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i Main issues in this article

= A method using a constellation model
to learn and recognize Object
categories

= A method that try and succeed in

learning from a small training set (1-5)
images for each category



Categories Algorithm seen so

‘L far

= All Used a bag of words methods

Weaknesses:
= All features has the same probability
= Location and shape knowledge is lost



i Constellation Model

= Collect features from the image
(include their location data)

= Choose P of the features as the object
feature (choosing a hypothesis)

= Calculate the probability the object is
in the picture using both the features
appearance and relative location



Constellation Model (cont.)




Constellation Model — Is there
a face
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Mathematical Approach —
‘L using Graphical Models
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Fully Star structure Tree structure
connected
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*\When the graph connections depends on both the location
(shape) and appearance



i Paper Approach

= Learning Categories from few (1-5)
training samples

= Using only few (3) learned in advance
categories

= Avoid using hand alignment on the
training samples



= One versus all method

i Bayesian Approach

= Compare the probability there is an
object in the image with the probability

it is only background
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i Bayesian Approach
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i Representation of an Image

= Each image will be modeled as the set of
features extracted from it

= Divide the features data to Shape and
Appearance

= [his leads us to
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i The likelihood P(X,A|6)

= Using a constellation model, while h is an
index of P (4) features which assume to
be the object feature

P(X,A|8)=> P(X,Ah|6)

h(JH

=Y P(X |h,6)P(A|h,6*)P(h,6)

hUJH

= Under the assumption that Shape and
Appearance are independent



i Background likelihood

= Assumption: the background model is
fixed (Only one teta exist) The integral
collapses

= Thereis only 1 background hypothesis,
the null hypothesis

= We get for the background likelihood:
P(X1 A‘ gbg) = 3(><’ A’ I"]0 | Hbg)

= P(X |y, 8%)P(Al by, 82)P(h,, 6,,)




i Calculation of R

= Maximum Likelihood approach
= Maximum A posteriori approach
= Conjugate Densities



i Maximum Likelihood approach

Mission: Calculating IP(X’ Al ‘9) P((9| Xt , A ’ Ofg)ag

Assuming the following

probability is highly peaked P(Hl Xt , A , Ofg)

g :3(0-6)
This cause the integral to collapse which leaves us
with
P(X, A 16)

And using an ML approach we get

g =6" =argmaxP(X,, A |6)
6



Maximum A Posteriori
i Approach

= We use the same assumption and again
we want to calculate ¢

= Only this time we have a prior
knowledge P(6)

s SO we can calculate:

g =6"" =argmax P(X,, A | 6)P(6)
6



i Conjugate Densities Approach

= Assume that P(@|X..A.O4) has a
specific parametric form

= Which creates the integral

| P(X,A|8)P(8] X, A,0,)06

to have a close form solution



Conjugate Densities Approach

i (Cont.)

= Actually this means choosing the following
distributions density such as everything needed
to be calculated and learned is achievable

P(X,A|68) -1scountable

P(E] X, A,Oyy) - canbelearnes

P(6) -1s countable

jP(X, A|O)PE| X,, A)08 - All the above generate this

to be countable (close-form)



Learning Using a Conjugate

i density

= Given few training samples which
assumes to contain an Object of the
category

= Features are extracted from the whole
image

= And using a variation of EM (VBEM)
learn  P(8| X, A,O,)

= When ‘h’ is the hidden variable




!'_ Implementation



i Implementation - General

= Gray scale images were used

= Experiments made on 101 Caltech data
set (which was created for this
assignment)

= Due to complexity issues only 4
features were used in each hypothesis



i Implementation - Features

Kadir and Brady detectors were used

This finds features that are salient over
location and scale

Location X was the center of each feature
Features were scale to 11X11 pixel patch

The Appearance was calculated as the first 10
principals over a fixed, trained PCA (trained
over all features of background category)



i Prior calculation

= Idea is that we can get the prior from the
categories we've learned so far

= Assuming together they can create good
prior for new categories

= Prior was calculated from 3 classes learned
using ML method

= 30 models were calculated for g



i Experiments Settings

= From each category a fixed set of 50 images
were selected

= From them 1-6 images were defined as the
training images and the rest were test data

= Also 50 images were taken as background
test images

= ML model was calculated for comparing




!'_ Experiments Results



i Posterior Learning
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The learning process. (a) Appearance parameter space, showing the mean and variance distributions for each of the
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Recognition Results-Over 1

‘L train image
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Recognition results - over 6

‘L train images
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ML and MAP vs. Beyesian
i Approach

= A question arises: What is the effect of
the prior in the bayesian learning?

= This can be checked by comparing to
the ML and MAP methods

= The ML totally lacks the prior

= The MAP is set using the same prior of
the bayesian




{ ML/MAP vs. Bayesian
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ML/MAP vs. Bayesian
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Shape/Appearance Only vs.
‘L Shape-Appearance
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Discrimination between all 101
i categories

= Using a winner takes all method

= For each image the most successful
(biggest R) category was selected

= Results were:
 3—-104% 6-13.9% 15—-17.7%

= 1 percent is the random decision result




i Future Work

= Research the prior by using checking
the effect of more complex priors

= The effect of similarity to “prior”
categories on the results

= Other models that uses a prior
knowledge

= Using an incremental model on the prior



Appearance likelihood
i calculation

= Assuming independency between features

= Assuming a gaussian distribution over
each feature

P(A[h,8%) = |__!9(A(h )1 Ty |_| G(ACH) | Hog: Tg)

j=1,j/h

background P(A|hy,6s) = l_l 9(A(j) |ty Toy)  Const for a given
j= image

P(Alh,6%) _ & 9(A(h) [ 45.T7)
P(Alhy, ) b 9(AMN,) | frg Teg)

Finally we get




i Shape likelihood calculation

= Using joint gaussian distribution

= Using the left most feature as a landmark
we create an invariant space

= Use a uniform density for the object’s
position

P(X |h,8%)=a™g(X(h)|u*,T")a™ "
background  P(X | h,, Qbé) =g N

P(X|h,8”) _ e X X
P(X\hO,ng)_a g(X(h)[4”,T7)




Implementation of the
i Conjugate Densities

P(X, Al ) =ZP(X(h) |47, T )P(A) |47, TF)

P81 X, A, Oy) = P(m)P(™ [T 7)P(I ™ )P(u™ [T *)P(T*)

P(O) - When choosing wisely P(71),P(" ™) we get this to be
Normal-Wishart distribution

- On this setting this term

J.P(X, A|P(E| X, A)@H become a multimodal

Student’s T distribution



ML/MAP vs. Bayesian — bad
category
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ground truth categories
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