
Coopetition Between Network Operators

and Content Providers in SDN/NFV Core Networks

Nir Gazit, Francesco Malandrino, and David Hay

School of Engineering and Computer Science, Hebrew University, Jerusalem 91904, Israel

{nirgazit1, francesco, dhay}@cs.huji.ac.il

Abstract—It is widely expected that the core of next-generation
cellular networks will be (i) based on software-defined networking
(SDN) and network function virtualization (NFV), and (ii) shared
between multiple parties, including traditional mobile operators
and content providers. Such parties are normally competing with
each other; however, they can obtain significant, mutual benefits
even from limited and defined cooperation. We study how such
a coopetition relationship influences the decisions of (i) how to
place virtual network functions on physical hardware and (ii)
how to steer traffic between them. We present an efficient, online
algorithm to make such placement and steering decisions, and
study its performance in a realistic scenario. We find that our
algorithm would allow mobile operators and content providers
to reduce their reliance on third-party vendors by 60%.

I. INTRODUCTION

Several evolution trends in cellular networks are now con-

verging and combining with each other.

The first trend concerns the core network and is represented

by the emergence of Software-Defined Networking (SDN) and

Network Function Virtualization (NFV). Today’s LTE core net-

works are based on the Evolved Packet Core (EPC) architec-

ture and built from propriety routers and middleboxes. These

include, for example, a Serving Gateway (S-GW) that manages

user handovers and billing, a Packet Data Network Gateway

(PDN-GW) that handles connectivity to external networks, and

cellular endpoints (eNodeB) that provide also encryption and

wireless channel management for the network operator. It is

important to notice that the EPC architecture already provides

a clear distinction between user- and data-plane protocols

and protocol entities, however it still uses proprietary and

expensive hardware. Thus, a natural direction [1] that next-

generation networks might take is to replace these special-

purpose boxes with smaller, more flexible middleboxes, each

implementing a network function. As envisioned in [2], such

core networks will have enough flexibility to efficiently pro-

cess traffic flows belonging to different parties, lowering the

resulting costs.

The second trend mostly concerns the access network,

and is represented by heterogeneity [3], [4]: present-day LTE

networks are already composed of different kinds of infras-

tructure, from macro base stations to femtocells; in the future,

LTE-Advanced and 5G networks will integrate multiple radio

access technologies, including Wi-Fi [5] and millimeter-wave

antennas [6]. In parallel, the traffic served by such networks

will also become increasingly heterogeneous, coming from

different applications (web browsing, real-time gaming etc.),

$$$

$

Fig. 1. A next-generation cellular network, some parts of which belong to
the blue mobile operator (square shadow), and others to the pink content
provider (round shadow). The content provider can have the traffic generated
at its own base station (the pink one at the bottom) processed at a third-party
cloud vendor (bottom, dark red line) or at servers in the mobile operator’s
core network, encircled in the blue ellipse (top, light green line), if spare
capacity is available therein.

each requiring different service levels [7] and traversing a

different chain of network functions.

The third, and perhaps most disruptive, trend is that, for a

variety of reasons, most of which are non-technical [8], [9],

content providers such as Google, Facebook or Netflix are

starting to deploy their own networks [10]. The purpose of

such networks is to serve some of the content provider demand

directly, and, by that, enhance the available capacity where

needed. Unlike the networks deployed by mobile operators,

content providers’ networks will have a spotty coverage, typi-

cally concentrated in densely populated areas. In a similar way,

content providers will not build a complete core network, but

rather rely on third-party cloud vendors, as depicted in Fig. 1.

