when it is overloaded.For example, the laim that waiting for the duration of CSbefore bloking is 2-ompetitive is based on a loal viewof synhronization, taking one operation at a time. But in areal system, the deision to spin or blokmay affet the evo-lution of the omputation, and espeially the waiting time atsubsequent synhronization events. Consider a simple ex-ample of two idential jobs with two proesses eah, on atwo proessor system. If initially one proess of eah jobis running, the loally optimal algorithm will always blok.But a globally optimal algorithmwill only blok the proessof one job, ausing the system to move to a state in whihit always sheduled both proesses of the same job, ratherthan always sheduling one proess from eah job. Thusinstead of paying the prie of a ontext swith for eah syn-hronization, it beomes essentially free.Moreover, it turns out that assumptions suh as Poissonarrivals to a barrier do not neessarily hold in pratie. Oursimulations show that appliations using barrier synhro-nization tend to fall into an �alternating synhronization�pattern, in whih the job's proesses are partitioned into twogroups that run alternatively. Due to this pattern, it is some-times bene�ial to spin even if the total number of proesses



in the system exeeds the number of proessors. Indeed,by extending the spin duration, it is sometimes possible tonudge the system into gang sheduling all the proesses of aertain appliation, leading to muh more ef�ient synhro-nization than that ahieved by always bloking.2 Methodology2.1 The SimulatorThroughout this work we use an event driven SMP sim-ulator. The simulator distinguishes between synhroniz-ing jobs, whih perform barrier synhronizations, and non-synhronizing jobs, whih provide a bakdrop of load onthe individual proessors. Synhronizing jobs may varyin many parameters, among whih are size (bounded by pwhih is typially 32), and granularity (explained below). A�xed-spinning waiting algorithm is used to perform barrier-synhronization (unless stated otherwise, the maximal spinduration used is CS). A thread an be in one of three states:ready, running, or bloked (waiting for a synhronization).Spinning is, of ourse, done in running state.Typial values used in the simulations are a quantum of100 steps, and a ontext swith overhead (CS) of 6 steps.The latter is probably too long. However, aside from beingonsiderably shorter than a quantum duration, its only im-portane lies in the manner in whih we lassify granularityof jobs. Cheking larger values for the quantum, in order toimprove the resolution, showed pratially idential results.All omputation intervals of threads are normally dis-tributed (i.e. they are not deterministi). Granularity is ex-pressed based on the mean and standard deviation of thisdistribution. LetXJ denote a random-variable representingthe duration of omputation intervals between onseutivebarriers of threads from job J . We lassify J as being �ne-grained if around 90% of XJ 's values are smaller than CS.J is ategorized as medium-grained if around 90% ofXJ 'svalues are smaller than 5CS. Otherwise, J is onsidered tobe oarse-grained.The simulator is event based. Only one event is allowedper proessor on a given time step. Eah transition betweenthe various thread states is assoiated with an event. In ad-dition, events are used to denote the end of a omputationphase in synhronizing threads, and for the implementationof spinning. The ontention due to synhronization was notsimulated. This is a reasonable simpli�ation when assum-ing that a barrier ompletion time (with ontention) is stillshorter than CS.Eah simulation starts by reading a on�guration �lewhih desribes the various SMP parameters (p, CS et.)and the parameters of the jobs it exeutes (e.g. granular-ity, sizes, number of barriers, et.). The simulator's outputdesribes how well the synhronization poliy performed.

