Jitter Regulation for Multiple Streams
(Extended Abstract)

David Hay and Gabriel Scalosub

Computer Science Department, Technion
Technion City, Haifa 32000, Israel
{hdavid,gabriels}@cs.technion.ac.il

Abstract. For widely-used interactive communication, it is essential
that traffic is kept as smooth as possible; the smoothness of a traffic
is typically captured by its delay jitter, i.e., the difference between the
maximal and minimal end-to-end delays. The task of minimizing the
jitter is done by jitter regulators that use a limited-size buffer in order
to shape the traffic. In many real-life situations regulators must handle
multiple streams simultaneously and provide low jitter on each of them
separately. This paper investigates the problem of minimizing jitter in
such an environment, using a fixed-size buffer.

We show that the offline version of the problem can be solved in poly-
nomial time, by introducing an efficient offline algorithm that finds a
release schedule with optimal jitter. When regulating M streams in the
online setting, we take a competitive analysis point of view and note that
previous results in [1] can be extended to an online algorithm that uses a
buffer of size 2M B and obtains the optimal jitter possible with a buffer
of size B. The question arises whether such a resource augmentation is
essential. We answer this question in the affirmative, by proving a lower
bound that is tight up to a factor of 2, thus showing that jitter regulation
does not scale well as the number of streams increases unless the buffer
is sized-up proportionally.

1 Introduction

Contemporary network applications call for connections with stringent Quality-
of-Service (QoS) demands. This gives rise to QoS networks that are able to pro-
vide guarantees on various parameters, such as the end-to-end delay, loss ratio,
bandwidth, and jitter. The need for efficient mechanisms to provide smooth and
continuous traffic is mostly motivated by the increasing popularity of interactive
communication and in particular video/audio streaming. The smoothness of the
traffic is captured by the notion of delay jitter (or Cell Delay Variation [2]);
namely, the difference between the maximal and minimal end-to-end delays of
different fixed-size packets, henceforth referred to as cells.

Controlling traffic distortions within the network, and in particular jitter
control, has the effect of moderating the traffic throughout the network [3]. This
is important when a service provider in a QoS network must meet service level

agreements (SLA) with its customers. In such cases, moderating high congestion
states in switches along the network results in the provider’s ability to satisfy
the guarantees to all its customers [4].

Jitter control mechanisms have been extensively studied in recent years (see
a survey in [3]). These are usually modelled as jitter regulators [1,5, 6] that use
internal buffers in order to shape the traffic, so that cells leave the regulator
in the most periodic manner possible. Generally, such regulators calculate a
hypothetical periodic schedule, and try to release cells accordingly. Upon arrival,
cells are stored in the buffer until their planned release time, or until a buffer
overflow occurs. This indicates a tradeoff between the buffer size and the best
attainable jitter, i.e., as buffer space increases, one can expect to obtain a lower
jitter.

This paper investigates the problem of finding an optimal jitter release sched-
ule, given a predetermined buffer size. This problem was first raised by Mansour
and Patt-Shamir [1], who considered only a single-stream setting. However, in
practice jitter regulators handle multiple streams simultaneously and must pro-
vide low jitter for each stream separately and independently.

In the multi-stream model, the traffic arriving at the regulator is an inter-
leaving of M streams originating from M independent abstract sources (see
Figure 1). Each abstract source i sends a stream of fixed-size cells in a fully pe-
riodic manner, with inter-release time X?, which arrive at a jitter regulator after
traversing the network. Variable end-to-end delay caused by transient congestion
throughout the network may result in such a stream arriving at the regulator
in a non-periodic fashion. The regulator knows the value of X?, and strives to
release consecutive cells X time units apart, thus re-shaping the traffic into its
original form. Furthermore, the order in which cells are released by each abstract
source is assumed to be respected throughout the network. This implies that the
cells from the same stream arrive at the regulator in order (but not necessarily
equally spaced), and the regulator should also maintain this order. We refer to
this property as the FIFO constraint.

Note that the FIFO constraint should be respected in each stream inde-
pendently, but not necessarily on all incoming traffic. This implies that in the
multi-stream model, the order in which cells are released is not known a priori.
This lack of knowledge is an inherent difference from the case where there is
only one abstract source, and it poses a major difficulty in devising algorithms
for multi-stream jitter regulation (as we describe in detail in Section 4).