This peculiar feature of content providers’ core networks

represents a cooperation opportunity we seek to exploit. On

one hand, mobile operators have built complete core networks

which, due to the daily fluctuations in traffic demand, are

partially unused for most of the time; on the other, content

providers are in need for that very same computational and

network capacity. Allowing content providers to use the spare

capacity available at the mobile operators’ core, as shown

by the green line in Fig. 1, provides significant benefits to

both: mobile operators can obtain further revenue form their

core networks, and content providers can save over hefty

cloud fees1. In this paper, we will focus on the infrastructure

corresponding to Virtual Network Functions (VNFs), such

1Larger content providers, having their own data centers, would not incur
in cloud fees, but rather in higher setup/maintenance costs. Also notice that
the mobile operator’s computational capacity is deployed right in the core
network, resulting in lower delays.

as commodity servers in the core network. We will study

how different cooperation levels between the mobile operator

and content provider yield a different preference of a VNF

placement.

Specifically, our contribution is threefold. First, we derive

a proper mathematical model (Section II) for the problem

described above. Second, we present an efficient, online al-

gorithm to solve this problem (Section III). In online settings,

where we need to adapt to changes in demand, our algo-

rithm tries to simultaneously minimize the number of place-

ment changes (thus leading to a small number of resource-

consuming VNF migrations) and maximize the policies sat-

isfied. Finally, we assemble a realistic network trace, using

real-life topology and demand information, and verify that

the traffic load of content providers and mobile operators is

indeed sufficiently different to make a cooperative approach

viable (Section V). We find that optimal placements can allow

mobile operators and content providers to reduce their reliance

on third-party providers by 93%. The online algorithm, on the

other hand, is able to obtain 60% reductions and scales well

for large networks.

II. SYSTEM MODEL

We envision a two-stage decision process that, without

loss of generality, we describe with reference to one mobile

operator and one content provider only.

In the first stage, the mobile operator makes VNF placement

and traffic steering decisions so as to serve all its demand at the

minimum possible cost, e.g., minimizing the load on servers.

It then announces to the content provider the amount of spare

CPU and memory available at each server.

In the second stage, the content provider makes its own

placing and steering decisions. Its objective is still to serve

its traffic while minimizing the total cost, and it has the

opportunity to use its own servers (if available), or servers

belonging to the mobile operator that have spare capabilities,

or servers obtained from a third-party cloud vendor.

Depending on the extent to which operators and content

providers coordinate, we can distinguish several scenarios.

In the opportunistic scenario, the operator ignores the con-

tent provider altogether, with the latter acting in a similar

way to secondary users in cognitive radio scenarios. In the

content provider-aware scenario, the mobile operator uses

historical information to further increase its revenue, e.g.,

by leaving more spare capabilities at those servers that the

content provider used more in the past. In the cooperative

scenario, operators and content providers share their demand

information and make their decisions jointly, so as to maximize

the mutual benefit: as we will see, the degree of saving is

correlated with the degree of coopetition between both parties.

Next, we present in detail the model capturing the VNF

placement process. Notice that such decisions account for

different input information (e.g., traffic demand) and are

enacted on different networks; however, we are able to use

a unified model for both.

A. Model elements and parameters

We have three main elements to capture our system model:

(i) the traffic demand, and the (virtual) network functions that

process it; (ii) the servers and the topology they form; and (iii)

how we match the two.

The policy graph: This work extends the notation of

policy chains used in previous works [11], [12] to a policy

graph due to the limited descriptiveness of the former. Future

policy requirements formulations, as envisioned by [13], [14]

are better modeled as a tree or a graph rather than a set of

policy chains, and translating the one to the other might result

in an exponential increase in the policy requirements data size.

The policy graph is a connected directed graph GD =
(VD, ED) with no loops. The vertices of the graph are VNFs.