2.2 The SSR MetriIn order to evaluate the advisability of spinning, we willuse the suessful-spin-rate (SSR). This metri is de�nedto be the perentage of ases in whih a proess sueeds tosynhronizewhile spinning, exluding the last one to arrive.More formally it is: SSR = Pt2S suessfulSpin(t)Pt2S totalSpin(t) � 100where S is the set of all synhronizing threads in thesimulation, totalSpin(t) is the number of times threadt started to spin when waiting for synhronization, andsuessfulSpin(t) is the number of times synhronizationwas ahieved before t bloked. Note that this does not in-lude the times t was the last thread of its job to reah a bar-rier, sine no spinning was performed. As a rule of thumb, ifthe SSR is smaller than 50%, we'll onsider spinning as notworth while, beause threads failed more than sueeded.We remark that SSR is not a perfet metri and shouldbe used arefully. For example, if the always-spin waitingalgorithm is used, jobs exeuting on a preemptive sheduler(whih is what we use in this work) will always ahieve anSSR of 100%. Thus we also use elapsed time and speedupin parts of this work.2.3 The Linux ShedulerThe performane of synhronizing jobs also dependson the sheduler, whih hooses the order in whih readythreads are alloated to proessors. Our simulator inludesa rather detailed emulation of the Linux sheduler. Linuxis POSIX ompliant, and supports three poliies: FIFO,Round-Robin (RR), and �OTHER�. OTHER is not de�nedby POSIX, but its presene is mandated, and it is the de-fault. In Linux it is a priority-based preemptive sheduler.Additional details are given in Appendix A.As the priority funtion tends to give higher priority tothreads that run less, it is expeted to have a strong ef-fet on synhronizing threads that spend muh of their timebloked waiting for synhronization. However, it is easierto understand the behavior of the system under RR shedul-ing. We therefore performed extensive simulations of allsix ombinations of the two sheduling shemes (RR andOTHER) and three workloads:� A single synhronizing job against a bakdrop of non-synhronizing threads that just get in the way.� A homogeneous set of idential synhronizing jobs.� A heterogeneous mixture of synhronizing jobs withdifferent sizes and different granularities.Analyzing the �rst workloads was instrumental in gain-ing insights that helped understand the latter, more realistiworkload. As tens of thousands of simulation runs were per-formed, the following setions only present the main �nd-ings. A muh more detailed desription an be found in[11℄.



3 Alternating SynhronizationThe phenomenon of alternating synhronization is themain result disovered in the RR simulations. It explainsthe �nding that many of the simulations led to similar per-formane, insensitive of the jobs size and (to some degree)of the system load. For example, simulations of homoge-neous sets of �ne and medium grain jobs onverged to anSSR in the range of 25-42% (Figure 1). The exat numberdepended on the job sizes and granularity, but not on howmany jobs were ompeting with eah other!The answer to this puzzle is that eah job's threads be-ome partitioned into two sets, that are either running simul-taneously or ontiguous in the ready queue. This pattern isreated by itself, within a short time, even if initially theorder of threads in the ready queue is randomized.The reason this pattern is reated is as follows (Figure 2):Consider a �ne-grain job omposed of s threads, runningon a p-proessor SMP with a total load of n threads. As-suming all threads are randomly ordered at the beginning,the probability of all s threads being alloated proessors atthe outset isQs�1i=0 p�in�i , whih tends to zero for high loads.Thus only a subset of the job's threads will run initially. Asthey are �ne-grained, they will omplete their �rst iteration,spin for a while, and blok. This senario will be repeatedseveral times, as more threads get sheduled, leading to thestair-like pattern at the left of Figure 2. But when the lastthread arrives, the job is partitioned into two: those threadsthat have previously bloked move in unison to the end ofthe ready queue, whereas those that are spinning ahievesynhronization and ontinue for the next iteration. Whenthis seond subset reahes the next barrier, they will all spinand blok together, beause the �rst subset is still in theready queue. Hene we �nd a pattern of alternating syn-hronization, where the synhronization is ahieved by twosubsets of threads alternatively. Note, however, that the sub-sets are not �xed, and that threads may pass from one to theother if they are not all sheduled at lose proximity.The onsequenes of alternating synhronizationWe've seen that jobs with relatively small granularity , havea tendeny to fall into an alternating synhronization pat-tern. For this type of omputation the SSR has a 50% upperbound. This is true beause the best we an expet from athread is to suessfully spin at the �rst barrier it reahes(ausing the bloked threads in its job to move to the readyqueue) and fail spinning at the next barrier (thus enteringbloked state). We get that for every suessful spin a threadperforms, it also performs an unsuessful one.An immediate result of this senario is dismal CPU uti-lization. As spinning sueeds not more than half the time,it fails more than half the time. That means that at least onein every two barriers inludes the ost of unsuessful spin-
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Figure 2. Distribution of states of 10-thread-job show-ing how it enters into an alternating synhronization pattern.From a homogeneous simulation of 19 medium grain jobs.ning and subsequent bloking. Assuming that the spinningtime is set to be equal to CS, this means that eah barrierosts a ontext swith. If the granularity is very �ne, i.e.the omputation is shorter than this overhead, the effetiveCPU utilization is less than 50%.Another interesting feature of the simulations used tostudy the alternating synhronization pattern is that this pat-tern does not our immediately as the load is inreased.Rather, there is as �intermediate load� range where the sys-tem is already full (more than 32 threads), but the SSR isstill higher than 50% (Figure 1). This ontradits the argu-ment made above that the SSR is bounded by 50%. Thisphenomenon, to be further disussed below, indiates thatthe simple solution of using an �always blok� algorithm toredue the overhead of useless spinning may not be advis-able, at least in this load range.4 Spin Duration and Wakeup ShemeThe simulations used to eluidate the alternating syn-hronization pattern were based on an RR sheduler. Thissimpli�ed matters beause threads retain their order in



the ready queue. But prodution systems typially use apriority-based sheduler, in whih threads are entered intothe ready queue aording to their priority. Priority, in turn,is typially based on CPU usage (or lak thereof), implyingthat �ne-grain threads may be plaed higher than oarse-grain threads. The results presented from here on are basedon using the Linux sheduler, as desribed in Appendix A.4.1 Conditions for Transition PointThe �rst simulations done with the Linux sheduler, inwhih a single synhronizing job omposed of 11 threadsran against a bakdrop of non-synhronizing threads, re-vealed an interesting pattern: for �ne grain synhronization,the SSR was around 50%most of the time, but whenever thetotal number of threads in the system was a multiple of 16 itshot up to near 100% (Figure 3). The maximal spin durationused in these simulations was CS.A detailed analysis of what happens at these loads re-vealed the following. Initially, the synhronizing job did notdo very well. Its threads spent muh of their time bloked,and typially did not manage to pass more than a single bar-rier. However, at some point in the simulation, everythingsuddenly fell into plae: all the job's threads were shed-uled at the same time, and they therefore ompleted mul-tiple barriers in rapid suession. This aused them to a-umulate CPU time, and their priority dropped. They werethen all preempted more or less together in favor of othernon-synhronizing threads, and moved to the ready queue.This pattern of interspersed intervals of work and waitingin the ready queue repeated until the end of the simulation(Figure 4). We all the point in the simulation at whih thejob started to work ef�iently the transition point.The harateristis of the Linux sheduler are appar-ent in the job's behavior before the transition point. LetJ denote the synhronizing job. Let S denote the na-tive proessors set of J's threads. Initially, S is usuallysmall. J's omputation pattern is a variation of alternat-ing synhronization on S: Sine J's threads enjoy theSAME ADDRESS SPACE BONUS (see Appendix A.), thenwhen one of them bloks, there is high probability thatanother thread from J will immediately be hosen to re-plae it. Towards the end of the epoh the priorities ofthe non synhronizing threads are very low (by de�nition)while the priorities of their synhronizing ounterparts arerelatively high (sine they spent a lot of time in blokedmode). This differene allows J's threads to overome thePROC CHANGE PENALTY fator and preempt low prior-ity threads even when migration is involved. ConsequentlyS grows until jJ j = jSj ausing J to perform rapid al-ternating synhronization where every thread from an un-bloked group is immediately assigned a proessor. Thesheduler soon �nds itself in a situation in whih it has noready proess with a positive ounter value. It then starts
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Figure 3. SSRahieved by an 11-threadsynhronizing job run-ning against a bakdropof non synhronizingthreads and spinning forthe duration of CS. SSRis very high wheneverthe load is a multiple of16.
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Figure 4. The distribution of the states of a job's threadshanges dramatially after the transition point, when theysuddenly manage to run together and then maintain this pat-tern. From a simulation presented in Figure 3 assoiatedwith load of 96 threads (bakdrop of 85 non syn threads).a new epoh, and re-initializes the ounters of all threads.The non-synhronizing threads thus suddenly gain in pri-ority (like Popeye after eating a an of spinah [10℄), andsoon annot be preempted any more by J's threads � untiltowards the end of the new epoh.The immediate question that follows is why does Jontinue to perform alternating synhronization even whenjJ j = jSj as eah of its threads has its own �dediated� pro-essor. The answer is simple: spinning for the duration ofCS is atually not enough. Consider a proess that is the lastto arrive at barrier bi, and unbloks its peers. It then om-putes for an expeted time of �, reahes the next barrierbi+1, and spins for time CS before giving up. Its blokedpeers, in the mean time, take CS time to start running (on-text swith that alloates them a proessor), and then alsoompute for an expeted time of � until they reah bi+1.They therefore reah bi+1 more or less at the same time theoriginal thread gives up and deides to blok.However, on rare oasions it happens that the two alter-nating sets reah bi+1 in the orret order: �rst all newom-ers reah the barrier, and then all spinners deide whetherto blok. As all newommers have already arrived, theydeide not to blok, and from then on all the treads are syn-hronized� transition has been ahieved.Finally, we need to explain why this only happens whenthe total number of threads is a multiple of 16. The reason isthat 16 is the only divisor of 32 (=system size) whih is big-



ger than jJ j (=11). This allows the threads in the system tobe divided into groups that leanly partition the system. Forother numbers, there are always extra non-synhronizingthreads that are left over and break the pattern for the syn-hronizing ones and so even if transition is ahieved, it lastsonly during the epoh in whih it was established.4.2 Using a Longer Maximal Spin DurationNaturally, if transition ourred only within spei�loads, it wouldn't be interesting. But in reality it illuminatesthe ondition needed to ahieve omplete synhronizationregardless of the load: inrease the spin-waiting durationbeyond a ontext swith overhead!Simulations using a spinning duration of slightly morethan a ontext swith overhead (denoted CS+) show an im-provement, but not an optimal improvement. The reasonwas traed to the fat that even this is not enough. Considera senario in whih a thread reahes a barrier and unbloksone of its peers, but that peer thread had only just reentlydeided to blok. In this situation, the peer thread is still inthe proess of being bloked, and an therefore not start theunbloking proess yet. Thus our thread must �rst wait forit to blok, and then to unblok, for a total time that is morethan twie the ontext swith overhead (denoted 2CS+).Figure 5 shows that enlarging the maximal spin dura-tion has indeed transformed all load onditions into the peakonditions seen initially. Note that for medium grain jobs,using 2CS+ makes the differene between preferring imme-diate bloking to preferring spinning.4.3 Effet of the Wakeup ShemeWhen a job ompletes a barrier, the priority based shed-uler heks whether onsequently awakened threads (if ex-ist) an be immediately sheduled to exeute (possibly bypreempting lower priority threads). It is therefore faedwith the problem of determining whih awakened threadwould be assigned to whih proessor. The algorithm thatmakes this deision is alled the wakeup-sheme. Thequestion that follows is how muh omputational resouresshould a sheduler invest in this deision. Our analysis ofthe Linux sheduler unovered that unfortunately, it doesn'tinvest enough: the sheduler iterates through the awakenedthreads and tries to �nd the �best� proessor for eah suhthread; however eah iteration has no reolletion of previ-ous iterations' deisions and therefore two or more (evenall) awakened threads may be assigned to the same pro-essor! (see Appendix A. for details). We ompared thissheme with a orreted sheme that avoids this pitfall (de-noted AP), and with a more sophistiated (probably impra-tial) sheme that takes a global view of pairing threads withproessors [11, hapter 6℄ (denotedGV).
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Figure 6. The SSRahieved by different jobtypes exeuting simul-taneously in heteroge-neous mix, using a spinduration of 2CS+. Re-sults for four differentrandom seeds are shown.number of proessors in the system.Based on this, we would expet that for a heterogeneousjob mix the priority sheduler will again ome into play.Given jobs with different granularities, the �ne-grain onesmay be expeted to suffer more from bloking, as eah syn-hronization event is amortized by less useful omputation.The threads in these jobs will then be given a higher prior-ity, whih would enable them to make up for the loss. Theywill not get above 90% SSR as when running alone, but theyshould do better than when all ompeting threads are identi-al. The simulation results indeed orroborate these expe-tations (Figure 6). For example, the system load that anbe tolerated while still maintaining an SSR above 50% for�ne-grain jobs sometimes reahes three times the numberof proessors in the system. The average extra number ofthreads tolerated under different onditions (like jobs' num-ber, granularity and size) is 52.2�19.1 and 24�5.6 for �ne andmedium grain jobs, respetively.5.2 Spin vs. AlwaysBlokSo far, most of our work has been onerned with un-derstanding the behavior of spinning jobs, and with �ndingonditions under whih the SSR is improved. In this setionwe �nally ompare our spinning algorithms with the obvi-ous alternative of always bloking as suggested by others.We do that by using the atual ompletion-time as a metri,rather than the SSR.Sample results shown in Figure 7 and Figure 8 on�rmthat spinning is preferable to bloking, at least within theintermediate load. Figure 8 shows that lengthening the spinduration beyond CS plays a minor role within job mixesthat don't ontain non-synhronizing threads (as all spin du-rations produed similar results). The major fator in thesemixes is atually idle proessors. These exist due to blokedthreads whih reate a gap between the total load and the ef-fetive load (number of runnable threads).5.3 Effet of Mahine SizeThe �nal point we will disuss is what happens whenwe inrease the mahine's size (Figure 9). Evidently, theintermediate range in whih it is preferable to spin shrinksa bit. Nevertheless, for larger mahines in the magnitudeof 128 and 256 proessors, it's lear that spinning will still

ahieve better performane then bloking while the load issmaller than 1.8 times the number of proessors.6 Disussion and ConlusionsOur goals in this researh were to gain a better under-standing of parallel barrier-based appliations operating ina multitasking environment, and hek the impliations ofhigh loads on suh appliations. We hope these understand-ings will serve in the design and implementation of barriersynhronization algorithms.A main ontribution of this work is identifying that in theontext of barrier synhronization, load should be a dom-inant fator in the deision of whether to spin or blok.Most of our empirial results have shown that when the to-tal number of threads in the system exeeds twie the num-ber of proessors, most spins will fail and therefore are bestavoided. On the other hand, in the intermediate load range,namely when the surplus in threads is smaller than the num-ber of proessors, spinning an be highly bene�ial.Another requirement for suessful spinning is doing itfor the right time. We have shown that the very popu-lar �xed duration of spinning for the overhead of a on-text swith is not enough for �ne grain parallel jobs at-tempting to omplete a barrier. Indeed, this duration givesan awakened thread enough time to resume its exeution.But, it denies the possibility to atually omplete the shortomputation phase and reah (in time) the synhronizationpoint at whih its peer threads are waiting (while spinning).Our �ndings indiate that a longer duration, of spinning forsomewhat more than twie the ontext swith overhead, isrequired. This duration maximizes the probability that allthe threads of a job exeute simultaneously, leading to re-dued ontext swithes, and to atual spin times that aremuh smaller than the maximum. This is similar to the re-sult of Arpai-Dusseau et al. [1℄ who have shown that in aluster of workstations spinning for a duration �ve times theontext swith overhead is optimal.Another important ontribution of this work is the identi-�ation of the alternating synhronization pattern: Whenjobs do not manage to synhronize, they tend to fall intothis omputation pattern, in whih their threads form twogroups. When one group is omputing, the other is eitherbloked or ready. Almost all our �ndings are related to andan be explained based on this phenomenon. This refutes
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Figure 9. Results formixes similar to thosedesribed in Figure 8 us-ing 2CS+ as maximalspin duration and ex-euting on larger sys-tems. The x axis showsthe number of threadsrelative to the mahinesize, rather than absolutenumbers.the ommon assumption that the ourrene of synhro-nization events obeys some time invariant anonial prob-ability distribution (e.g. the Poisson arrivals of [8℄).The importane of alternate synhronization is evidentwhen onsidering the effet of granularity on spin suess.All the positive results regarding spinning are for �ne-grain, or sometimes medium-grain jobs; we would likeoarse grain jobs not to spin. But in general the granular-ity of a job is not known in advane, and a bad deisionmay ause a loaded system to waste many yles on hope-less spinning. It is therefore reasonable to onsider some

sort of granularity lassi�ation mehanism. But due tothe prevalene of the alternate synhronization pattern, us-ing the near past as an indiation for the future (as in thevariable-ompetitive-algorithms presented in [7℄) is not agood option: before the transition point failures are om-mon, and the transition annot be antiipated based on pre-vious suesses. A possible alternative to these methodsis for the barrier mehanism to maintain (for eah thread)a diret measure of the elapsed time between its few reentsynhronization trials (within the same quantum!). This anbe done relatively ef�iently using hardware devies suh asthe yle ounter on Pentium proessors [4℄.An important observation deriving from all the above isthat barriers are quite different from loks. In the on-text of (mutex) lok synhronization, Karlin et al. [7℄ haveonsidered spinning as worth while only when the lok isurrently held by a running thread. But in barriers, whena thread of a �ne-grain job reahes a synhronization point,its very own arrival probablymeans that the awaited threads(in the onseutive synhronization point) are now beingsheduled to run. The alternating synhronization ompu-tation pattern implies that the pratial meaning of follow-ing the poliy suggested by Karlin et al. (in barrier ontext)would be to always blok. This is ontrary to our �ndingsthat within the intermediate load, always blok is inferior tothe �xed spinning poliy.Finally, our work on implementation of barriers alsoexposed an issue related to the underlying sheduler.When the last thread of a parallel job ompletes a barrier,many other threads beome unbloked at one. The shed-uler then heks whether they an be sheduled to run atone. It turns out that while the Linux (2.4) sheduler triesto �nd the �best� proessor for eah suh thread, it may endup assigning all of them to the same proessor! Our experi-ments show that a simple improvement, whih prevents thesheduler from stumbling over its own feet (by simply re-membering whih proessors have already been assigned),produes better results at pratially the same ost; moresophistiated approahes seem unwarranted.Aknowledgement: This researh was supported in partby the Israel Siene Foundation (grant no. 219/99).A. The Linux ShedulerWhile Linux supports FIFO and Round-Robin shedul-ing, the default sheduler is priority based. We remark thatin the Linux kernel, thread and proess entities are indis-tinguishable; the onventional term used to represent themboth is a task. The sheduler desribed here is of Linux-2.4.5 (essentially unhanged sine version 2.2).Linux sheduling is based on the notion of an epoh. In asingle epoh, every task has a ertain CPU time alloation,whih was set at the beginning of the epoh. The initial



alloation is equal for all tasks (unless they have different�nie� values). When a task exhausts its alloation it is pre-empted in favor of another runnable task. However, the taskan blok and then ontinue to run if its alloation has notyet been exhausted. An epoh ends when all the ready-to-run tasks have exhausted their alloations (though blokedand running tasks may still have part of their alloation). Tostart a new epoh, all tasks reeive new alloations. Thisis omputed as the default alloation plus half of what wasleft of the previous alloation. Thus the maximal possiblealloation is twie the default alloation.Within an epoh, runnable tasks are seleted for exeu-tion based on their priority. The priority has a dynami part,whih is simply the remaining time alloation. This is mea-sured in �tiks� (typially 10 milliseonds). The default al-loation was 20 tiks in Linux 2.2, and was hanged to 5in 2.41. The dynami priority is also alled the �ountervalue�, as it is stored in a variable alled the ounter, andessentially ounts down the CPU usage of the task in thisepoh; when it reahes 0 the task will be preempted.The atual sheduling algorithm is not based diretly ona task's priority, but on its goodness relative to differentproessors. The goodness is based on the ounter value;if this is zero the goodness is also zero. But for tasks thathave not exhausted their alloation, two modi�ations aremade. First, if the onsidered proessor is different fromthe one on whih the task last ran, the goodness is reduedby the PROC CHANGE PENALTY, whih is equivalent to15 tiks2. Seond, if the previous task to run on this pro-essor had the same address spae as this task (i.e. from thesame job), the goodness is improved by 1 tik whih wenamed SAME ADDRESS SPACE BONUS.In the ontext of our work, it is important to understandwhat happens when tasks beome unbloked (as when abarrier is ompleted). Suh tasks are moved to the readyqueue, and the reshedule idle funtion is alled foreah one of them in turn. This funtion tries to �nd a suit-able proessor for the awakened task, giving priority to theone it ran on previously (if it's idle) or to the longest idleproessor. If there are no idle proessors, the goodness ofthe awakened task is ompared with the goodness of theurrent task on all the proessors. The proessor with thelargest differene is then hosen, provided the differene islarger than the preemption threshold (1 tik). The seletedproessor (if any) is then marked as need reshed andinterrupted (whih means that very soon the sheduler willrun in its ontext).Unfortunately, reshedule idle is invoked in a se-rial manner independently for eah awakened task, and eah1This means the sheduler has rather poor resolution when it tries todistinguish between different jobs. We used the 2.2 value whih is slightlybetter. A still better solution would be to redue the tik interval [3℄.2Making a migration from one proessor to another non idle proessorpratially impossible in 2.4. This is another reason to use the 2.2 values.
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