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Abstract We present a novel unsupervised learning method
for human action categories. A video sequence is repre-
sented as a collection of spatial-temporal words by extract-
ing space-time interest points. The algorithm automatically
learns the probability distributions of the spatial-temporal
words and the intermediate topics corresponding to human
action categories. This is achieved by using latent topic
models such as the probabilistic Latent Semantic Analysis
(pLSA) model and Latent Dirichlet Allocation (LDA). Our
approach can handle noisy feature points arisen from dy-
namic background and moving cameras due to the appli-
cation of the probabilistic models. Given a novel video se-
quence, the algorithm can categorize and localize the human
action(s) contained in the video. We test our algorithm on
three challenging datasets: the KTH human motion dataset,
the Weizmann human action dataset, and a recent dataset of
figure skating actions. Our results reflect the promise of such
a simple approach. In addition, our algorithm can recognize
and localize multiple actions in long and complex video se-
quences containing multiple motions.
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1 Introduction

Imagine a video taken on a sunny beach, where there are
people playing beach volleyball, some are surfing, and oth-
ers are taking a walk along the beach. Can a computer au-
tomatically tell us what is happening in the scene? Can it
identify different human actions? We explore the problem
of human action categorization in video sequences. Our in-
terest is to design an algorithm that permits the computer to
learn models for human actions. Then, given a novel video,
the algorithm should be able to decide which human action
is present in the sequence. Furthermore, we look for means
to provide a rough indication of where (in space and time)
the action is being performed.

The task of automatic categorization and localization of
human actions in video sequences is highly interesting for
a variety of applications: detecting relevant activities in sur-
veillance video, summarizing and indexing video sequences,
organizing a digital video library according to relevant ac-
tions, etc. It remains, however, a challenging problem for
computers to achieve robust action recognition due to clut-
tered background, camera motion, occlusion, view point
changes, and geometric and photometric variances of ob-
jects.

These challenges are common to a broad range of com-
puter vision tasks. A cluttered background introduces infor-
mation that is not relevant to the signal of interest, making
the latter harder to isolate. Camera motion creates ambigu-
ities in the motion patterns that are observed in the image
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Fig. 1 Example frames from
video sequences in the figure
skating dataset (Wang et al.
2006). We adapt 32 video
sequences from the original
dataset, to produce a subset
which contains seven people
executing three actions:
camel-spin (first row), sit-spin
(second row) and stand-spin
(third row). The videos are
taken with a moving camera and
dynamic background

Fig. 2 Example images from complex video sequences taken by the authors with a hand held camera. In these videos, there are multiple people
performing different actions against a cluttered background

plane: it could make an object appear static when it is mov-
ing with the same speed and direction as the camera. In ad-
dition, human actions can also be observed only partially
due to occlusions, thus the actual signal of interest can be
dramatically reduced. Finally, view point changes as well as
geometric and photometric variance produce very different
appearances and shapes for the same category examples, re-
sulting in high intra-class variances.

Consider for example, a live video of a figure skating
competition, the skater moves rapidly across the rink and the
camera also moves to follow the skater. With moving cam-
eras, cluttered background, and moving target, few vision
algorithms could identify, categorize and localize such mo-
tions well (Fig. 1). In addition, the challenge is even greater
when there are multiple activities in a complex video se-
quence (Fig. 2). In this paper, we will present an algorithm
that aims to account for these scenarios.

We propose a generative graphical model approach to
learn and recognize human actions in video, taking advan-
tage of the robust representation of sparse spatial-temporal
interest points and an unsupervised learning approach. In the
context of our problem, unsupervised learning is achieved

by obtaining action model parameters from unsegmented
and unlabeled video sequences, which contain a known
number of human action classes. We advocate the use of
an unsupervised learning setting because it opens the pos-
sibility to take advantage of the increasing amount of avail-
able video data, without the expense of detailed human an-
notation. Towards this end, a generative approach provides
means to learn models in an unsupervised fashion; as op-
posed to discriminative models which generally require de-
tailed labeled data.

Our method is motivated by the recent success of ob-
ject detection/classification or scene categorization from
unlabeled static images, using latent topic models (Sivic
et al. 2005; Fei-Fei and Perona 2005). One key consider-
ation in these works is known as the “bag of words” rep-
resentation,1 where the geometric arrangement between vi-
sual features is ignored. This is commonly implemented
as a histogram of the number of occurrences of particu-
lar visual patterns in a given image. This representation

1Alternatively, some researchers refer to this representation as “bag of
keypoints”, see for example (Dance et al. 2004).
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is a heritage from the text analysis domain, for which the
latent topic models were first developed (Hofmann 1999;
Blei et al. 2003). In spite of their simplicity, the latent topic
models have been successfully applied to challenging com-
puter vision tasks, which motivates us to explore their ap-
plicability in the human action categorization domain.

Two related models are generally used: probabilistic La-
tent Semantic Analysis (pLSA) by Hofmann (1999) and
Latent Dirichlet Allocation (LDA) by Blei et al. (2003). In
this paper, we investigate the suitability of both models for
video analysis by exploring the advantages of the powerful
representation and the great flexibility of these generative
graphical models.

The contributions of this work are twofold. First, we pro-
pose an unsupervised learning approach for human actions
using a bag of words representation. We apply two latent
topic models, pLSA and LDA, to the problem of learning
and recognizing human action categories, while adopting a
“bag of spatial-temporal words” representation for video se-
quences. Second, our method can localize and categorize
multiple actions in a single video. In addition to the catego-
rization task, our approach can also localize different actions
simultaneously in a novel and complex video sequence.
This includes the cases where multiple people are perform-
ing distinct actions at the same time, and also situations
where a single person is performing distinct actions through
time.

In order to gather experimental evidence that supports our
proposed approach, we train and recognize action models
on three different datasets: the KTH human action database
(Schuldt et al. 2004), the Weizmann human action dataset
(Blank et al. 2005), and a figure skating dataset adapted
from the dataset in (Wang et al. 2006). In addition, we used
those models to perform recognition in videos from a dif-
ferent dataset (Song et al. 2003), as well as test sequences
taken by ourselves (Fig. 2). Note that we use testing data
that was collected in a totally different setting than that used
for training. This will provide a proper out of sample testing
scenario.

The rest of the paper is organized in the following way.
We review previous related work in Sect. 2. In Sect. 3,
we describe our approach in more details, including the
spatial-temporal feature representation, a brief overview of
the pLSA and LDA model in our context, and the specifics
of the learning and recognition procedures. In Sect. 4, we
present the experimental results on human action recogni-
tion using real datasets, and also compare our performance
with other methods. Multiple action recognition and local-
ization results are presented to validate the learnt model.
Finally, Sect. 5 concludes the paper.