Our Results

This paper presents algorithms and tight lower bounds for jitter regulation in this
multiple-streams environment, both in offline and online settings. This answers
a primary question posed in [1].

We evaluate the performance of a regulator in the multi-stream environment
by considering the maximum jitter obtained on any stream. We show that sur-
prisingly, the offline problem can be solved in polynomial time. This is done by

Periodic Non-Periodic Periodic

Streams Streams
Abstract Streams — >
Source 1
o s(51)
Abstract
Source 2 c, S(5,)
o Jitter Regulator .
o Network ®
. [LITTTT] :
® OMm Internal Buffer s(om) °
[]
Abstract
Source M [e

Fig. 1. The multi-stream jitter regulation model

characterizing a collection of optimal schedules, and showing that their prop-
erties can be used to devise an offline algorithm that efficiently finds a release
schedule that attains the optimal jitter.

We use a competitive analysis [7,8] approach in order to examine the online
problem. In this setting, by sizing up the buffer to a size of 2M B and statically
partitioning the buffer equally among the M streams, applying the algorithm
described in [1, Algorithm B] on each stream separately yields an algorithm that
obtains the optimal max-jitter possible with a buffer of size B. We show that
such a resource augmentation cannot be avoided, by proving that any online
algorithm needs a buffer of size at least M(B—1)+ B+1 = (M B) in order to
obtain the optimal jitter possible with a buffer of size B. We further show that
these tight results also apply when the objective is to minimize the average jitter
attained by the M streams. These results indicate that online jitter regulation
does not scale well as the number of streams increases unless the buffer is sized
up proportionally.

Previous Work

Mansour and Patt-Shamir [1] consider a simplified single-stream model in which
there is only a single abstract source. They present an efficient offline algorithm,
which computes an optimal release schedule in these settings. They further devise
an online algorithm, which uses a buffer of size 2B, and produces a release
schedule with the optimal jitter attainable with buffer of size B, and then show
a matching lower bound on the amount of resource augmentation needed, proving
that their online algorithm is optimal in this sense.

This model is later discussed by Koga [9] that deals with jitter regulation
of a single stream with delay consideration. An optimal offline algorithm, and a
nearly optimal online algorithm are presented for the case where a cell cannot
be stored in the buffer for more than a predetermined amount of time.

2 Model Description, Notation, and Terminology

We adopt the following definitions from [1]:

Definition 1. Given a sequence of cells 0 = (p])i, and a non-decreasing ar-

rival function a : o — RT such that cell p] arrives at time a(pf):

1. A release schedule for o is a function s : 0 — RT satisfying for every p] € o,
a(py) < s(p7).
2. A release schedule s for o is B-feasible if at any time t,

{p{ e ola(®!) <t <s(pf)} < B.

That is, there are never more than B cells in the buffer simultaneously.
8. The delay jitter of o under a release schedule s is
I7(s) = max {s(07) = s(f) — (i — b)X}

where X is the inter-release time of o (i.e., X is the difference between the
release times of any two consecutive cells from the abstract source).!

We first extend Definition 1 to an arrival sequence o that is an interleaving
of M streams o1,...,05. We denote by X7 the inter-release time of stream
o, and assume for simplicity that all streams have the same inter-release time
X; all our results extend immediately to the case where this does not hold. Let
p; denote the j'th cell (in order of arrival) of the interleaving of the streams
o, and let p}’ denote the j’th cell of the single stream o;. A release schedule
should obey a per-stream FIFO discipline, in which cells of the same stream are
released in the order of their arrival.

Let J7(s) be the jitter of a single stream o; obtained by a release schedule
s. We use the following metric to evaluate multi-stream release schedules:

Definition 2. The max-jitter of a multi-stream sequence o = {o1,...,0p} 0b-
tained by a release schedule s is the maximal jitter obtained by any of the streams
composing the sequence; that is, MJ?(s) = max J7k(s).

2.1 Geometric Intuition

One can take a geometric view of delay jitter by considering a two dimensional
plane where the x-axis denotes time and the y-axis denotes the cell number. We
first consider the case of a single stream o. Given a release schedule s, a point
at coordinates (¢, j) is marked if s(p]) =t (see Figure 2(a)). The release band is
the band with slope 1/X that encloses all the marked points and has minimal
width. The jitter obtained by s is the width of its release band, and therefore
our objective is to find a schedule with the narrowest release band.

