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Abstract

We tackle the problem of computing the Voronoi diagram of a 3-D polyhedron whose faces are planar. The main
difficulty with the computation is that the diagram’s edges and vertices are of relatively high algebraic degrees. As
a result, previous approaches to the problem have been non-robust, difficult to implement, or not provenly correct.

We introduce three new proximity skeletons related to the Voronoi diagram: (1) theVoronoi graph(VG), which
contains the complete symbolic information of the Voronoi diagram without containing any geometry; (2) the
approximate Voronoi graph(AVG), which deals with degenerate diagrams by collapsing sub-graphs of the VG
into single nodes; and (3) theproximity structure diagram(PSD), which enhances the VG with a geometric
approximation of Voronoi elements to any desired accuracy. The new skeletons are important for both theoretical
and practical reasons. Many applications that extract the proximity information of the object from its Voronoi
diagram can use the Voronoi graphs or the proximity structure diagram instead. In addition, the skeletons can be
used as initial structures for a robust and efficient global or local computation of the Voronoi diagram.

We present a space subdivision algorithm to construct the new skeletons, having three main advantages. First, it
solves at most uni-variate quartic polynomials. This stands in sharp contrast to previous approaches, which require
the solution of a non-linear tri-variate system of equations. Second, the algorithm enables purely local computation
of the skeletons in any limited region of interest. Third, the algorithm is simple to implement. 2002 Elsevier
Science B.V. All rights reserved.
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1. Introduction

The Voronoi diagram is a fundamental geometric structure [2,7,12]. We are interested in Voronoi
diagrams of 3-D linear polyhedra (i.e., polyhedra whose faces are planar), because they support many
important applications in geometric computation [1,13,21]. The Voronoi diagram of an object is closely
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related to its medial axis. In the case of linear polyhedra, the Voronoi diagram of an object can be easily
constructed from its medial axis, and vice versa.

The Voronoi diagram of a non-convex linear polyhedron contains non-linear algebraic entities. Its
faces lie on quadratic surfaces, its edges are intersections of two quadratic surfaces, and its vertices are
intersections of three quadratic surfaces. The combination of a complex connectivity structure and non-
linear geometric elements makes the construction of the Voronoi diagram of a polyhedron a difficult
problem. Computing the exact diagram requires solving systems of tri-variate non-linear equations [8,
14,15,18], resulting in algorithms that are not robust, difficult to implement, and difficult to prove correct.

Since construction of the exact geometry of the Voronoi diagram cannot avoid intersecting non-
linear 3-D surfaces, several approximate structures have been suggested. Canny and Donald [4] define
‘simplified Voronoi diagrams’ based on a distance measure that is not a true metric. While this measure
is appropriate for robot motion planning, it is not clear whether it can be used for other applications.
Sudhalkar et al. [22] proposes the box-skeleton, which uses the maximum norm instead of the Euclidean
norm, and therefore does not provide proximity information. Rezayat [16] builds a so-called ‘midsurface’
of an object, which is only implicitly defined by an algorithm to construct it. The algorithm is heuristic in
nature, and user intervention is recommended. Reddy and Turkiyyah [14] construct approximate Voronoi
diagrams in the sense that the geometry of the edges and surfaces of the Voronoi diagram is not computed
exactly. However, the exact location of the vertices is computed, thus still requiring the computations
of non-linear intersections. Milenkovic [11] uses a numeric predicate that identifies vertices without
necessarily computing their exact locations, but its convergence is not guaranteed.

Another type of approximate Voronoi diagram of an object is the Voronoi diagram of a set of points on
the object’s boundary. Bertin and Chassery [3] prove that the Voronoi diagram of such points converges
toward the Voronoi diagram of the polyhedron when the step of discretization tends to zero. Etzion [5]
constructs a finite set of points on the boundary of a 2-D polygon, whose Voronoi diagram carries the
complete symbolic information of the Voronoi diagram of the polygon. Several works [17,23,25] use a
Delaunay triangulation of points on the polyhedron’s boundary to build the medial axis of the polyhedron.
However, the convergence of these algorithms has not been proven.