A preliminary version of this paper appeared in BMVC
2006 (Niebles et al. 2006).

2 Background Work

A considerable amount of previous work has addressed the
question of human action categorization and motion analy-
sis. One line of work is based on the computation of correla-
tion between volumes of video data. Efros et al. (2003) per-
form action recognition by correlating optical flow measure-
ments from low resolution videos. Their method requires
first segmenting and stabilizing each human figure in the
sequence, as well as further human intervention to anno-
tate the actions in each resulting spatial-temporal volume.
Shechtman and Irani (2005) propose a behavior-based cor-
relation to compute the similarity between space-time vol-
umes which allows to find similar dynamic behaviors and
actions. Their method requires to specify a query action tem-
plate, which will be correlated to videos in database. At each
pixel, the space-time gradients of the corresponding video
patch must be computed and summarized in a matrix. The
eigenvalues of the resulting matrices are used to compute
similarity between two spatial-temporal patches. Therefore,
this method requires significant computation due to the cor-
relation procedure between every patch of the testing se-
quence and the video database.

Another popular approach is to first track body parts and
then use the obtained motion trajectories to perform ac-
tion recognition. This is done with much human supervi-
sion and the robustness of the algorithm is highly depen-
dent on the tracking system. Ramanan and Forsyth (2004)
approach action recognition by first tracking the humans in
the sequences using a pictorial structure procedure. Then 3D
body configurations are estimated and compared to a highly
annotated 3D motion library. The algorithm permits assign-
ing composed labels to the testing sequences; however, it
relies heavily on the result of the tracker, and the estimation
of the 3D pose may introduce significant errors due to hard-
to-solve ambiguities. In Yilmaz and Shah (2005), human la-
beling of landmark points in the human body is first done
at each frame in sequences from multiple moving cameras.
Then actions are compared using their corresponding 4D
(x, y, z, t) trajectories. Thus, their approach can be applied
to action recognition and retrieval, with the cost of a sig-
nificant amount of human annotation. In the work by Song
et al. (2003) and Fanti et al. (2005), feature points are first
detected and tracked in a frame-by-frame manner. Multiple
cues such as position, velocities and appearance are obtained
from these tracks. Then human actions are modeled utiliz-
ing graphical models based on triangulated graphs. These
models can be learnt in an unsupervised fashion. However,
their methods cannot deal with dynamic backgrounds, since
background features must be uniformly distributed and such
assumption fails if a rigid object is moving and generating
features in the background.

Alternatively, researchers have considered the analysis of
human actions by looking at video sequences as space-time
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intensity volumes. Bobick and Davis (2001) use motion his-
tory images that capture motion and shape to represent ac-
tions. They have introduced the global descriptors motion
energy image and motion history image, which are used as
templates that could be matched to stored models of known
actions. Their method depends on background subtraction
and thus cannot tolerate moving cameras and dynamic back-
grounds. Blank et al. (2005) represent actions as space-time
shapes and extract space-time features for action recogni-
tion, such as local space-time saliency, action dynamics,
shape structures and orientation. Similarly, this approach re-
lies on the restriction of static backgrounds which allows
them to segment the foreground using background subtrac-
tion.

Other lines of work have been proposed for video analy-
sis. Boiman and Irani (2005) propose composing the new
observations as an ensemble of local video patches from
previous examples in order to localize irregular action be-
havior in videos. Dense sampling of the patches is neces-
sary in their approach, and therefore, the algorithm is very
time-consuming. It is difficult to apply this method to ac-
tion recognition or categorization due to the large amount of
video data commonly presented in these settings. Another
work known as video epitomes is proposed by Cheung et al.
(2005). They model the space-time cubes from a specific
video by a generative model. The learnt model is a compact
representation of the original video, therefore this approach
is suitable for video super-resolution and video interpola-
tion, but not for recognition.

Some researchers have also explored unsupervised meth-
ods for motion analysis. Hoey (2001) applies a hierarchi-
cal dynamic Bayesian network model to unsupervised facial
expression recognition. The approach relies on previously
tracked and segmented faces whose motion is described us-
ing optical flow. Zhong et al. (2004) have proposed an un-
supervised approach to detect unusual activity in video se-
quences. Using a global representation based on a simple
descriptor vector per each frame, their method clusters video
segments and identifies spatially isolated clusters as unusual
activity. Therefore, the unusual activities must be observed
during training. Xiang and Gong (2005) apply the Multi-
Observation Hidden Markov model and spectral clustering
to unsupervised training of behavior models that can detect
abnormal activities.

Another approach uses a video representation based on
spatial-temporal interest points. In spite of the existence of
a fairly large variety of methods to extract interest points
from static images (Schmid et al. 2000), less work has been
done on space-time interest point detection in videos. Laptev
(2005) presents a space-time interest point detector based
on the idea of the Harris and Förstner interest point oper-
ators (Harris and Stephens 1988). They detect local struc-
tures in space-time where the image values have significant

local variations in both dimensions. However, this method
produces a small number of stable interest-points which are
often non sufficient to characterize complex sequences. In
addition, Dollár et al. (2005) propose a detector based on
a set of separable linear filters, which generally produces
a high number of detections. This method responds to lo-
cal regions which exhibit complex motion patterns, includ-
ing space-time corners. Also, a number of descriptors are
proposed for the resulting video patches around each inter-
est point. Ke et al. (2005) apply spatial-temporal volumetric
features that efficiently scan video sequences in space and
time. Their method builds on the rectangle features used
by Viola and Jones (2001). Their approach detects interest
points over the motion vectors, which requires dense esti-
mation of the optical flow. Additionally, the method requires
to calculate a significant number of features which are in
the order of a million, even after discretizing and sampling
the feature space. The detected interest points are then em-
ployed as features to perform human action categorization
with a discriminative cascade classifier, which requires an-
notated positive and negative examples. Finally, a recent ap-
proach by Oikonomopoulos et al. (2006) extends the idea of
saliency regions in spatial images to the spatiotemporal case.
The work is based on the spatial interest points of Kadir
and Brady (2003), which is extended to the space-time case.
Two set of spatiotemporal salient points are compared based
on the chamfer distance. Experimental results are promising
based on their own video sequences captured by a stationary
camera.

Interest points extracted with such methods have been
used as features for human action classification. In (Schuldt
et al. 2004; Dollár et al. 2005; Oikonomopoulos et al. 2006;
Ke et al. 2005), the space-time interest points are com-
bined with discriminative classifiers to learn and recog-
nize human actions. Therefore, local space-time patches
have been proven useful to provide semantic meaning of
video events by providing a compact and abstract repre-
sentation of patterns. While these representations indicate
good potentials, the modeling and learning frameworks are
rather simple in the previous work (Schuldt et al. 2004;
Dollár et al. 2005), posing a problem toward handling more
challenging situations such as multiple action recognition.