! Since the abstract source generates perfectly periodic traffic, this definition of delay
jitter coincides with the notion of Cell Delay Variation.

packet e . packet
number eft margin number

right margin

87 S time time

(a) non-aligned schedule (b) aligned schedule

Fig. 2. Outline of arrivals (dotted circles) and marked releases (full circles).

Under the multi-stream model, we associate every stream o; with a different
color i. A point at coordinates (t,j) is colored with color i if s(pj') = t. Any
schedule s induces a separate release band for each stream o; in o that encloses
all points with color ¢. Schedule s is therefore characterized by M release bands.

3 Online Multi-Stream Max-Jitter Control

As mentioned previously, there exists an online algorithm with buffer size 2M B,
which obtains the optimal max-jitter possible with a buffer of size B. In this
section we show that this result is tight up to a factor of 2, by showing that
in order to obtain the optimal max-jitter possible with a buffer of size B, any
online algorithm needs a buffer of size at least M (B —1)+ B+ 1. Hence, in order
to maintain the same jitter performance, it is necessary to increase the buffer
size in a linear proportion to the number of streams.

Theorem 1. For every online algorithm ALG with an internal buffer of size
< M(B—1)+ B+ 1, there exists an arrival sequence consisting of M streams,
such that ALG attains max-jitter strictly greater than the optimal jitter possible
with a buffer of size B.

Proof. Let ALG be an online algorithm with a buffer of size at most M (B —1)+
B. Consider the following arrival sequence o: For every 0 < i < B —1, M cells
arrive at the regulator at time i - X, one for every stream. The sequence stops if
ALG releases a cell before time ¢t = (B + 1) X.

If ALG releases a cell before time t’, say of stream o, consider the following
continuation for o: In time 7" > ¢’ which can be arbitrarily large, one cell of
stream o; arrives at the regulator.

Since ALG releases the first cell of stream o; before time ¢/, and the last cell
of stream o; cannot be sent prior to time T, then j7i(ALG) > T—t'—(B+1)X >
T—-(B+1)X —(B+1)X =T, which can be arbitrarily large. It follows that
MJ?(ALG) is strictly greater than zero. On the other hand, note that for any
choice of T, the optimal max-jitter possible with a buffer of size B is zero: Every
cell of a stream other than o; is released immediately upon its arrival, and for

every 0 < j < B, cell pj* is released in time T'— (B — j) X. Since every stream
other than o; does not consume any buffer space, it is easy to verify that at every
time ¢, there are at most B cells in the buffer. Clearly, every stream obtains a
zero jitter by this release schedule.

Assume now that ALG does not release any cells before time ¢', implying that
in time ¢’ there are M B cells in the buffer. Consider the following continuation
for o: In time t/, B + 1 cells of stream o arrive at the regulator.

Since ALG has a buffer of size at most M(B—1)+B = (M +1)B—M, it must
release at least M + 1 cells in time ¢’. By the pigeonhole principle it follows that
two of the released cells correspond to the same stream. This stream attains a
jitter of at least ¢/ —¢' — (0—1)X = X, and therefore MJ? (ALG) is strictly greater
than zero. On the other hand, the optimal max-jitter possible with a buffer of
size B is zero: Every cell of a stream other than o, is released immediately upon
its arrival, and for every 0 < j < B, cell p* is released in time ¢ — (B — j)X.
Similarly to the previous case, every stream obtains a zero jitter by this release
schedule, and no more than B cells are stored simultaneously in the buffer. 0O

Note that this lower bound for the case M = 1 exactly coincides with the
result of the single stream model [1]. Theorem 1 further implies that in case
the buffer size is < M(B — 1) + B + 1, there are scenarios in which an optimal
schedule attains zero jitter for all streams, while any online algorithm produces
a schedule where at least one stream has a strictly positive jitter. This fact
immediately implies that even if the objective is to minimize the average jitter
obtained by the different streams, the same lower bound holds. Since the online
algorithm, which statically partitions the buffer, minimizes the jitter of each
stream independently, it clearly minimizes the overall average jitter as well, thus
providing a matching upper bound.