Lavender et al. [9] use an octree in order to provide an elegant ‘black box’ to answer proximity queries
concerning specific points. For answering such queries, the method is general, easy to implement, and
very practical. However, it does not provide any information regarding the symbolic structure of the
Voronoi diagram, hence is not suitable for skeletal shape analysis. Vleugels and Overmars [24] also use
a space subdivision to construct a geometric approximation of the Voronoi diagram of a set of disjoint
convex sites. The symbolic information analyzed is limited to the connectivity of the Voronoi diagram;
the different Voronoi elements are not identified.

Contribution

In this paper we introduce a new approach for dealing with non-linear Voronoi diagrams, based
on computing their symbolic and geometric parts separately. We use the termVoronoi Graph(VG)

to describe the symbolic part. We present a simple space subdivision algorithm for computing the
Voronoi graph of a 3-D linear polyhedron. The algorithm constructs aProximity Structure Subdivision, a
subdivision whose cells are labeled according to relative proximities to polyhedron entities. The Voronoi
graph is constructed from the subdivision in three stages: computing witnesses of Voronoi edges, using
them to identify Voronoi vertices, and finally determining the connectivity structure. The algorithm



M. Etzion, A. Rappoport / Computational Geometry 21 (2002) 87–120 89

utilizes only distance comparisons and 2-D geometric computations, the most complex of which is
intersecting two conic sections. The algorithm has been implemented.

To tackle degeneracies, we define and compute theApproximate Voronoi Graph(AVG), in which
degenerate and almost-degenerate parts of the Voronoi graph are identified and simplified. The space
subdivision allows us to also compute a well-defined approximation to the geometric part of the Voronoi
diagram to any desired accuracy. We refer to this type of approximate Voronoi diagram as aProximity
Structure Diagram(PSD). Computation of the PSD is very stable, since it does not involve symbolic
decisions, and it utilizes the same simple geometric operations used in the computation of the Voronoi
graph.

The algorithm has several important advantages over previous approaches. First, it utilizes only
relatively simple 2-D geometric computations, thus avoiding complex and unstable intersections of
3-D surfaces. Second, all three proximity skeletons can be computed locally, in a given spatial region
of interest. Third, the algorithm allows purely local computation ofpartial information contained in
the skeletons, such as the identities and approximate locations of Voronoi vertices or edges, and it
does so efficiently without requiring global curve tracing. Finally, its correctness has been formally
proven.

The proximity skeletons we introduce are important by themselves for several reasons. First, they
preserve proximity information, unlike approximations that use a different metric. Second, many
applications that currently compute the Voronoi diagram or medial axis are actually only interested
in partial proximity information present in the VG, AVG or PSD. Third, these skeletons can be
used in order to efficiently identify regions of interest in which more detailed information is needed.
Finally, the skeletons constitute initial structures for robust and efficient computation of the Voronoi
diagram.

The paper is organized as follows. In Section 2 we formally define the Voronoi graph, and provide
notations and basic definitions. In Section 3 we discuss properties of the Voronoi diagram and of the point
sets used to define it. In Section 4 we define the proximity structure subdivision and give an algorithm
for constructing it. In Section 5 we describe how the Voronoi graph is constructed from the subdivision.
In Sections 6 and 7 we define the two other proximity skeletons and describe their construction. For
clarity of exposition, in Sections 4 and 5 we assume that the Voronoi diagram of the polyhedron is not
degenerate. Handling of degenerate Voronoi diagrams is done in Section 6. A detailed proof for the fact
that Voronoi edges are 1-manifold curves is given in Appendix A. The discussion in Section 8 includes
a description of a single minor configuration for which the proof of correctness of our algorithm has not
been completed.

2. Definitions and notations

Let Q be a bounded 3-D linear polyhedron having a 2-manifold connected boundary composed of
convex faces [10]. The requirement thatQ has convex faces does not limit the range of polyhedra. For
any polyhedronQ, we can decompose its faces into convex pieces, compute the Voronoi diagram (or
Voronoi graph or proximity structure diagram) of the resulting polyhedronQ′, and then easily obtain the
Voronoi diagram ofQ from the Voronoi diagram ofQ′ (see Section 8).