Finally, we note the success of generative approaches
based on latent topics models for object and scene recog-
nition. Fei-Fei and Perona (2005) introduce the application
of latent topic models to computer vision tasks, within the
scope of natural scene categorization. Their models are in-
spired by the LDA model (Blei et al. 2003), and can learn
intermediate topic distributions in an unsupervised manner.
Also, Sivic et al. (2005) perform unsupervised learning and
recognition of object classes by applying a pLSA model
with the bag of visual words representation. The approach
permits to learn object classes from images with no label
and background clutter.
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Fig. 3 Flowchart of our
approach. To represent motion
patterns we first extract local
space-time regions using the
space-time interest point
detector (Dollár et al. 2005).
These local regions are then
clustered into a set of
spatial-temporal words, called
codebook. Probability
distributions and intermediate
topics are learned automatically
using one of the two models:
probabilistic Latent Semantic
Analysis (pLSA) or Latent
Dirichlet Allocation (LDA). The
learned models can then be used
to recognize and localize human
action classes in novel video
sequences

All the previous works suggest that improvement can be
made by relaxing assumptions of annotated data, stationary
cameras and static backgrounds. Thus, we are interested in
exploring the use of a generative approach where unsuper-
vised learning methods can be applied, in conjunction with
a representation based on local features. We present our pro-
posed algorithm in the following section.

3 Our Approach

Given a collection of unlabeled videos, our goal is to au-
tomatically learn different classes of actions present in the
data and to apply the learned model to perform action cate-
gorization and localization in the new video sequences. Our
approach is illustrated in Fig. 3. We assume that the videos
can contain some camera motion, for instance, the one ob-
served in videos taken with a hand held camera. Also, we ex-
pect the videos to contain a dynamic background that might
generate some motion clutter. In the training stage, we as-
sume that there is a single person performing only one action
per video. However, we relax this assumption at the testing
stage, where our method can handle observations containing
more than one person performing different actions.

We are given a set of unlabeled video sequences and we
would like to discover a set of classes from them. Each of
these classes would correspond to an action category, such
that we can build models for each class. Additionally, we
would like to be able to understand videos that are com-
posed of a mixture of action categories, in order to handle
the case of multiple motions. This resembles the problem of
automatic topic discovery in text analysis (Hofmann 1999;

Blei et al. 2003). Thus, we find a similar interpretation as
that initially proposed by the use of latent topic models for
object and scene classification (Fei-Fei and Perona 2005;
Sivic et al. 2005). In our case, we would like to analyze
video sequences instead of text documents; video sequences
are summarized as a set of spatial-temporal words instead
of text words; we seek to discover action categories instead
of text topics; and we expect to explain videos as a mix-
ture of actions instead of text documents as a mixture of
topics. In this work, we investigate two models that were
proposed in the text analysis literature to address the latent
topic discovery problem. First, we employ the simpler prob-
abilistic Latent Semantic Analysis (pLSA) proposed by Hof-
mann (1999). Second, we consider the Latent Dirichlet Al-
location (LDA) model proposed by Blei et al. (2003), which
provides a rigorous generative setting, permits the inclusion
of priors in a Bayesian manner, and addresses the overfitting
issues presented in the pLSA model. Both models permit
to learn their parameters in an unsupervised fashion. Thus,
these models provide an unsupervised learning framework
that permits to automatically discover semantic clusters in
the training data. Also, as opposed to discriminative meth-
ods such as Support Vector Machines, pLSA and LDA allow
the algorithm to perform meaningful reasoning on the data
beyond classification, for example topic localization. Fur-
thermore, such localization can be realized without the need
of scanning thousands or millions of windows per image.
These models, however, do not provide spatial nor temporal
scale invariances. Thus, they can only work within a small
margin of the scales that have been observed in training. Al-
ternative approaches that include such invariances might be
based upon models such as those in (Fergus et al. 2005).
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An important characteristic of the pLSA and LDA mod-
els is that they are based on the bag of words assumption,
that is, the order of words in a text document can be ne-
glected. This is equivalent to regarding the words in a doc-
ument as exchangeable. In addition, the particular ordering
of the documents in the document collection can also be ne-
glected, yielding a further exchangeability assumption at the
document level. In the context of human action classifica-
tion, the bag of words assumption translates into a video
representation that ignores the positional arrangement, in
space and time, of the spatial-temporal interest points. Such
assumption brings the advantages of using a simple rep-
resentation that makes learning efficient. The lack of spa-
tial information provides little information about the human
body, while the lack of longer term temporal information
does not permit us to model more complex actions that are
not constituted by simple repetitive patterns. Alternative ap-
proaches might include structural information by encoding
information of the human body using a pictorial structure
model (Felzenszwalb and Huttenlocher 2005), by observing
co-occurrences of local patterns such as those in (Savarese
et al. 2006), or by modeling the geometrical arrangement of
local features (Niebles and Fei-Fei 2007). In most cases, the
trade off is an increased computational complexity.

3.1 Feature Representation from Space-Time Interest
Points

There are several choices in the selection of good fea-
tures to describe pose and motion. In general, there are
three popular types of features: static features based on
edges and limb shapes (Dalal et al. 2006; Feng and Per-
ona 2002), dynamic features based on optical flow measure-
ments (Dalal et al. 2006; Sidenbladh and Black 2003), and
spatial-temporal features obtained from local video patches
(Blank et al. 2005; Cheung et al. 2005; Dollár et al. 2005;
Laptev 2005; Ke et al. 2005; Oikonomopoulos et al. 2006).
In particular, features from spatial-temporal interest points
have shown to be useful in the human action categorization
task, providing a rich description and powerful representa-
tion (Dollár et al. 2005; Schuldt et al. 2004; Ke et al. 2005;
Oikonomopoulos et al. 2006).

As Fig. 3 illustrates, we represent each video sequence as
a collection of spatial-temporal words by extracting space-
time interest points. Among the available interest point de-
tectors for video data, the interest points obtained using the
generalized space-time corner detector (Laptev 2005) are
too sparse to characterize many complex videos. This was
noted first in (Dollár et al. 2005), and confirmed in our ex-
perience with complex sequences such as the figure skating
videos (Fig. 1). We choose to use the separable linear filter
method in (Dollár et al. 2005), since it generally produces a
high number of detections. Note, however, that our method

does not rely on a specific interest point detector algorithm,
as long as the detector produces a sufficiently large number
of interest points. In the following, we provide a brief review
of the detector proposed in (Dollár et al. 2005).

Assuming a stationary camera or a process that can ac-
count for camera motion, separable linear filters are applied
to the video to obtain the response function as follows:

R = (I ∗ g ∗ hev)
2 + (I ∗ g ∗ hod)2 (1)

where g(x, y;σ) is the 2D Gaussian smoothing kernel, ap-
plied only along the spatial dimensions (x, y), and hev and
hod are a quadrature pair of 1D Gabor filters applied tem-
porally, which are defined as hev(t; τ,ω) = − cos(2πtω) ×
e−t2/τ 2

and hod(t; τ,ω) = − sin(2πtω)e−t2/τ 2
. The two pa-

rameters σ and τ correspond to the spatial and tempo-
ral scales of the detector respectively. In all cases we use
ω = 4/τ , and thus reducing to two the number of parame-
ters in the response function R. To handle multiple scales,
one must run the detector over a set of spatial and tempo-
ral scales. For simplicity, we run the detector using only one
scale and rely on the codebook to encode the few changes in
scale that are observed in the dataset.

It was noted in (Dollár et al. 2005) that any region with
spatially distinguishing characteristics undergoing a com-
plex motion can induce a strong response. However, regions
undergoing pure translational motion, or without spatially
distinguishing features will not induce a strong response.
The space-time interest points are extracted around the lo-
cal maxima of the response function. Each patch contains
the volume that contributed to the response function, i.e.,
its size is approximately six times the scales along each di-
mension.

Figure 4 shows an example of interest point detection in a
hand waving video sequence. Each colored box corresponds
to a detected interest point, that is associated with a video
patch. The neighborhood size is determined by the scale pa-
rameters σ and τ of the detector. Interest points are correctly
localized where significant motion occurs.

Note that by detecting spatial-temporal interest points, a
sparse representation of the video sequences is produced.
Small video patches are extracted from each interest point
and constitute the local information that is used to learn and
recognize human action categories. By employing local fea-
tures, we intent to emphasize the importance and distinctive-
ness of the short range spatial-temporal patterns. We argue
that the observed local patterns are discriminative enough
across human action classes (refer to Fig. 9), and provide
a reasonable feature space which allows to build good hu-
man action models. Additionally, this approach relaxes the
need of previously common preprocessing steps in global
approaches such as background subtraction in (Blank et al.
2005; Bobick and Davis 2001), or figure tracking and stabi-
lization in (Efros et al. 2003).
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Fig. 4 Interest point detection using the method of separable linear
filters in (Dollár et al. 2005). Each red box corresponds to a video patch
that is associated with a detected interest point. The neighborhood size
is determined by the scale parameters σ and τ of the detector. The
interest points are localized where significant motion occurs and can

be used to generate a sparse representation of the video sequence. For
a visualization of all the frames in particular spatial-temporal patches,
please refer to Fig. 9. The figure is best viewed in color with PDF
magnification

To obtain a descriptor for each spatial-temporal cube,
we calculate its brightness gradients on x, y and t direc-
tions. The spatial-temporal cube is then smoothed at dif-
ferent scales before computing the image gradients. The
computed gradients are concatenated to form a vector. The
size of the vector is equal to the number of pixels in the
cube times the number of smoothing scales times the num-
ber of gradients directions. This descriptor is then projected
to a lower dimensional space using the principal compo-
nent analysis (PCA) dimensionality reduction technique.
In (Dollár et al. 2005), different descriptors have been used,
such as normalized pixel values, brightness gradient and
windowed optical flow. We find that both the gradient de-
scriptor and the optical flow descriptor are equally effective
in describing the motion information. For the rest of the pa-
per, we will employ results obtained with gradient descrip-
tors.

It is worth noting that a number of video patch descrip-
tors have been proposed previously (Dollár et al. 2005;
Laptev and Lindeberg 2006). As mentioned above, we have
chosen a very simple descriptor based on image gradients
(Dollár et al. 2005). Such descriptor does not provide scale
invariance neither in the space nor the time domain. It does
not capture relative camera motion. However, more complex
descriptors that include small invariances to spatial scale and
speed, as well as invariances to small camera motions, are
available with the cost of more computational complexity
(for instance, local position dependent histograms in Laptev
and Lindeberg 2006). In our implementation, we rely on the
codebook to handle scale changes and camera motions. As
long as the newly observed local features do not contain pat-
terns of scale change and camera motion that are extremely
different from those observed in the data used to form the
codebook, we expect that similar local features will be as-
signed to consistent memberships on the codebook.

3.2 Codebook Formation

The latent topic models pLSA and LDA rely on the exis-
tence of a finite vocabulary of (spatial-temporal) words of
size V . In order to learn the vocabulary of spatial-temporal
words, we consider the set of descriptors corresponding to
all detected spatial-temporal interest points in the training
data. This vocabulary (or codebook) is constructed by clus-
tering using the k-means algorithm and Euclidean distance
as the clustering metric. The center of each resulting clus-
ter is defined to be a spatial-temporal word (or codeword).
Thus, each detected interest point can be assigned a unique
cluster membership, i.e., a spatial-temporal word, such that a
video can be represented as a collection of spatial-temporal
words from the codebook. The effect of the codebook size
is explored in our experiments, and the results are shown in
Fig. 13 and Fig. 8.

3.3 Learning the Action Models: Latent Topic Discovery

In the following, we will describe the pLSA and LDA mod-
els in the context of human action categories analysis, adapt-
ing the notation and terminology as needed from the ones
introduced by (Hofmann 1999; Blei et al. 2003).

3.3.1 Learning and Recognizing the Action Models by
pLSA

Suppose we have a set of M(j = 1, . . . ,M) video sequences
containing spatial-temporal words from a vocabulary of size
V (i = 1, . . . , V ). The corpus of videos is summarized in
a V by M co-occurrence table M̄ , where m(wi, dj ) stores
the number of occurrences of a spatial-temporal word wi in
video dj . In addition, there is a latent topic variable zk asso-
ciated with each occurrence of a spatial-temporal word wi
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Fig. 5 The probabilistic Latent Semantic Analysis (pLSA) graphical
model. Nodes are random variables. Shaded ones are observed and
unshaded ones are unobserved. The plates indicate repetitions. In the
context of human action categorization, d represents video sequences,
z are action categories and w are spatial-temporal words. The parame-
ters of this model are learnt in an unsupervised manner using an EM
procedure. This figure is reproduced from (Blei et al. 2003)

in a video dj . Each topic corresponds to an action category,
such as walking, running, etc.