For each such VNF f ∈ F we denote by p(f) the maximum

amount of traffic (in Mbit/sec) a single instance of this VNF

can handle. In addition, each instance of f ∈ F requires a

memory of rM (f) ∈ R
+ MBytes and a CPU computation

of rC(f) ∈ R
+ Cycles/Mbit. It is important to notice that in

our model the memory requirements are constant, regardless

of the traffic volume the specific instance processes. The

CPU requirements, on the other hand, depend on the traffic

processed by the VNF. Thus, if there are k instance of some

VNF f ∈ F , each one processing x Mbit/sec of traffic, then

the memory requirement is rm · k MByte, while the incurred

CPU load is rC(f) ·k ·x Cycles/s. For each edge in the policy

graph e ∈ ED we denote by t(e) ∈ R
+ its traffic demands

(meaning, the amount of traffic that must pass between the

2 VNFs on its endpoints). This naturally defines the traffic

volume that needs to be processed by each VNF node v ∈ VD

in the graph as the total amount of traffic that enters that VNF:

t(v) =
∑

(u,v)∈ED
t(u, v). It is important to notice that there is

no conservation of traffic demand, as some VNFs might output

less traffic than they receive (e.g., an intrusion detection system

that drops packets), while others might output more bandwidth

than they receive (e.g., a video decoder).

The network graph: The network is modeled as a

directed graph GN = (VN , EN). Each edge corresponds to

a physical link, whose bandwidth (or capacity) is denoted

by b(e). Similarly to [1], [11], VN is comprised of two

disjoints sets: The set of servers (denoted by M) and the

set of switches (denoted by S). Only servers are capable of

running virtual machines, and therefore, can host different

VNFs. Every node u ∈ VN has a routing table that can hold up

to rT (u) ∈ R
+ rules, a memory of cM (u) ∈ R

+ MBytes, and

a CPU computation power of cC(u) ∈ R
+ Cycles/s. Naturally,

for switches s ∈ S, cM (s) = cC(s) = 0; while for servers

m ∈M , we can assume that rT (m) =∞.

Finally, we have a cost κ(m, v) we incur into when placing

an instance of VNF v at server m. This is typically a monetary

fee, where κ(m, v) =∞ implies that one cannot place VNF v
at server m.

B. Mixed Integer Linear Program Formulation

Finding the optimal VNF placement (namely, the placement

with least cost in terms of κ) is NP-hard (proof, by reduction

to SAT, is omitted). Nevertheless, we next show how it can be

formulated as a mixed integer linear program, implying that

existing tools (e.g., CPLEX) can be used to solve it optimally

for moderate-size networks.

Variables: Our decision variables define how traf-

fic moves between physical servers. For each pair of

VNFs v1, v2 ∈ VD and pair of servers m1,m2 ∈ M we

define a real variable x(m1,m2, v1, v2), denoted the amount

of traffic between physical servers m1 and m2 that has just

been processed by VNF v1 and need to be processed by VNF

v2.

For ease of presentation, we will also use the following two

notations as auxiliary variables: y(m, v) denotes the amount

of traffic of VNF v that is processed by server m, and n(m, v)
denotes the number of instances of VNF v, running on server

m. Specifically,

y(m, v)=
∑

l∈M,u∈F

x(l,m, u, v)−
∑

n∈M,u∈F

x(m,n, u, v),

∀m ∈M, v ∈ F (1)

where the first term in (1) is the traffic coming to server m
and meant to be processed by any instance of VNF v and the

second term is the amount of said traffic leaving server m. The

number of V ’s instances on server m is simply n(m, v) =
⌈

y(m,v)
p(v)

⌉

. Note that the instances of VNF v on server m

consume a total of n(m, v)rM (v) memory and y(m, v)rC(v)
CPU capabilities.

Constraints: To ensure the feasibility of the placement

and the flow, we define the following constraints. First, we

have to ensure the demands that are defined in the policy graph

are fully satisfied:

∑

m1,m2∈M

x(m1,m2, v1, v2) ≥ t(v1, v2),

∀(v1, v2) ∈ ED, (2)

where the left-hand side implies that the amount of all traffic

that was processed by v1 and then by v2 (on any pair of

servers) is at least as specified by the corresponding edge in

the policy graph.

The following three constraints capture the bandwidth, CPU

and memory restrictions of physical links and servers.

∑

v1,v2∈F

x(m1,m2, v1, v2) ≤ b(m1,m2),

∀m1,m2 ∈ M (3)

∑

v∈F

(y(m, v) · rC(v)) ≤ cC(m), ∀m ∈ M (4)

∑

v∈F

(n(m, v) · rM (v)) ≤ cM (m), ∀m ∈M (5)

It is important to notice that the definition of n(m, v) includes

a ceiling operator, which makes constraint (5) integral.

Finally, there is a maximum number of active (i.e., with

non-zero traffic) outgoing flows from each server:

∑

v1,v2∈F ,l∈M

1[x(m,l,v1,v2)>0] ≤ rT (s), ∀s ∈ S (6)

We can model switches as servers with zero capabilities;

hence, (6) enables us to account for the limited capacity of

the forwarding tables at switches [1], [11].

Objective: The objective function is explicitly defined

by the cost matrix κ:

min
∑

m∈M

∑

v∈F

κm,v · n(m, v). (7)

III. ONLINE ALGORITHM

As our placement problem is NP-hard, it is not expected to

scale for large networks and frequent changes in demand (each

such change requires solving the optimization problem from

scratch). Moreover, as Section II deals with one-shot solution

to the problem, it does not take into account the number

of VNF migrations occurring if two subsequent solutions

significantly differ in their VNF placement.

Algorithm 1 is an online algorithm that addresses both issue.

It starts with an initial solution x̄, as defined in Section II.

This initial solution may be obtained by solving the MILP

one-off, or even by some heuristic placement provided by the

user. As the traffic evolves over time, the algorithm adapts the

placement and traffic steering variables. We have a threshold

parameter 0 ≤ α ≤ 0.5; the algorithm will try to free up

servers with load higher than 1 − α, and shut down servers

with load lower than α.

Algorithm 1 Our online algorithm.

Require: current load t, initial decisions x̄
⊲ We use also the auxiliary variables ȳ, n̄

1: compute λ(v) as defined in (8)

2: while maxv∈F λ(v) > 1− α do

3: v⋆← argmaxv∈F λ(v)
4: x̃← solve LP relaxation (2)–(7),(9)–(10)

5: if there is no feasible solution then

6: Find a new optimal placement using the MILP.

7: else

8: m⋆← argmaxm∈M

(

ỹ(m, v⋆)− ȳ(m, v⋆)
)

9: n̄(m⋆, v⋆)←n̄(m⋆, v⋆)+1
10: re-balance ȳ using (11)

11: update x̄, λ

12: while minv∈F λ(v) < α do

13: v⋆← argminv∈F λ(v)
14: x̃← solve LP relaxation of problem (2)–(7),(12)

15: m⋆← argminm∈M

(

ȳ(m, v⋆)− ỹ(m, v⋆)
)

16: n̄(m⋆, v⋆)←n̄(m⋆, v⋆)−1
17: re-balance ȳ using (11)

18: update x̄, λ

19: return x̄

In Line 1, we compute the following parameter λ that

captures how much spare capacity we have on all servers

running instances of a VNF v:

λ(v) =

∑

u∈F t(u, v)
∑

m∈Mmin
(

p(v)n(m, v), φ(m,v)
rC(v)

) , (8)

where φ(m, v) = cC(m)−
∑

u6=v ȳ(m,u)rC(u) is the amount

of CPU available at server m for instances of VNF v.

Specifically, λ(v) is the ratio between the total amount of

traffic that currently needs to be processed by instances of

VNF v and the total amount of traffic that existing instances

of v can tackle. The minimum in the summation at the

denominator reflect situations where a very loaded server

cannot provide CPU of p(v) cycles/second for all VNF v’s

instances that are currently running on it.

Line 2 checks if there are VNFs that require scaling out,

i.e., for which the λ-value exceeds 1 − α: if such VNFs do

exist, we will provision additional instance(s) for it.

If we do decide to take action, then we start by deploying

an additional instance of the VNF with the highest λ-value

(Line 3). To choose which server to deploy the instance at,

we solve an LP relaxation of the problem in Section II with

objective (7), integrated with the following constraints:

ỹ(m, v) >
(

n̄(m, v)− 1
)

· p(v), ∀m ∈ M, v ∈ F . (9)

ỹ(m, v) ≤ n̄(m, v) · p(v),

∀m ∈ M, v ∈ F : rM (v) +
∑

u∈F

n̄(m,u)rM (u) > cM (m).

(10)

Constraint (9) ensures that the relaxed solution is a superset

of the original solution, and not a completely different one;

this allows us to limit the number of changes to the network.

Constraint (10) ensures we do not assign additional instances

of VNF v to servers that cannot possibly host another instance

of v due to memory constraints.

Assuming that we have a relaxed solution ỹ(m, v) (Line 4),

we use that solution to choose a server m⋆. We select the

server that maximizes ỹ(m, v⋆) − ȳ(m, v⋆), i.e., intuitively,

where the relaxed solution suggested that more traffic should

be handled. In Line 9, we deploy an extra instance of VNF v⋆

at m⋆. Finally, we again use the relaxed solution to re-balance

the traffic across the instances proportionally to to the ỹ values

given by the relaxed solution:

ȳ(m, v) = t(v)
ỹ(m, v)

∑

m′∈M ỹ(m′, v)
(11)

When there are no more VNFs with load λ(v) greater

than 1− α, we move to Line 12, and start looking for VNFs

with a small load, lower than α. Turning off some instances

of these VNFs will reduce costs, without impairing our ability

to serve all traffic. More exactly, in Line 13 we select the

VNF with the lowest λ-value, and in Line 14 we solve an

LP-relaxed problem to select the server at which to switch the

instance off. Similar to Line 4, we use an additional restriction

which is a following modified version of (9), imposing that

the relaxed solution is a subset of the original one:

ỹ(m, v) ≤ n̄(m, v) · p(v), ∀m ∈M, v ∈ F . (12)

In Line 15 we use the difference between the current and

relaxed y-values to select the server m⋆, remove an instance

of VNF v⋆ from there (Line 16), and again re-balance the y
values (using (11)) and update λ-values (Line 18).

When we exit the loop, there are neither overloaded nor

underloaded VNFs, and the algorithm terminates. The calcu-

lated x̄, ȳ are then sent to the Traffic Steering Module and

the Server Manager accordingly which change the placement

and routing rules on the network itself. The algorithm will

be invoked again when the values measured by the Traffic

Monitor indicates an increase or decrease in the traffic in the

network.

Notice that Line 4 might fail to produce a relaxed solution,

due to a failure to meet the constraints (9) and (10). This

means that the current placement cannot be adapted to meet

the new demands. Thus, we are foced to compute the initial

decisions x̄, ȳ afresh by solving the full MILP problem,

obtaining a new optimal solution.

Operator 1’s

base stations [15]

Operator 2’s

base stations [15]

Census data

Total

demand [16]

Facebook

demand [16]

Cover 20%

population

Proportional

to population

Proportional

to population

Normalize to

δ·Operator

Operator

base stations

Content provider

base stations

Operator

traffic

Content provider

traffic

Inputs Processing Steps Outputs

Fig. 2. The construction of our reference scenario.

IV. REFERENCE SCENARIO

Our reference scenario includes one mobile network oper-

ator and one content provider. We build it leveraging three

sources:

• the location of the base stations of two European mobile

network operators, presented in [15];

• census data from the same country [17];

• a measurement paper [16], presenting the temporal evo-

lution of both the global mobile traffic and the mobile

traffic from specific websites and services.

It is worth stressing that all the information we use is public

and/or published. Fig. 2 summarizes how we process our data.

The full dataset of [15] includes demand (voice and data)

and deployment (location, technology power class) informa-

tion about a total around 5,000 base stations serving several

thousands users, over a period of two weeks.

▼�✁✂✄☎ ✆✝✞

❇✟✟ ✠

❋✂✡☎☛☞✄✄

✺
■✌✟

✥

❇✂✄✄✂✍✎

✷✏

▼�✁✂✄☎ ✆✝✞

❇✟✟ ✷

✼

▼�✁✂✄☎ ✆✝✞

❇✟✟ ✥

✠✥

✷

◗�✟
✷✷

❈☞✑✒☎
✠✏

◗✓☎✓☎

✺

❈�✔✝✡☎✕✕
✼

✥

●☞✖☎☛☞✗

✽

✷

❈�✍✖✞ ✘✡�✙✞

❇✟✟ ✠ ❋✂✡☎☛☞✄✄
✠✏

■✌✟

✠✥

❈�✍✖✞ ✘✡�✙✞

❇✟✟ ✷

✺

❇✂✄✄✂✍✎
✠✷

❚✡☞✍✕✑�✚☎✡
✠✷

●☞✖☎☛☞✗✻

Fig. 3. The policy graph we use in our test scenario. Boxes correspond to
entry points, ellipses to VNFs that the traffic has to traverse. The values on the
edges is the amount of data transmitted between the VNFs on their endpoints.

Network operator infrastructure: The base stations of

the mobile network operator are simply the base stations of

the largest operator of our trace. The demand they serve

is constructed in such a way that (i) its temporal evolution

conforms to the one reported in [16] and (ii) the demand at

each base station is proportional to the population it covers.

As for the core network, we assume the same three-layer

topology considered in [1]. Specifically, we cluster the base

stations in groups of ten, and connect each such group in

a ring; these rings of base stations form the network access

layer. The aggregation layer is formed by k = 6 pods, each

connected to k/2 = 3 rings of base stations. The core layer

consists of k2 = 36 switches connected in full mesh.

Servers and traffic demand: There are |M| = 54 servers,

all with normalized capabilities cM = cC = 1. As in [1], half

of the servers are connected to random switches in the core

layer, half to random switches in the aggregation layer.

Traffic originating from base stations belonging to the mo-

bile operator is processed through the policy graph of Fig. 3(a),

which is similar to the processing done in today’s LTE-based

mobile networks. The traffic volumes on edges refer to five

example base stations in our topology. Traffic from content

providers’ base stations is processed through the policy graph

depicted Fig. 3(b), which includes several different VNFs for

custom processing, inspired by [1], [14]. All VNFs have CPU

and memory requirements randomly set between 0 and 1.

Content provider topology and demand: We use the

topology of the second operator in our dataset to construct

the content provider’s network, albeit with some more manip-

ulations. Specifically, we reduce the number of base stations,

only keeping the 10% most loaded, which are sufficient to

cover 20% of the population. This is consistent with the

widespread belief that content providers will concentrate their

coverage in the most crowded areas, instead of attempting to

directly serve all their users [8].

The traffic demand follows the temporal evolution reported

in [16] for Facebook. The traffic is proportional to the popu-

lation served by each base station, and represents a fraction δ
of the operator’s demand. Unless otherwise specified, we

use δ = 0.5, consistent with the recent news that Netflix

accounts for over one third of the total Internet traffic [18].

Each of the content provider’s base stations is connected to

both the cloud provider and the closest base station belonging

to the mobile operator; such a link enables the two parties to

cooperate. For simplicity, we assume that the content provider

does not deploy any physical server of its own.

V. EXPERIMENTAL RESULTS

A. Optimal decisions

We first tackle the question what is the most the mobile

operators and content providers can save by switching from a

pure competition relationship to a coopetition. Thus, we have

optimally solved the problem presented in Section II using

CPLEX. Fig. 4(a) and Fig. 4(b) compare the opportunistic

and cooperative scenarios and show that the savings mentioned

above are signficant. Specifically, the red areas in the figures

represent the traffic demand of the mobile operator, all of

which is served through its own servers. The blue and yellow

areas correspond to the demand of the content provider:

the blue part is served at the mobile operators’ servers and

the yellow through a third-party cloud vendor. Namely, the

blue area corresponds to fees that should be paid to the

cloud vendor in a pure competition scenario, and are saved

in a coopetition scenario: a limited and defined cooperation

between mobile operators and content providers can allow

them to save 93% on cloud fees if decisions are made jointly,

or 73% if the decisions are opportunistic. We can further notice

that cloud servers are only used during peak times, for at most

41% (58%) of the total load in the cooperative (opportunistic)

scenarios. Fig. 4(c) shows the difference between the two

scenarios is especially significant during peak time, when it is

more likely that the deployment and steering decisions made

by the mobile operator conflict with the needs of the content

provider.

In Fig. 5, we move to the online case, where decisions are

made through the algorithm described in Section III. Fig. 5(a)

shows how the traffic is served; comparing it with Fig. 4(b),

we can immediately see that the yellow area, i.e., the amount

of traffic served at the cloud vendor, is larger. In Fig. 5(b),

the area below the blue curve corresponds to the savings of

our online algorithm which amount to 60% of the cloud fees;

the area between the yellow and the blue curves represents the

savings that would have been possible if decisions were made

optimally but our online algorithm cannot attain.

We also compared the utilization of servers by our online

and optimal algorithm. Specifically, Fig. 6 focuses on the

cooperative scenario and shows that when decisions are made

optimally (Fig. 6(a)) there is more CPU time devoted to the

content provider’s traffic and less idle time than with the

online algorithm (Fig. 6(b)). It is perhaps more interesting

to observe that even when decisions are made optimally, and

even during peak hours, there is a small amount of idle CPU.

This corresponds to servers that have spare CPU, but no spare

memory or network capacity.

VI. CONCLUSION

Content providers are expected to take part in the creation

of next-generation cellular networks, deploying their own base

stations in those areas that are most significant to them. We

envisioned that the traffic generated therein can be processed

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20

T
ra

ff
ic

 S
e
rv

e
d
 [
G

b
it
/s

e
c
]

Time [hour]

content provider via cloud
content provider via m.o.
mobile operator

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20

T
ra

ff
ic

 S
e
rv

e
d
 [
G

b
it
/s

e
c
]

Time [hour]

content provider via cloud
content provider via m.o.
mobile operator

(b)

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20

C
o
n
te

n
t
P

ro
v
id

e
r

v
ia

 M
.O

.
[G

b
it
/s

e
c
]

Time [hour]

cooperative scenario
opportunistic scenario

(c)

Fig. 4. Optimal decisions. (a): how the traffic is served in the opportunistic scenario; (b): how the traffic is served in the cooperative scenario; (c): amount
of content provider’s traffic processed at the mobile operator’s servers in both cases.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20

T
ra

ff
ic

 S
e

rv
e

d
 [

G
b

it
/s

e
c
]

Time [hour]

content provider via cloud
content provider via m.o.
mobile operator

(a)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 5 10 15 20

C
o

n
te

n
t

P
ro

v
id

e
r

v
ia

 M
.O

.
[G

b
it
/s

e
c
]

Time [hour]

optimal decisions
online decisions

(b)

Fig. 5. Online decisions, cooperative scenario. (a): how the traffic is served;
(b): amount of content provider’s traffic processed at the mobile operator’s
servers.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

G
lo

b
a

l
C

P
U

 U
s
a

g
e

 [
%

]

Time [hour]

content provider traffic
mobile operator traffic

(a)

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

G
lo

b
a

l
C

P
U

 U
s
a

g
e

 [
%

]

Time [hour]

content provider traffic
mobile operator traffic

(b)

Fig. 6. Cooperative scenario: CPU usage at the mobile operator’s servers.
(a): optimal decisions; (b): online decisions.

with the help of traditional mobile operators, which would

open their SDN-based, virtualized core network to content

providers in exchange for a fee.

In Section II, we modeled the twofold problem of (i) match-

ing virtual network functions and servers and (ii) steering

traffic between them. Moreover, in Section III, we proposed

an online, scalable algorithm to solve such a problem.

We evaluated our performance using the real-world scenario

described in Section IV. As summarized in Section V, we

found that in the optimal case, coopetition between mobile

operators and content providers can allow them to save 93%

on third-party cloud fees when decisions are made jointly and

73% when they are made separately. Our online algorithm is

able to reduce the reliance of the cloud vendor by 60%, while

keeping the computational complexity low.

ACKNOWLEDGEMENT

This work was supported by the Israeli Centers of Research

Excellence (I-CORE) program (Center No. 4/11) and Euro-

pean Research Council under the European Union’s Seventh

Framework Programme (FP7/2007-2013)/ERC Grant agree-

ment no. 259085.

REFERENCES

[1] X. Jin, L. E. Li, L. Vanbever, and J. Rexford, “Softcell: Scalable and
flexible cellular core network architecture,” in ACM CoNEXT, 2013.

[2] T. V. de Velde. (2015) On Resource Partitioning,
Network Slicing and Service Chaining. http://www.
netmanias.com/ko/post/blog/8367/5g-network-slicing/
on-resource-partitioning-network-slicing-and-service-chaining.

[3] A. Ghosh, N. Mangalvedhe, R. Ratasuk, B. Mondal, M. Cudak, E. Vi-
sotsky, T. Thomas, J. G. Andrews, P. Xia, H. S. Jo et al., “Heterogeneous
cellular networks: From theory to practice,” in IEEE Comm. Mag., 2012.

[4] J. Andrews, “Seven ways that HetNets are a cellular paradigm shift,” in
IEEE Comm. Mag., 2013.

[5] M. Bennis, M. Simsek, A. Czylwik, W. Saad, S. Valentin, and M. Deb-
bah, “When cellular meets WiFi in wireless small cell networks,” in
IEEE Comm. Mag., 2013.

[6] S. Rangan, T. S. Rappaport, and E. Erkip, “Millimiter Wave Cellular
Wireless Networks: Potentials and Challenges,” in Proc. of the IEEE,
2014.

[7] P. Di Francesco, F. Malandrino, and L. A. DaSilva, “Mobile network
sharing between operators: a demand trace-driven study,” in ACM

SIGCOMM CSWS workshop, 2014.
[8] L. Doyle and J. Kibiłda and T. Forde and L. A. DaSilva, “Spectrum

Without Bounds, Networks Without Borders,” in Proc. of the IEEE,
2014.

[9] J. Markendahl and B. G. Mölleryd, “On Co-opetition between Mobile
Network Operators: Why and How Competitors Cooperate,” in ITS

Biennial Conference, 2012.
[10] B. Chen, “Google Confirms Plans for Wireless Service,” in New York

Times, 2015.
[11] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu,

“SIMPLE-fying middlebox policy enforcement using SDN,” in ACM

SIGCOMM Comp. Comm. Rev., 2013.
[12] G. Gibb, H. Zeng, and N. McKeown, “Outsourcing network functional-

ity,” in ACM HotSDN, 2012.
[13] A. Bremler-Barr, Y. Harchol, D. Hay, and Y. Koral, “Deep packet

inspection as a service,” in ACM CoNEXT, 2014, pp. 271–282.
[14] C. Prakash, J. Lee, Y. Turner, J.-M. Kang, A. Akella, S. Banerjee,

C. Clark, Y. Ma, P. Sharma, and Y. Zhang, “PGA: Using graphs to
express and automatically reconcile network policies.”

[15] P. Di Francesco, F. Malandrino, and L. DaSilva, “Cellular Network
Planning using Real Data,” in submitted, 2015.

[16] Y. Zhang and A. Arvidsson, “Understanding the Characteristics of
Cellular Data Traffic,” in ACM SIGCOMM Comp. Comm. Rev., 2012.

[17] “Irish CSO census data,” 2011, http://www.cso.ie/en/census/
census2011 boundaryfiles/.

[18] N. Arce, “Netflix Is Hogging 35 Percent of Peak Internet Traffic in
North America: What About Others?” in Tech Times, 2014.