Theentitiesof Q are the vertices, edges and faces ofQ, and are denoted by lower-case lettersa, b, c.
The entities are closed sets, i.e., an edge contains its vertices, and a face contains its edges and vertices.
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Fig. 1. A 2-D example:v is a vertex incident on edgee. If CloserEq is defined in the standard way,
then CloserEq(v, e) ∩ CloserEq(e, v) is the 2-D gray region. IfCloserEq is defined as in this paper, then
CloserEq(v, e)∩ CloserEq(e, v) is the dotted line, which is a 1-D region.

For two entitiesa andb, we say thata ⊂ b (or a ⊆ b) if the point set ofa is a proper subset (or subset)
of the point set ofb.

d(x, y) denotes the distance of two points as well as the distance between a point and an entity. The
distance between a pointx and an entitya is defined as infy∈a d(x, y). For a pointx, B(x, r) denotes
the locus of pointsy s.t. d(x, y) < r . For two pointsy, z, [y, z] denotes the locus of pointsx s.t.
x = ty + (1 − t)z for 0 � t � 1, and(y, z) denotes the locus of pointsx s.t. x = ty + (1 − t)z for
0< t < 1. For a point setA, ∂A denotes the boundary ofA, int(A) denotes the interior ofA, andcl(A)

denotes the closure ofA. ∂A, int(A) andcl(A) are defined relative to the affine hull ofA. dim(A) denotes
the dimension of the affine hull ofA.

πa(x) denotes theprojectionof a pointx on an entitya, i.e., the point ona nearest tox. πa(x) is a
single point, sincea is either a vertex or an edge or a convex face. Afootpointof a pointx on a polyhedron
Q is a pointy s.t.d(x, y) � d(x, z) for every pointz ∈ Q. Thecarrier of an edge (face) is the infinite
line (plane) containing the entity, i.e., it is the affine hull of the entity. The carrier of a vertex is the vertex
itself. The carrier of an entitya is denoted bycar(a). Sets of entities are denoted by lower-case Greek
lettersα,β, γ . α� denotes a set of entities containingα. |α| denotes the number of entities inα.

Let a and b be two entities. We would have liked to use the following standard definitions for the
point setsCloser(a, b) andCloserEq(a, b): Closer(a, b) = {x|d(x, a) < d(x, b)} andCloserEq(a, b) =
{x|d(x, a) � d(x, b)}. However, ifa andb intersect each other, thenCloserEq(a, b) ∩ CloserEq(b, a)
might be a 3-D region (a 2-D example is shown in Fig. 1).

In order to ensure that Voronoi faces are two-dimensional, we defineCloser(a, b) andCloserEq(a, b)
as follows. If a ∩ b = ∅ or a ⊂ b, then CloserEq(a, b) = {x|d(x, a) � d(x, b)} and Closer(a, b) =
int(CloserEq(a, b)). Otherwise,Closer(a, b) = {x|d(x, a) < d(x, b)} andCloserEq(a, b) = cl(Closer(a,
b)). In addition we defineCloser(a, a) = ∅ andCloserEq(a, a) = �3. In Section 3 we study the proper-
ties of theCloser(a, b) andCloserEq(a, b) sets.

Let α be a set of entities. Thebisector of α is bis(α) = ⋂
a,b∈α CloserEq(a, b). The bisector of

the carriers ofα is carbis(α) = {x | ∀a,b∈αd(x,car(a)) = d(x,car(b))}. The Voronoi regionof α is
Rα = ⋂

a∈α,b∈Q CloserEq(a, b). If a point x ∈ Rα, then we say that the entities inα are thegovernors
of the point. Note that for every set of entitiesα, Rα ⊆ bis(α).

The boundaries of the Voronoi regionsRα for |α| = 1 comprise theVoronoi diagramof Q, VD(Q).
A point x on VD(Q) satisfies that there exists a set of entitiesα whose size is greater than 1, s.t.x ∈ Rα.
For a specific set of entitiesα, consider a maximal connected regionR in Rα s.t.R �⊂ Rβ for anyβ ⊃ α.
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If the region is a surface, then it is afacefα of VD(Q). If the region is a curve, then it is anedgeeα of
VD(Q). If the region is a point, then it is avertexvα of VD(Q).