The joint probability P(wi, dj , zk) is assumed to have the
form of the graphical model shown in Fig. 5:

P(dj ,wi) = P(dj )P (wi |dj ). (2)

Given that the observation pairs (dj ,wi) are assumed to be
generated independently, we can marginalize over topics zk

to obtain the conditional probability P(wi |dj ):

P(wi |dj ) =
K∑

k=1

P(zk|dj )P (wi |zk) (3)

where P(zk|dj ) is the probability of topic zk occurring in
video dj , and P(wi |zk) is the probability of spatial-temporal
word wi occurring in a particular action category zk . K is
the total number of latent topics, hence the number of action
categories in our case.

Intuitively, this model expresses each video sequence as
a convex combination of K action category vectors, i.e., the
video-specific word distributions P(wi |dj ) are obtained by
a convex combination of the aspects or action category vec-
tors P(wi |zk). Videos are characterized by a specific mix-
ture of factors with weights P(zk|dj ). This amounts to a
matrix decomposition with the constraint that both the vec-
tors and mixture coefficients are normalized to make them
probability distributions. Essentially, each video is modeled
as a mixture of action categories: the histogram for a partic-
ular video being composed by a mixture of the histograms
corresponding to each action category.

We then fit the model by determining the action category
histograms P(wi |zk) (which are common to all videos) and
the mixture coefficients P(zk|dj ) (which are specific to each
video). In order to determine the model that gives the highest
probability to the spatial-temporal words that appear in the
corpus, a maximum likelihood estimation of the parameters

is obtained by maximizing the following objective function
using an expectation-maximization (EM) algorithm:

V∏

i=1

M∏

j=1

P(wi |dj )
m(wi,dj ) (4)

where P(wi |dj ) is given by (3).
Given that our algorithm has learnt the action category

models, our goal is to categorize new video sequences.
We have obtained the action-category-specific video-word-
distributions P(w|z) from a different set of training se-
quences. When given a new video, the unseen video is ‘pro-
jected’ on the simplex spanned by the learnt P(w|z). We
need to find the mixing coefficients P(zk|dtest ) such that the
KL divergence between the measured empirical distribution
P̃ (w|dtest ) and P(w|dtest ) = ∑K

k=1 P(zk|dtest )P (w|zk) is
minimized (Hofmann 1999). Similarly to the learning sce-
nario, we apply an EM algorithm to find the solution. Thus,
a categorization decision is made by selecting the action cat-
egory that best explains the observation, that is:

Action Category = arg maxk P (zk|dtest ). (5)

Furthermore, we are also interested in localizing multi-
ple actions in a single video sequence. Though our bag of
spatial-temporal words model itself does not explicitly rep-
resent the spatial or temporal relationships of the local video
regions, it is sufficiently discriminative to localize different
motions within each video. This is similar to the approx-
imate object segmentation case in (Sivic et al. 2005). The
pLSA model models the posteriors

P(zk|wi, dj ) = P(wi |zk)P (zk|dj )∑K
l=1 P(wi |zl)P (zl |dj )

. (6)

Once each interest point has been assigned to a spatial-
temporal word, we can label the corresponding word wi

with a particular topic by finding the maximum of the pos-
teriors P(zk|wi, dj ) over k. Thus, we label the regions that
support the set of detected interest points, effectively pro-
ducing a topic localization, which corresponds to the local-
ization of potentially multiple actions that can belong to dif-
ferent action categories.

3.3.2 Learning and Recognizing the Action Models by LDA

As noted in (Blei et al. 2003), pLSA is not a well-defined
generative model of documents, since there is no natural
way to use it to assign probability to a new testing observa-
tion. In addition, the number of parameters to be estimated
in pLSA grows linearly with the number of training exam-
ples, which suggest that this model is prone to overfitting.
LDA (Blei et al. 2003) addresses these weaknesses.
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Fig. 6 (a) Latent Dirichlet Allocation (LDA) graphical model (Blei
et al. 2003). Nodes are random variables. Shaded ones are observed and
unshaded ones are unobserved. The plates indicate repetitions. In the
context of human action categorization, θ represents video sequences,
z are action categories and w are spatial-temporal words. α is the

hyperparameter of a Dirichlet distribution. (b) Graphical model that
represents the variational distributions proposed in (Blei et al. 2003)
to approximate the posterior probability in LDA. This figure is repro-
duced from (Blei et al. 2003)

Suppose we have a set of M(j = 1, . . . ,M) video se-
quences containing spatial-temporal words from a vocab-
ulary of size V (i = 1, . . . , V ). Each video dj is repre-
sented as a sequence of Nj spatial-temporal words w =
(w1,w2, . . . ,wNj

). Then the process that generates each
video dj in the corpus is:

1. Choose the number of spatial-temporal words: Nj ∼
Poisson(ξ)

2. Choose the mixing proportions of the action categories:
θ ∼ Dir(α)

3. For each of the Nj words wn:

• Choose an action category (topic): zn ∼
Multinomial(θ)

• Choose a spatio-temporal word wn from the multino-
mial distribution p(wn|zn,β)

Here we fixed the number of latent topics K to be equal
to the number of action categories to be learnt. Also, α is
the parameter of a K-dimensional Dirichlet distribution,
which generates the multinomial distribution θ that deter-
mines how the action categories (latent topics) are mixed in
the current video. In addition, a matrix β of size K × V pa-
rameterizes the distribution of spatial-temporal words con-
ditioned on each action category; each element of β corre-
sponds to the probability p(wi |zk).

The joint distribution of a topic mixture θ , the set of
words w observed in the current video, and their correspond-
ing topic (action category) z can be written as:

p(θ, z,w|α,β) = p(θ |α)

N∏

n=1

p(zn|θ)p(wn|zn,β). (7)

The probabilistic graphical model in Fig. 6 represents the
LDA model.

In order to perform video classification with LDA, one
must compute the posterior distribution of the hidden vari-
ables given a new input:

p(θ, z|w, α,β) = p(θ, z,w|α,β)

p(w|α,β)
(8)

where θ is specific to each input and represents its latent top-
ics distribution. Once θ is inferred, a classification decision
can be made by selecting the most likely topic in the current
testing video.

Although it is computationally intractable to perform in-
ference and parameter estimation for the LDA model in gen-
eral, several approximation algorithms have been investi-
gated. A variational inference approach has been proposed
in (Blei et al. 2003). The family of variational distribu-
tions that are considered can be represented by the model
in Fig. 6(b), and are characterized by:

q(θ, z|γ,φ) = q(θ |γ )

N∏

n=1

q(zn|φn) (9)

where γ and θ are the free variational parameters. The cor-
responding optimization procedure produces the parameters
(γ ∗, φ∗) which are a function of w.

Analogously to the pLSA case, the posterior Dirichlet pa-
rameters γ ∗(w) represent the projection of the new observed
video into the simplex spanned by the latent topics. Thus,
classification is performed by selecting the action category
that corresponds to the maximum element in γ ∗(w).

Furthermore, the localization procedure can also be im-
plemented using LDA. In this case, we can label each in-
terest point with an action category, by selecting the topic
that generates its corresponding spatial-temporal word with
highest probability. That means, for a fixed i, we select k

such that p(wi |zk) in β is maximum.
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Fig. 7 Example images from video sequences in the KTH dataset
(Schuldt et al. 2004). The dataset contains six types of human actions:
walking, jogging, running, boxing, hand waving and hand clapping.
These are performed several times by 25 subjects in different sce-

narios of outdoor and indoor environment. The camera is not static
and the videos contain scale changes. This figure is reproduced from
http://www.nada.kth.se/cvap/actions/

4 Experimental Results

We test our algorithm using three datasets: the KTH hu-
man motion dataset (Schuldt et al. 2004), a figure skat-
ing dataset (Wang et al. 2006), and the Weizmann human
action dataset (Blank et al. 2005). These datasets contain
videos of cluttered background, moving cameras, and multi-
ple actions; as well as videos exhibiting a single action, with
static camera and simple background. We can handle the
noisy feature points arisen from dynamic background and
moving cameras by utilizing the latent topic models pLSA
and LDA, as long as the background does not amount to
an overwhelming number of feature points. In addition, we
demonstrate multiple actions categorization and localization
in a set of new videos collected by the authors. We present
the datasets and experimental results in the following sec-
tions.

4.1 Recognition and Localization of Single Actions

4.1.1 Human Action Recognition and Localization Using
the KTH Dataset

KTH human motion dataset is the largest available video se-
quence dataset of human actions (Schuldt et al. 2004). Each
video has only one action. The dataset contains six types
of human actions (walking, jogging, running, boxing, hand
waving and hand clapping) performed several times by 25

subjects in different scenarios of outdoor and indoor envi-
ronment with scale change. It contains 598 short sequences.
Some sample images are shown in Fig. 7.

We extract interest points and describe the correspond-
ing spatial-temporal patches with the procedure described
in Sect. 3.1. The detector parameters are set to σ = 2 and
τ = 2.5. Each spatial-temporal patch is described with the
concatenated vector of its space-time gradients. Then, the
descriptors are projected to a lower dimensional space of
100 dimensions. Examples of the detections for sequences
in each category are shown in Fig. 10.

In order to build the codebook, we need to cluster the
feature descriptors of all training video sequences. However,
since the total number of features from all training examples
is very large, we use only a subset of sequences to learn
the codebook, in order to accommodate the requirements of
memory. Thus, we build spatial-temporal codewords using
only two videos of each action from three subjects. We keep
these sequences out of the training and testing sets, to avoid
contamination in the data.

In order to test the efficiency of our approach for the
recognition task, we adopt the leave-one-out testing para-
digm (LOO). Each video is labeled with the index of the
subject performing the action but not with the action class
label, so that the algorithm does not have information about
the action class contained in the sequences. Thus, for each
LOO run, we learn a model from the videos of 24 subjects
(except those videos used to build the codebook) in an un-
supervised fashion, test the videos of the remaining subject,
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Fig. 8 (a) Confusion matrix for the KTH dataset using 1500 code-
words (performance average = 83.33%); rows are ground truth, and
columns are model results; (b) Classification accuracy vs. codebook

size for the KTH dataset. Experiments show that the results for the
recognition task are consistently better when the pLSA model is
adopted

Fig. 9 The latent topic models provide means to rank the spatial-
temporal words given an action class. Here, we illustrate the top
word from each category, in the KTH dataset, using a spatial-temporal
patch. Each row contains the frames from the neighborhood of a sin-

gle spatial-temporal interest point, which was assigned to a top word
within the category on the right. The spatial-temporal patches clearly
characterize each action class; for instance, the top interest point for
hand-waving shows its signature of up-down arm motion

and compute a confusion table for evaluation. The results
are reported as the average confusion table of the 25 runs.

Under these settings, we learn and recognize human ac-
tion categories using the pLSA and LDA models. The confu-
sion matrix for a six-class pLSA model for the KTH dataset
is given in Fig. 8(a) using 1500 codewords. Our algorithm
automatically assigns each test sequence to one of the action
classes that were discovered during training. Each row in
the confusion matrix corresponds to the ground truth class,
and each column corresponds to the assigned cluster. Also,
note that in order to maintain cluster correspondence be-
tween columns across different runs, each column is labeled
with the majority label of videos that were assigned to the
cluster.2

2Due to the unsupervised nature of our training procedure, each dis-
covered cluster (i.e., action class) can only be automatically labeled

The confusion matrix shows the largest confusion be-
tween “jogging” and “running”, “walking” and “jogging”,
and between “hand clapping” and “boxing”. This is con-
sistent with our intuition that similar actions are more eas-
ily confused with each other, such as those involving hand
motions or leg motions. Additionally, at the feature level,
we note that the similarity across local patterns from dif-
ferent classes is highest between those categories where our
method finds the largest confusion (please refer to Fig. 9).

We run our experiments on a Pentium 4 machine with
2 GB of RAM. The average times to train and test the pLSA
and LDA models across the leave-one-out runs are reported
in Table 1.

with the names ‘cluster 1’, ‘cluster 2’, etc. Only by using ground truth
labels, each cluster can then be named with the most popular action
class label from the videos within the cluster. Alternatively, one can
assign action names to each cluster by hand.
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Table 1 Learning and testing times for the KTH experiment

Model Codebook size Learning time Testing time

pLSA 500 38.1 secs 0.31 secs

LDA 500 25.7 secs 0.12 secs

Table 2 Comparison of different methods using the KTH dataset

Methods Recognition Learning Multiple

accuracy (%) actions

Our method 83.33 unlabeled Yes

Dollár et al. (2005) 81.17 labeled No

Schuldt et al. (2004) 71.72 labeled No

Ke et al. (2005) 62.96 labeled No

We test the effect of the number of video codewords
on recognition accuracy on both models, as illustrated in
Fig. 8(b). It shows some dependency of the recognition ac-
curacy on the size of the codebook. Additionally, we can see
that pLSA is slightly better than LDA in recognition per-
formance with the same number of codewords. This is an
interesting result. Our hypothesis for this outcome is that
it is due to large variations and relatively small number of
training samples in each action class, which may reduce the
advantages of LDA.

We also compare our results with the best results from
(Dollár et al. 2005) (performance average = 81.17%), which
are obtained using a Support Vector Machine (SVM) with
the same experimental settings. Our results by unsupervised
learning are on par with the current state-of-the-art results
obtained by fully supervised training. Furthermore, our gen-
erative method provides better insight into the understand-
ing of the action categories. Such analysis is not possible
in the SVM discriminative approach. Additional compari-
son of recognition rates from different methods in the KTH
dataset is given in Table 2. Please note that our experimental
settings are equivalent to those in (Dollár et al. 2005). In (Ke
et al. 2005) and (Schuldt et al. 2004), the training and testing
sets are chosen by leaving out roughly half the data.

In order to obtain further insight into the model provided
by the latent topic approach, we analyze the distribution of
spatial-temporal words given a latent topic. In the pLSA
case these distributions correspond to p(w|z), and in the
LDA case the distributions are given in β . These parameters
provide means to rank the spatial-temporal words according
to their probability of occurrence within each action cate-
gory. As a first exercise, it is interesting to observe which
words are assigned the highest likelihood given an action
category. Figure 9 shows example spatial-temporal patches
that represent the top ranked word within each action cate-
gory. These spatial-temporal patches clearly correspond to

the correct human action class. Second, given a testing se-
quence, we can assign each of the observed interest points
to a corresponding spatial-temporal word. This word in turn,
can be assigned to the action class that generate it with high-
est probability, for example using (6) in the pLSA case. We
show the result of this procedure in Fig. 10, using the distri-
butions obtained with the pLSA model. Each interest point
has been colored with the corresponding human action cat-
egory. It is also clear how the model permits the mixture
of action classes within a single sequence. Also, note that
the dominant color correspond to the correct action category
color.

Finally, we would like to use the models we have learned
using the KTH dataset, to detect human actions in sequences
from the Caltech human motion dataset (Song et al. 2003).
We provide some examples frames from two of these video
sequences in Fig. 11. There, the models learnt with a pLSA
approach are used to detect the correct human action class.
Most of the action sequences from this dataset can be cor-
rectly recognized. To provide further illustration, we have
colored each spatial-temporal interest point according to its
most likely action category. In the figure, we only draw the
space-time features that were assigned to the action class
that was detected by our model.

4.1.2 Action Recognition and Localization Using the
Weizmann Human Action Dataset

In our second experiment, we employ the Weizmann hu-
man action dataset (Blank et al. 2005). It contains 10 action
categories performed by 9 people, to provide a total of 90
videos. Example frames of the action categories are shown
in Fig. 12. This dataset contains videos with static camera
and simple background. However, it provides a good testing
bed to investigate the performance of the algorithm when the
number of categories is increased.

We detect and describe spatial-temporal interest points
using the procedure detailed in previous sections. The de-
tector parameters are set to σ = 1.2 and τ = 1.2, and the
dimensionality of the corresponding descriptors is reduced
to 100. The codebook is learnt using all the feature descrip-
tors obtained from all the training video sequences.

We again adopt a leave-one-out scheme to test the effi-
cacy of our approach in recognition, i.e., for each run we
learn a model from the videos of eight subjects, and test
those of the remaining subject. The result is reported as the
average of nine runs. The confusion matrix for a ten-class
model is presented in Fig. 13(a) for a pLSA model learnt
using a codebook of size 1200. The average performance of
the pLSA model with this codebook size is 90%. Note that
the confusion matrix shows how our model is mostly con-
fused by similar action classes, such as “skip” with “jump”
and “run”, or “run” with “walk”.
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Fig. 10 Example frames from testing sequences in the KTH dataset.
The spatial-temporal patches in each sequence are automatically col-
ored according to action class that most likely generated its correspond-
ing spatial-temporal word. Although some of the words are assigned to
the wrong topic, most interest points are assigned to the correct action

for each video. Consistently, the predicted action class corresponds to
the actual ground truth. In addition, we usually observe that the second
best ranked action class corresponds to a similar action: in the “jog-
ging” example of the figure, the second best label is “running”. The
figure is best viewed in color and with PDF magnification

Fig. 11 Examples frames from sequences in the Caltech dataset. Ac-
tion category models were learnt using the KTH dataset, and tested
again sequences in Caltech dataset. Each interest point is assigned to a

action class, and only spatial-temporal interest points from the detected
action category are shown. The figure is best viewed in color and with
PDF magnification

We test the effect of the number of video codewords on
recognition accuracy on the pLSA and LDA models, as il-
lustrated in Fig. 13(b). It shows some dependency of the
recognition accuracy on the size of the codebook.

Similarly to the previous experiment, we look for in-
sight on what the latent topic model provides. Figure 14
illustrates sample frames from test sequences in each ac-
tion class. We have colored each detected interest-point
with its most likely action category. We observe how the

model permits the mixture of action classes in each video;
however, the actual action category dominates the coloring
in all these cases. Additionally, it is also interesting to ob-
serve that those interest points that are not colored with
the right action, are however assigned to a similar action.
For instance, in the frames corresponding to the “jacks” cat-
egory, there are some interest points assigned to “wave”,
and it is clear that both actions contain similar arm mo-
tion.
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Fig. 12 Example images from video sequences in the Weizmann human action dataset (Blank et al. 2005). The dataset contains 10 action
categories, performed by 9 subjects. The videos are taken with static camera and static background

Fig. 13 (a) Confusion matrix for the Weizmann human action dataset
(Blank et al. 2005); rows are ground truth, and columns are model re-
sults. The action models learnt with pLSA and using 1200 codewords
show an average performance of 90%. (b) Classification accuracy ob-

tained using pLSA and LDA models vs. codebook size. Our results
show that pLSA performs slightly better than LDA in the video cate-
gorization task

Finally, we note that in (Blank et al. 2005), experimen-
tal results were reported using 9 of the 10 action categories
available in the dataset. Their classification task consisted
on determining the action category of a set of space-time
cubes, instead of classifying entire video sequences. Also,
results on a clustering experiment were presented. These ex-
periments differ from our task, which consist of categoriz-
ing complete video sequences. In addition, unlike our video
sequence representation using local spatial-temporal words,
their approach using space-time shape is sensitive to camera
motion and dynamic background.

4.1.3 Recognition and Localization of Figure Skating
Actions

As a third set of data, we use the figure skating dataset in
(Wang et al. 2006).3 We adapt 32 video sequences which
contain seven people executing three actions: stand-spin,
camel-spin and sit-spin, as shown in Fig. 1. The dataset con-

3This work addresses the problem of motion recognition from still im-
ages. There is much other work to model motion in still images, which
is out of the scope of this paper.
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Fig. 14 Example frames from testing sequences in the Weizmann Hu-
man Action dataset (Blank et al. 2005). The spatial-temporal patches
in each sequence are automatically colored according to action class
that most likely generated its corresponding spatial-temporal word. Al-

though some of the words are assigned to the wrong topic, most interest
points are assigned to the correct action for each video. Consistently,
the predicted action class corresponds to the actual ground truth. The
figure is best viewed in color and with PDF magnification

tains sequences with camera motion, background clutter and
aggressive view point changes.

We detect and describe interest points using the proce-
dure detailed in previous sections. The detector parameters
are set to σ = 2 and τ = 1.2, and the dimensionality of the
corresponding descriptors is reduced to 100. We use all the
videos available in training to build the codebook, using k-
means.

We use the LOO procedure to test the efficacy of our ap-
proach in recognition; i.e., for each run we learn a model
from the videos of six subjects and test those of the remain-
ing subject. The result is reported as the average of seven
runs. The confusion matrix for a three-class pLSA model
for the figure skating dataset is shown in Fig. 15 using 1200
codewords. The average performance of our algorithm is

Fig. 15 Confusion matrix for the figure skating dataset using 1200
codewords (performance average = 80.67%). Our algorithm can suc-
cessfully categorize the figure skating actions in the presence of camera
motion and cluttered background
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Fig. 16 Example frames from testing sequences in the figure skat-
ing dataset. The interest points in each sequence are automatically col-
ored according to the action class that most likely generated its corre-

sponding spatial-temporal word. Note that only spatial-temporal inter-
est points from the detected action category are shown. The figure is
best viewed in color and with PDF magnification

80.67%. Note that in spite of the simple representation, our
method can perform well in a very challenging dataset with
camera motion, scale changes and severe occlusions.

Additionally, the learned 3-class pLSA model can be
used for action localization as shown in Fig. 16.

4.2 Recognition and Localization of Multiple Actions in a
Long Video Sequence

One of the main goals of our work is to test how well our
algorithm could identify multiple actions within a video
sequence. For this purpose, we test several long figure
skating sequences as well as our own complex video se-
quences.

When the testing sequence is significantly long, we di-
vide it into subsequences using a sliding temporal window.
We process such subsequences independently and obtain
classification decisions for each of them. This is necessary
due to the nature of our representation: the lack of relative
temporal ordering of features in our “bag of words” repre-
sentation does not provide means to assign labels at different
time instances within a video; instead, the analysis is made
for the complete sequence. Thus, by dividing the original
long video into subsequences, our method can assign labels
to each subsequence within the long sequence.

First, suppose we encounter a testing video that con-
tains multiple simultaneous human action categories. For

multiple actions in a single sequence, and assuming we
have learnt models employing the pLSA framework, we first
identify how many action categories are significantly in-
duced by P(zk|wi, dj ). This is possible since P(zk|wi, dj )

provides a measurement of the content of each action in
the testing sequence. Thus, we allow the algorithm to se-
lect more than one action class if P(zk|wi, dj ) is bigger
than some threshold for more than one k. However, we
need to assume that the number of actions present in the
sequence is much less than the number of learnt actions
categories K ; in the extreme case that all action classes
are present in the sequence, the distribution P(zk|wi, dj )

should be very close to the uniform distribution and we
cannot find salient action classes. Once the action cate-
gories of interest have been identified, the algorithm can
select only the spatial-temporal interest points that are as-
signed to those classes, and apply k-means to the spatial
position of these space-time patches. The number of clus-
ters is set equal to the number of significant action cate-
gories. In order to label the resulting clusters with an ac-
tion class, each word votes for its assigned action within
its cluster. Finally a bounding box is plotted according to
the principle axis and eigen-values induced by the spatial
distribution of video words in each cluster. A further as-
sumption that has to be made in order to use this proce-
dure is that the actions must be performed in spatially dis-
tinct positions. Figure 17 illustrates examples of multiple
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Fig. 17 Multiple action recognition and localization in long and com-
plex video sequences. The algorithm automatically detects the number
of significant actions in a windowed subsequence around each frame.
Then a clustering technique is used to group the interest points accord-

ing to their spatial position. A bounding box is placed around each
cluster with the automatically detected action label. The figure is best
viewed in color and with PDF magnification
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Fig. 18 Multiple action recognition and localization in long and com-
plex video sequences. The algorithm automatically detects the number
of significant actions in a windowed subsequence around each frame.
Then a clustering technique is used to group the interest points accord-

ing to their spatial position. A bounding box is placed around each
cluster with the automatically detected action label. The figure is best
viewed in color and with PDF magnification

actions recognition and localization in one video sequence
using a six-class pLSA model learnt from the KTH dataset
(Sect. 4.1.1).

The second scenario we want to explore consists of a
long testing video sequence that contains one subject per-
forming different actions through time. Consider for exam-
ple the long skating video sequences in Fig. 18. Assuming
we have learnt models with pLSA, we perform recognition
by extracting a windowed sequence around each frame, and
identifying which actions receive a high weight according
to P(zk|wi, dj ). Thus the middle frame in the windowed
sequence is labeled with the identified action category.
Figure 18 shows examples of action recognition in a long
figure skating sequence. Here we employ the three-class
model learnt from figure skating sequences containing a sin-
gle action (Sect. 4.1.3). The three actions (stand-spin, camel-
spin and sit-spin), are correctly recognized and labeled using
different colors. (Please refer to a video demo available at:
http://vision.cs.princeton.edu/niebles/humanactions.htm.)

5 Conclusion

In this paper, we have presented an unsupervised learn-
ing approach, i.e., a “bag of spatial-temporal words” model
combined with a space-time interest points detector, for hu-
man action categorization and localization. Using three chal-
lenging datasets, our experiments show that the classifica-
tion performance using our unsupervised learning approach
is on par with the current state-of-the-art results obtained
by fully supervised training. Our algorithm can also localize
multiple actions in complex motion sequences containing
multiple actions. The results are promising, though we ac-
knowledge the lack of large and challenging video datasets
to thoroughly test our algorithm, which poses an interesting
topic for future investigation. In addition, we plan to further
investigate the possibilities of using a unified framework by
combining generative and discriminative models for human
action recognition. For similar actions (e.g., “running” and
“walking”), the classification may benefit from a discrimi-
native model. Finally, other interesting explorations include



Int J Comput Vis

richer models that can incorporate geometric information,
such as the spatial and temporal arrangement of local fea-
tures (Niebles and Fei-Fei 2007), as well as explicit models
for the human body.
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