4 An Efficient Offline Algorithm

This section presents an efficient offline algorithm that generates a release sched-
ule with optimal max-jitter.

Given a sequence o that is an interleaving of M streams, consider a total
order m = (p{,...,p),) on the release schedule of cells in o that respects the
FIFO order in each stream separately. The release schedule, which attains the
optimal max-jitter and respects 7, can be found using similar arguments to the
ones in [1, Algorithm A]: Cell p; can be stored in the buffer only until cell p; B
arrives, imposing strict bounds on the release time of each cell. In particular,
it follows that for every sequence o, there exists an optimal release schedule.
Unfortunately, it is computationally intractable to enumerate over all possible
total orders, hence a more sophisticated approach should be considered.

We first discuss properties of schedules that achieve optimal max-jitter. We
then show that these properties allow to find an optimal schedule in polynomial
time, based solely on the cells’ arrival times, and the parameters X and B.

For every cell p7, one can intuitively consider ¢t = a(p]) — jX as the time
at which pg should be sent, so that p}’ is sent immediately upon its arrival,

in a perfectly periodic release schedule. For any stream o, denote by g% =
max; {a(p?) —jX}. From a geometric point of view, 37 is a lower bound on
the intersection between the time axis and the right margin of any release band
(see Figure 2(a)), since otherwise the cell defining 3% would have to be released
prior to its arrival.

Given a release schedule s for a sequence o, a stream o; C o is said to be
aligned in s if there is no cell pj' € o; such that s(p’) > % + kX. Clearly,
if o; is aligned in s, then the cell pj that defines (37¢ satisfies s(p;’) = a(p;-”).
Geometrically, the right margin of a release band corresponding to an aligned
stream o; intersects the time axis in point (37%,0) (see Figure 2(b)).

A release schedule s for max-jitter is said to be aligned, if every stream is
aligned in s. The following simple lemma shows that one can iteratively align
the streams of an optimal schedule without increasing the overall jitter:

Lemma 1. For every sequence o, there exists an optimal aligned schedule s.

Proof. Given an optimal schedule s’ for sequence o with at least ¢ aligned
streams, we prove that s’ can be changed into an aligned schedule (i.e. with
M aligned streams), maintaining its optimality.

We first show that s’ can be altered into an optimal schedule with ¢ + 1
aligned streams. Let o; be one of the non-aligned streams in s’, and consider the
following schedule s:

— oey min{s’(p‘,’k),ﬂff’c +jX}k:i
8(p])_{S/(pjk) J k#z

Clearly for every stream other than o;, the schedule remains unchanged, there-
fore it suffices to consider only stream o;. Since s'(p]’) > a(p]’) and 7 +jX >
a(p;-”), 5 is a release schedule and it can easily be verified that 5 satisfies the
FIFO constraint. Schedule 5 is B-feasible, since s’ is B-feasible and for any cell
p;',8(p;) < s'(p]"). Stream o; is aligned in 5, since clearly every cell p7* satisfies
3(pj') < 7 +jX. Hence, 5 has £ + 1 aligned stream.
In order to prove that 3 is optimal, it suffices to show that 5(p7') —5(py:) —
—m)X < J7%(s") for every two cells p7*,pfi € o;. First note that s(p7’) —
(0) = (— m)X < /() — 5(p) — (j — m)X, since 5(p7) < o/ (pF). Tt
(ppi) = 8'(ppi) then trivially s(pj*) —3(pfi) — (j — m)X < J7(s"). Otherwise,
(pgi) = B7"+mX = a(py’)—bX+mX for the cell p;* that defines 37¢. Since s’ is
a release schedule, then s(py*) > a(py’), which yields 5(p7*) —3s(pfi) — (j—m)X <
s'(p7') —s'(py') — (1 —b)X < J7(s).

Applying the same arguments repeatedly alters schedule s’ into an aligned
schedule and preserves its optimality. O

—
<

Wl »l

Next we show that the optimality of a schedule s is maintained even if cells
that are stored in the buffer are released earlier, as long as their new release time
satisfies FIFO order and remains within a release band of width MJ?(s):

Lemma 2. Let s be an optimal schedule for sequence o. Then, for every stream
o; C o and for every J € [J7(s), MJ°(s)], the new schedule

soony _ Jmax{a(pf*), B = J + X} k=i
s(pj)_{S(p}Tk) ’ ki

is B-feasible and MJ?(s") = MJ?(s). Furthermore, if s is aligned then so is s'.

Proof. Since s’ only changes the release schedule of stream o, it clearly preserves
the FIFO order and jitter of each stream other than o;.

We first show that s’ respects the FIFO order of cells in ;. Let p‘j” be any cell
in ;. If s'(pf') = a(p?") then its releasg time is < a(p;;_l) < s'(p7i,). Otherwise,
s'(p]') =87 = J+jX <7 =T+ (F+)X < 8'(p)4)-

In order to bound the max-jitter of s, it suffices to show that J7(s") <
MJ?(s). Consider any pair of cells pJ*, py* € o;. By the definition of s’, s'(pJ¢) >
(% —J+aX. On the other hand, s'(p;*) = max {a(py*), %% — J +bX} < % +
bX since a(py’) < 37 4+bX by the definition of 37*. Hence, s'(py")—s'(pg*) < J+
(b —a)X, which implies that J7(s") = maxq {s'(py’) — s'(p7") — (b—a)X} <
J <MJ?(s).

Assume by way of contradiction that s’ in not B-feasible, and let ¢ be any
time in which a set P of more than B cells are stored in the buffer. Since the
release schedule of any stream oy, other than o; is identical under both s and s’,
every cell p}”‘ € P, for k # i, is also stored in the buffer at time ¢ under schedule
s. Note first that any cell in P is not released upon its arrival. Hence,

s'(pj') =p% —J+ 35X by the definition of s’
< B% = J%(s) +jX since J € [J7(s), MJ?(s)]
=a(p)’) — kX —J%(s) +jX for p7* defining 37
<s(f) — (k=X —J7(s) since a(p]’) < s(p')
< s(p0) — (k-)X
s(pg') —s(pj’) — (k — 4)X) by definition of J7(s)
< s(pj’)

Therefore, all cells p;’ € P are stored in the buffer at time ¢ under schedule s as
well, contradicting the B-feasibility of s.

We conclude the proof by showing that if s is aligned then s’ is also aligned.
Assume s is aligned. For any stream o} # o; schedules s and s’ are identical
on oy, and therefore o} is aligned in s’. Assume by contradiction that o; is
not aligned, therefore there is a cell p7* such that s'(pj*) > 87" + jX. Note
that the definition of 37 is independent of s and s’. By the definition of s,
max{a(p?”),ﬂ"i —J+jX} > 7 + jX. It follows that a(pj’) > B + jX,
contradicting the maximality of 57¢. a

The new schedule obtained in the above lemma is illustrated by the circled
cells in Figure 3. By iteratively applying Lemma 2 with J = MJ7(s) on all
streams, we get:

Corollary 1. Given an optimal aligned schedule s for sequence o, the schedule
defined by
s'(p7*) = max {a(p]*), 87+ — MJ7(s) + X }

is an optimal aligned schedule.

The following lemma bounds from below the release time of cells in an aligned
schedule. Intuitively, this lemma defines the left margin of the release band.

Lemma 3. For any aligned schedule s for sequence o, every stream o; C o, and
every cell p7*, s(pj') > 87 — J%(s) +jX.

Proof. Assume by contradiction that there exists a stream o; and a cell p;’ such
that s(pj') < 7" — J%(s) + jX. Let py’ be the cell defining 3. Since s is
aligned, it follows that s(p7') = a(p}'). Hence,

V
~—
=

TaFaw
N~—
|
~~
=@

S

|
<

Q
—~
&,

+
o,
>

|
—~
Pl

|
.
~

which is a contradiction. O

Lemma 3 indicates an important property of aligned optimal schedules. In
such schedules, the jitter of any stream can be characterized by the release time
of a single cell, as depicted in the following corollary: (proof omitted)

Corollary 2. For any aligned schedule s for sequence o and every stream o; C
o, J7(s) = max; {ﬁ‘” — s(pj’) +jX}.

The following lemma shows that at least one of the widest release bands,
corresponding to some stream o; attaining the max-jitter, has its left margin
determined by the following event: An arrival of a cell causing a buffer overflow,
which necessitates some cell of o; to be released earlier than desired.

Lemma 4. Let s be an aligned optimal schedule for sequence o. There exists
a stream o; C o that attains the max-jitter, and a cell p;’ such that s(p;’) =
B7 —MJ%(s) + X and s(p') = a(py) for some cell py.

Proof. We show by contradiction that if the claim does not hold for an optimal
aligned schedule, then such a schedule can be altered into a new schedule with
max-jitter strictly less than the original schedule. Formally, consider an aligned
optimal schedule s for 0. Let M = {o; | J7i(s) = MJ?(s)}, and for every o; € M,
let T; = {pj’ | s(p]') = B7 — MJ?(s) + jX }. From a geometric point of view,
T; consists of all the cells in o;, whose release time lies on the left margin of o;’s
release band. Finally, let T' = Uaie u Ti. Assume by contradiction that for every
p;’ € T, there is no cell pj such that s(pj”) =a(py]).

Note first that in such a case, MJ?(s) > 0. Otherwise, since s is aligned,
for each stream o; the cell p]’ defining 57 satisfies both s(p}’) = a(p}’) and
S(p') = A% — 0+ jX.

The altered schedule s’ is obtained by postponing the release of all the cells in
T for some positive amount of time. As we shall prove, schedule s’ is B-feasible,
and has a max-jitter strictly less than MJ?(s), contradicting the optimality of s.

For each cell pj* € T' which is the j'th cell of o (i.e, p;* = p7), the exact
amount of postponing time is determined by the following constraints:

1. Awoiding buffer overflow: Do not postpone further than the first arrival of a
cell after s(p7). This constraint is captured by

o0(p7) = min a(py) —s(p?)}.
v7) pz:a<p5>>s<p;’>{ (v7) = s}

2. Maintaining FIFO order: Do not postpone further than s(p;’ ;). This con-
straint is captured by e(p7) = s(py’ ;) — s(pg’)-

If p}’ is the last cell in o, (5(p;-’) = €(p?) = 00. Let § = minpjeT (5(p;-’) and
€= minp;r er €(P]), capturing the amounts of time that satisfy these constraints
for all cells in T'. Since MJ?(s) > 0 and by using the previous lemmas and the
assumption, it can be verified that both § and e are finite and strictly greater
than zero.

For the purpose of analysis, define for every stream o; € M,

ploi) = min {s(py’) — (87" —MJ7(s) + kX)}.
P €oi\T;

p(o;) comes to capture how far is the rest of the stream from the left margin.
Since for any o; € M, J% (s) > 0, then o; \ T; is not empty and p(c;) > 0. Let
p = ming, cpr p(o;). It follows that p > 0.

Let A = min {0, ¢, p}, and consider the following schedule that, as we shall
prove, attains a jitter strictly smaller than MJ?(s):

() = {s(p;;) +A/2 p] e T.
s(p7) otherwise

We first prove that s’ is B-feasible and maintains FIFO order. Assume by
way of contradiction that s’ is not B-feasible, and let ¢ be the first time the
number of cells in the buffer exceeds B. By the minimality of ¢, there exists a
cell that arrives at time ¢. For every cell p}’ € T, no cells arrive to the buffer in
the interval [s(p]), s(p]) + A/2] because A < §(p7), implying that ¢ is not in
any such interval. But the definition of s’ yields that the content of the buffer
in such a time ¢ is the same under schedules s and s’, thus contradicting the
B-feasibility of s. The FIFO order of s" is maintained since A < e(p7) for every
p; €T.

We conclude the proof by showing that MJ?(s') < MJ?(s). Consider any
o; € M, and any p7y'. If pi* € T then by the definition of s’ and Lemma 3,
s'(p7') = s(py') + A/2 > 7 — MJ?(s) + kX + A/2. The same holds also for
py ¢ T: Since p(o;) > A > A/2, it follows that s'(p}’) = s(py’) > % —

packet packet Py
number number
[
k| k4
” '
B O 4 O
JA JA
r r
time time
@) B alof) e alof)
[J7i(s) 1 [Joi(s") —
(a) schedule s (b) schedule s’

Fig. 3. Outline of arrivals (dotted circles) and releases (full circles) for cells of the
stream o; that attains the max-jitter, in an aligned release schedule, as discussed in
Corollary 1 and in Lemma 4. The square represents an arrival of some cell in ¢ causing
buffer overflow.

MJ?(s) + kX + p(o;) > 7 — MJI?(s) + kX + A/2. Hence, for every pJ’,

B —s'(py') + kX < % — (B% —MJ?(s) + kX + A/2) + kX
=MJ9(s) — A/2
< J%(s).

By Corollary 2, J%(s") < J7%(s) for any stream o; € M. The jitter of any
other stream remains unchanged, therefore MJ7(s") < M.J?(s), contradicting
the optimality of s. a

Lemma 4 implies that there is an optimal schedule s and a stream o;, such
that MJ(s) = 87 —a(p;) + kX, for some cells p]* € o; and p] € o. Note that
for any stream o;, the value of G can be computed in linear time using only
the arrival sequence o;. It follows that by enumerating over all possible choices
of the pair (p]*,p;), one can find the collection of possible values of the optimal
jitter. For every such value J, verifying that there is a B-feasible release schedule
attaining jitter J can be done in linear time by checking the feasibility of the
schedule defined in Corollary 1 assuming MJ(s) = J. This yields the following
result:

Theorem 2. There exists a polynomial-time algorithm that finds an optimal
schedule for the multi-stream mazx-jitter problem.

5 Discussion

This paper examines the problem of jitter regulation and specifically, the tradeoff
between the buffer size available at the regulator and the optimal jitter attainable
using such a buffer. We deal with the realistic case where the regulator must
handle many streams concurrently, thus answering a primary question posed
in [1].

We focus our attention on regulating the jitter of multiple streams with the
objective of minimizing the maximum jitter attained by any of these streams.
We show that the offline problem of finding a schedule that attains the optimal
max-jitter can be solved in polynomial time, by a time-efficient algorithm which
produces an optimal schedule. We observe that existing single-stream online
algorithms can be used to devise an online algorithm for the multi-stream jitter
regulation problem, at a cost of multiplying the buffer size linearly by the number
of streams. We prove that such a resource augmentation is essential by providing
an asymptotically matching lower bound. Our results for the online setting apply
also to the problem of finding a release schedule with optimal average jitter.

Note that our offline algorithm suggests an interesting heuristic for improving
the value of the jitter for an online algorithm using a buffer of size considerably
less than M B, compared to the optimal jitter attainable with a buffer of size B.
One can calculate an optimal schedule of a prefix of the traffic using our offline
algorithm, and then prolong the schedule by attempting to send consecutive cells
as equally spaced as possible. Although there are traffics in which this approach
fails, as shown by our lower bound, it may prove a useful heuristic in situations
where the overall traffic in the network does not change radically over time.

Since real-life networks clearly have finite capacity links, it is also interesting
to investigate the behavior of a jitter regulator that handles multiple streams
simultaneously and its outgoing link is of bounded capacity. In addition, since
regulators might be allowed to drop cells, it is of interest to examine the corre-
lations between buffer size, optimal jitter, and drop ratio.

Acknowledgements: We would like to thank Hagit Attiya, Seffi Naor, Adi
Rosén, and Shmuel Zaks for their useful comments.

References

1. Mansour, Y., Patt-Shamir, B.: Jitter control in Qos networks. IEEE/ACM Trans-
actions on Networking 9 (2001) 492-502

2. The ATM Forum: Traffic Management Specification. (1999) Version 4.1, AF-TM-
0121.000.

3. Zhang, H.: Service disciplines for guaranteed performance service in packet switching
networks. Proceedings of the IEEE 83 (1995) 1374-1396

4. Tanenbaum, A.: Computer Networks. Fourth edn. Prentice Hall (2003)

5. Keshav, S.: An Engineering Approach to Computer Networking. Addison-Wesley
Publishing Co. (1997)

6. Zhang, H., Ferrari, D.: Rate-controlled service disciplines. Journal of High-Speed
Networks 3 (1994) 389-412

7. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press (1998)

8. Sleator, D., Tarjan, R.: Amortized efficiency of list update and paging rules. Com-
munications of the ACM 28 (1985) 202—208

9. Koga, H.: Jitter regulation in an internet router with delay constraint. Journal of
Scheduling 4 (2001) 355-377