The medial axisof Q, MA(Q), is the locus of points in�3 having more than one footpoint on the
boundary ofQ.

The Voronoi graph

The Voronoi diagram ofQ defines a labeled graph whose nodes are the elements (vertices, edges and
faces) of the diagram, and whose arcs connect elements that are co-incident. Every node of the graph is
labeled by the governors of the corresponding Voronoi element. We call this graph the Voronoi graph of
Q, which is formally defined as follows.

Let G be an undirected graph such that every node is labeled by: (1) a set of entities ofQ, (2) type:
face, edge or vertex. G is aVoronoi Graphof Q if there exists a bijectionF from the set of nodes
of G to the set of elements ofVD(Q) such that: (1) For every noden ∈ G, if type of n is face then
F(n) is a Voronoi face. Similarly for typesedge andvertex. (2) For every noden ∈ G, if the set of
entities ofn is α, thenF(n) is governed byα. (3) n1 andn2 share an arc inG iff there is an incidence
relationship betweenF(n1) andF(n2) in VD(Q).

We say that the Voronoi graph contains all the symbolic information present in the Voronoi diagram;
it does not contain any geometry.

3. Properties of the Voronoi diagram

In this section we study the properties of the point sets and structures defined in the previous
section. Lemmas 1–2 are auxiliary lemmas. Lemmas 3–9 give properties of the pointsetsCloser(a, b),
CloserEq(a, b), Rα , bis(α), carbis(α). Lemmas 10–14 give properties ofVD(Q). The proofs of
Lemmas 1–4 are simple and therefore omitted.

Lemma 1 (The triangle inequality between two points and an entity).Leta be an entity. Letx, y be two
points.(1) d(x, a) � d(x, y) + d(y, a). (2) If d(x, a) = d(x, y) + d(y, a), then there exists a pointz s.t.
z = πa(y) = πa(x) andy ∈ [x, z].

Lemma 2 (The conditions in which the interior of{x | d(x, a) = d(x, b)} is empty).Leta andb be two
entities. Letx be a point s.t.d(x, a) = d(x, b) and there does not exist a pointz s.t.z = πb(x) = πa(x).
For everyε > 0 there exists a pointy ∈ B(x, ε) s.t.d(y, a) > d(y, b).

Throughout this section we will use the table of Fig. 2. The table is implied from the definitions of
CloserandCloserEqtogether with Lemma 2.

Lemma 3 (Basic properties ofCloserandCloserEq). Leta, b be two entities.
1. Closer(a, b) ⊆ CloserEq(a, b).
2. Closer(a, b) is an open set.
3. CloserEq(a, b) is a closed set.
4. �3 \ Closer(a, b) is connected and unbounded.
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Closer(a, b) CloserEq(a, b)

a = b ∅ �3

a ∩ b = ∅ d(x, a) < d(x, b) d(x, a)� d(x, b)

a ⊂ b int(d(x, a)= d(x, b)) d(x, a)= d(x, b)

b ⊂ a d(x, a) < d(x, b) cl(d(x, a) < d(x, b))

a ∩ b = c �= a, b d(x, a) < d(x, b) cl(d(x, a) < d(x, b))

Fig. 2. The point setsCloser(a, b) andCloserEq(a, b).

Lemma 4 (The relationship betweenCloser(a, b) andCloserEq(b, a)). Leta, b be two entities.
1. If a = b or a ⊂ b or b ⊂ a or a ∩ b = ∅, then�3 = Closer(a, b)∪ CloserEq(b, a).
2. Closer(a, b)∩ CloserEq(b, a) = ∅.

Lemma 5 (CloserandCloserEqof co-incident entities).Let a, b be two entities s.t.b ⊆ a. d(x, a) =
d(x, b) = d(x,car(b)) iff x ∈ CloserEq(b, a) \ ⋃

c⊂b Closer(c, a).

Proof. Consider the three cases:
1. a is a vertex. Thenb = a, and it is clear.
2. a is an edge. Ifb is a vertex thend(x, a) = d(x,car(b)) ⇔ d(x, a) = d(x, b) ⇔ x ∈ CloserEq(b, a).

If b = a, thend(x, a) = d(x,car(a)) ⇔ πcar(a)(x) ∈ a ⇔ for everyc ⊂ a and for everyε > 0 there
exists a pointy s.t.d(x, y) < ε andd(y, a) < d(y, c) ⇔ x /∈ Closer(c, a) for everyc ⊂ a.

3. a is a face. Ifb is a vertex thend(x, a) = d(x,car(b)) ⇔ d(x, a) = d(x, b) ⇔ x ∈ CloserEq(b, a).
If b is an edge thend(x, a) = d(x, b) = d(x,car(b)) ⇔ x /∈ Closer(c, b) for every c ⊂ b and
x ∈ CloserEq(b, a). If b = a thend(x, a) = d(x,car(a)) ⇔ πcar(a)(x) ∈ a ⇔ for everyε there exists a
pointy s.t.d(x, y) < ε andd(y, a) < d(y, c) for everyc ⊂ a ⇔ x /∈ Closer(c, a) for everyc ⊂ a. ✷

Lemma 6 (Properties ofbis(a, b)). Leta, b, c be three entities.
1. dim(bis(a, b)) � 2.
2. Leta andb be two entities s.t.a ∩ b = c �= a, b. Letx be a point s.t.πcar(a)(x) ∈ a andπcar(b)(x) ∈ b.

If x ∈ bis(a, c)∩ bis(b, c) thenx ∈ bis(a, b).
3. If x ∈ carbis(a, b), πcar(a)(x) ∈ a andπcar(b)(x) ∈ b, thenx ∈ bis(a, b).

Proof.
1. If x ∈ bis(a, b) thenx ∈ CloserEq(a, b)∩CloserEq(b, a). Lemma 4.2 implies thatx ∈ CloserEq(a, b)

\Closer(a, b). The definitions ofCloserEqandCloserimply that the dimension of the locus of points
{x|x ∈ CloserEq(a, b) \ Closer(a, b)} is not greater than 2.

2. We show in the following that for everyε > 0 there exist pointsy1, y2 s.t.d(x, y1) < ε, d(x, y2) < ε,
d(y1, a) < d(y1, b) andd(y2, b) < d(y2, a). This implies thatx ∈ bis(a, b). Consider the following
cases:
(a) a andb are edges, andc is a vertex. LetP be the plane ofa andb. x ∈ bis(a, c), and therefore

x is on the plane orthogonal toa at c. x ∈ bis(b, c), and thereforex is on the plane orthogonal
to b at c. If a andb are not colinear, then these planes intersect in a linel orthogonal toP at c.
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x ∈ l, and therefore for everyε > 0 there exist pointsy1, y2 s.t.d(x, yi) < ε, πP (y1) ∈ int(a) and
πP (y2) ∈ int(b). d(y1, a) < d(y1, b) andd(y2, b) < d(y2, a). If a andb are colinear on the linel′,
thenx is on the plane orthogonal tol′ at c. Therefore for everyε > 0 there exist pointsy1, y2 s.t.
d(x, yi) < ε, πl′(y1) ∈ int(a) andπl′(y2) ∈ int(b). d(y1, a) < d(y1, b) andd(y2, b) < d(y2, a).

(b) a andb are faces, andc is a vertex.x ∈ bis(a, c) and satisfies thatπcar(a)(x) ∈ a. Thereforex
is on the line orthogonal tocar(a) at c. Similarly x is on the line orthogonal tocar(b) at c. If
car(a) �= car(b), then these lines intersect inc. Thereforex = c. In this case for everyε > 0
there exist pointsy1, y2 s.t. d(x, yi) < ε, y1 ∈ int(a) and y2 ∈ int(b). d(y1, a) < d(y1, b) and
d(y2, b) < d(y2, a). If car(a) = car(b) = P , thenx is on the line orthogonal toP at c. In this
case for everyε > 0 there exist pointsy1, y2 s.t.d(x, yi) < ε, πP (y1) ∈ int(a) andπP (y2) ∈ int(b).
d(y1, a) < d(y1, b) andd(y2, b) < d(y2, a).

(c) a and b are faces, andc is an edge.x ∈ bis(a, c) and satisfies thatπcar(a)(x) ∈ a. Therefore
πcar(a)(x) ∈ c. Similarly πcar(b)(x) ∈ c. If car(a) �= car(b), thenx ∈ c. In this case for everyε > 0
there exist pointsy1, y2 s.t. d(x, yi) < ε, y1 ∈ int(a) and y2 ∈ int(b). d(y1, a) < d(y1, b) and
d(y2, b) < d(y2, a). If car(a) = car(b) = P , thenπP (x) ∈ c. In this case for everyε > 0 there
exist pointsy1, y2 s.t.d(x, yi) < ε, πP (y1) ∈ int(a) andπP (y2) ∈ int(b). d(y1, a) < d(y1, b) and
d(y2, b) < d(y2, a).

(d) a is a face,b is an edge, andc is a vertex.x ∈ bis(a, c) and satisfies thatπcar(a)(x) ∈ a. Therefore
x is on the linel orthogonal tocar(a) atc. x ∈ bis(b, c) and therefore is on the planeP orthogonal
to b at c. If l �⊂ P thenl ∩P = c. In this case there exist pointsy1, y2 s.t.d(x, yi) < ε, y1 ∈ int(a)
andy2 ∈ int(b). Therefored(y1, a) < d(y1, b) andd(y2, b) < d(y2, a). If l ⊂ P thena andb share
a planeQ. In this case for everyε > 0 there exist pointsy1, y2 s.t.d(x, yi) < ε, πQ(y1) ∈ int(a)
andπQ(y2) ∈ int(b). d(y1, a) < d(y1, b) andd(y2, b) < d(y2, a).

3. We show in the following thatx ∈ CloserEq(a, b). πcar(a)(x) ∈ a therefored(x,car(a)) = d(x, a).
Similarly d(x,car(b)) = d(x, b). Therefore d(x, a) = d(x, b). Suppose on the contraryx /∈
CloserEq(a, b). Thenb ⊂ a or b ∩ a = d �= a, b, and there exists anε > 0 s.t. if y ∈ B(x, ε), then
d(y, a) � d(y, b). Consider the two cases:
(a) b ⊂ a. πcar(a)(x) ∈ a. Therefore (Lemma 5)x /∈ Closer(b, a). Contradiction (Lemma 4.1).
(b) b ∩ a = d �= a, b. πcar(a)(x) ∈ a. Therefore (Lemma 5)x /∈ Closer(d, a). Therefore x ∈

CloserEq(a, d) (Lemma 4.1). Similarlyx ∈ CloserEq(b, d). Lemma 2 implies thatπa(x) =
πb(x), and therefored(x, a) = d(x, b) = d(x, d). Thereforex ∈ CloserEq(d, a)∩CloserEq(d, b).
Thereforex ∈ bis(a, d)∩ bis(b, d). Lemma 6.2 implies thatx ∈ bis(a, b). Contradiction. ✷

Lemma 7 (Transitivity of CloserandCloserEq). Leta, b, c be three entities.
1. Closer(a, b)∩ Closer(b, c) ⊆ Closer(a, c).
2. CloserEq(a, b)∩ Closer(b, c) ⊆ CloserEq(a, c).
3. Letx be a point s.t.πcar(a)(x) ∈ a. If x ∈ CloserEq(a, b)∩ CloserEq(b, c) thenx ∈ CloserEq(a, c).

Proof.
1. If a = c then Lemma 4.2 implies thatCloser(a, b)∩ Closer(b, c) = ∅. If a �= c let x ∈ Closer(a, b)∩

Closer(b, c). d(x, a) � d(x, b) andd(x, b) � d(x, c). If d(x, a) < d(x, b) or d(x, b) < d(x, c) then
we are done. Otherwised(x, a) = d(x, b) andd(x, b) = d(x, c). x ∈ Closer(a, b), thereforea ⊂ b,
and there exists anε > 0 s.t. everyy ∈ B(x, ε) satisfies thatd(y, a) = d(y, b). x ∈ Closer(b, c),
thereforeb ⊂ c, and there exists anε > 0 s.t. everyy ∈ B(x, ε) satisfies thatd(y, b) = d(y, c).
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Thereforea ⊂ c, and there exists anε > 0 s.t. everyy ∈ B(x, ε) satisfies thatd(y, a) = d(y, c).
Thereforex ∈ Closer(a, c).

2. If a = b, then it is implied from Lemma 3.1. Letx ∈ CloserEq(a, b)∩ Closer(b, c). d(x, a) � d(x, b)

and d(x, b) � d(x, c). Suppose on the contraryx /∈ CloserEq(a, c). Then (1)d(x, a) = d(x, b) =
d(x, c), (2) c ⊂ a, or c ∩ a = d �= a, c, (3) b ⊂ c, and (4) there exists anε > 0 s.t. everyy ∈ B(x, ε)

satisfies thatd(y, a) � d(y, c). x ∈ Closer(b, c), therefore there exists anε > 0 s.t. everyy ∈ B(x, ε)

satisfies thatd(y, b) � d(y, c). Therefore there exists anε > 0 s.t. everyy ∈ B(x, ε) satisfies that
d(y, a) � d(y, b). (2) and (3) imply thata �⊂ b, and therefore ifx ∈ CloserEq(a, b) then for every
ε > 0 there is a pointy s.t.d(x, y) < ε, andd(y, a) < d(y, b). Contradiction.

3. x ∈ CloserEq(a, b) therefored(x, a) � d(x, b). x ∈ CloserEq(b, c) therefored(x, b) � d(x, c).
Therefored(x, a) � d(x, c). If d(x, a) < d(x, c) we are done. Otherwised(x, a) = d(x, b) = d(x, c).
Suppose on the contraryx /∈ CloserEq(a, c). Then (1)c ⊂ a or a ∩ c = d �= a, c and (2) there is an
ε > 0 s.t. ify ∈ B(x, ε) thend(y, a) � d(y, c). Consider the two cases:
(a) c ⊂ a. Thenx ∈ Closer(c, a) (Lemma 4.1). Thenπcar(a)(x) /∈ a (Lemma 5). Contradiction.
(b) a ∩ c = d �= a, c. The existence ofB(x, ε) implies thatd(x, a) = d(x, c) = d(x, d) (Lemma 2).

Thereforex ∈ CloserEq(d, a) ∩ CloserEq(d, c). πcar(a)(x) ∈ a, thereforex ∈ CloserEq(a, d)
(Lemma 5), thereforex ∈ bis(a, d). If πcar(c)(x) ∈ c, thenx ∈ CloserEq(c, d) andx ∈ bis(c, d).
In this case Lemma 6.2 implies thatx ∈ CloserEq(a, c), and contradiction. Ifπcar(c)(x) /∈ c, then
x ∈ Closer(d, c). In this case Lemma 7.2 implies thatx ∈ CloserEq(a, c), and contradiction. ✷

Lemma 8 (Properties ofRα). Letα be a set of entities.
1. Rα is a closed set.
2. Rα ⊆ carbis(α).
3. If x ∈ Rα andb /∈ α, then there exists an entitya ∈ α s.t.x ∈ Closer(a, b).
4. If x ∈ ∂Rα in the relative topology of carbis(α), and dim(carbis(α)) > 0, thenx ∈ Rβ for β ⊃ α.
5. dim(Rα) = dim(carbis(α)).

Proof.
1. Finite intersection of closed sets is a closed set.
2. Let x ∈ Rα . Let a, b be two entities inα. x ∈ bis(a, b). Therefored(x, a) = d(x, b). If d(x, a) �=

d(x,car(a)), then there exitsa′ ⊂ a s.t. x ∈ Closer(a′, a) (Lemma 5). Thenx /∈ CloserEq(a, a′)
(Lemma 4.1) in contradiction to beingx in Rα. Therefored(x,car(a)) = d(x, a) = d(x, b) =
d(x,car(b)).

3. We first show that ifb /∈ α, then there exists an entitye s.t.x ∈ Closer(e, b). Then we show that this
implies that exists an entitya ∈ α s.t.x ