Quantifying The Cost of Context Switch

Chuanpeng Li and Chen Ding and Kai Shen

Computer Science Department
University of Rochester
{cli, cding, kshen}@cs.rochester.edu

1 The Measurement Approach

Based on the traditional method, we used two processes communicating via a pipe. We first measure the
direct time cost per context switch (c1) when processes make no memory access. Then we measure the total
time cost per context switch (c2) when processes accesses different size arrays with a different amount of
computation. The indirect cost is estimated as c2 - c1.

1.1 The direct time cost per context switch (c)

We have two processes sending a single-byte message to each other via a pipe. We measure the time cost of
1000 round-trip communications (¢1), which include 2000 context switches between the two processes.

We have a single process simulating two processes’ communication by sending a single-byte message to
itself. We measure the time cost of 1000 simulated round-trip communications (¢2), which include no context
switch. The simulation process will do the same amount of work as the two communicating processes except
for context switches. Therefore the time cost per context switch is ¢; = (¢1 — t2),/2000.

Note that a process is forced to switch when it executes a blocking read from the pipe. To avoid the
interference from other processes in the system, we use a dual-processor machine exclusively for our exper-
iment. The two communicating processes are assigned to the same processor. We set up the test processes
with real-time scheduling policy SCHED_FIFO and give them the maximum priority. Presumably, most
kernel processes will run on the other CPU. And no other process can preempt any of our test process as
long as our process is runnable. Linux system call sched_setaffinity() and sched_setscheduler() are used to
effect the design.

1.2 The direct and indirect costs per context switch (c2)

The control flow of this test program is similar to that of 1.1. However, after each process becomes runnable,
it will do a certain amount of memory access and computation before it sends the message to the other
process and then blocks on the next read operation. We still have a single process simulating the two
processes’ behavior except for context switches. The simulation process will do the same amount of memory
access and computation work as the total of the two communicating processes. Assuming the cost of 1000
round-trip communications between the two test processes is (s1) and the cost of 1000 simulated round-trip
communications (s2), we get the sum of direct and indirect costs per context switch co = (s1 — s2)/2000.
We change the following 3 parameters during different runs of our test.

e Memory size: the total memory accessed by each process.

e Access stride: the size of the strided access.



o Switch frequency: the total amount of computation between two context switches. The basic unit
includes strided access through the array. The frequency is reduced by running the basic unit multiple
times. Inside each basic unit, the number of multiplication on each double data element affect the
length of the unit.

1.3 Timer and measurement times

The timer we use is a high resolution timer that relies on a counting register in the CPU. It will report the
number of cycles the CPU has gone through since startup. When the length of the measured event is very
short, the timer itself may cause some error. Therefore, we measure the cost of a large number of context
switches and then use the average cost.

2 Experimental Results

The machine platform we use is IBM eServer with dual 2.0 GHz Intel Pentium Xeon CPUs. Each processor
has 16KB L1 data cache and 512KB L2 cache. The operating system is Linux 2.6.17 kernel with Redhat 9.
The compiler is gcc 3.2.2. We do not use any optimization option for compilation.

The average direct context switch cost (c1) in our system is 3.4 microsecond. The results shown below
are about the total cost per context switch (c2). In general, c ranges from several microseconds to hundreds
of microseconds. The indirect context switch cost can be estimated as c2 - c1.

We discuss two sets of experiments in detail here. The first tests the effect of memory hierarchy by
varying the size of the data used by the two processes. The second tests the effect of the access stride on the
cost of context switch.

2.1 Effect of data size

We show the data size and the cost of context switch of 22 experiments in figure 1. In each experiment,
each process traverses an array of size d (in 8-byte double numbers) between two context switches. Each
process does not do any computation on each array element. The upper graph shows the value of d in each
experiment. The lower graph shows the average cost of 2000 context switches measured in each experiment.
The numbers form roughly three tiers. The first tier includes the first six experiments, which use two data
sizes 8 bytes and 64KB. The time of context switch ranges between 3.7us and 4.4us with the mean at 4.1 pus.
Considering that the L1 data cache is 16KB, we conclude that the first tier represents the cost of refilling L1
cache and some of L2 cache. Similarly, the cost of the next tier, between 6.0us and 18.6u.s with the mean
12.1us, represents the cost of refilling L1 and L2 cache. The last tier shows a cost between 18.5us and
28.5us with the mean 22.4s.

Looking at the three tiers from left to right, the cost of context switch increases when the data size
increases due to the overhead of L2 cache refilling. But within last tier, where the data size is well above the
cache, the cost of context switch stop increasing. This is because the data size is too big, cache misses will
happen even there is no context switch.

2.2 Effect of access stride

We show the access stride and the cost of context switch of 51 experiments in figure 2. In each experiment,
each process access an array of 8-byte double numbers in the following strided pattern. Starting from the
first element, it accesses every s element. Then starting from the second element, it accesses every next s
element. The process repeats striding until every element of the array is accessed. If s is one, the access
pattern is actually sequential. We show array of size between 640KB and 1MB (in 8-byte double numbers).
We choose this array size based on the first set of experiments, which show that these array sizes do not
affect the cost of context switches differently.



(%]
g
Y
o | o
c o o o
" [Toli o
¢ o
N _ o o o
-aé512KB
S — o o
© o - o o o
° B |e4kB
= + —1 o o o
‘a,'g T T T I
°

5 10 15 20
—
[
(0]
i
o
=
L
£ 3
< n °
£ N T °
£ — ° °© o o °
5 ° °
e ] ° o o
= | o
.g °

o

§ P leeeogo T T T
@
o 5 10 15 20
S
@®

22 experiments, each includes 2000 context switches

Figure 1: The effect of data size on the cost of the context switch

—
[
s
]
Qo
IS
g n 00060000000000000
o < 7
is)
> o _|
o -
° 0000000000000
-
(3] -
=] o 0000000000000
s
%) 00000000
" T T T I
[%]
g 0 10 20 30 40 50
Q
@
—
[S]
[
¢
o
=
2
E _ A :
< o - o
£ « o
i o
% 8 ° ° o
< — 0 © ° o o ° ° ° o
g N ° o°°oooo°o 0 © oo o ° 5 o o0
5 o - 00%o00000 0 oo ° 00
© T T T T T I
@
=% 0 10 20 30 40 50
o
>
@®

51 experiments, each includes 2000 context switches

Figure 2: The effect of the access stride on the cost of context switch



The upper graph shows the value of s in each experiment. The lower graph shows the average cost of
2000 context switches measured in each experiment. As the access stride increases from 1, 4, 8, to 16, the
average cost becomes greater varied and generally higher. When the access stride is one, the cost ranges
between 18.5us and 28.5us with the mean 21.9us. When the access stride is four, the cost ranges between
20.8us and 73.9us with the mean 44.2us. For the access stride of eight, the cost ranges between 9us and
136us with the mean 65.8u4s. And for the access stride of 16, the cost ranges between 8.2ys and 455us
with the mean 112ps.

The progression of the cost increase, from on average 225 to 112us, is significant, and it is caused only
by the increase in the access stride. In other words, the way how the cache is filled up can affect the cost of
context switch significantly. One likely explanation is that the hardware cache prefetching works well for
sequential memory access. The larger the access stride is, the worse the cache prefetching works.

2.3 Effect of switch frequency

After collecting results for thousands of experiments, we found that the cost of context switch grows when
the frequency of context switch drops. In other words, the cost grows with the amount of intervening
computation between two context switches. Due to the limited time we have, we will assemble these results
in the next version of the report.

3 Observations
Through the experiments we make the following observations.

e In general, the indirect cost of context switch ranges from several microseconds to hundreds of mi-
croseconds.

e The cost of L1 cache refill after a context switch contributes little or no additional time but the cost of
refilling of L2 cache adds on average 8us for 512KB cache on our first test.

o The effect of access stride on the cost of context switch is significant. We saw average cost of context
switch increases from 22us to 112us when the access stride increases from one to sixteen in our
second test.



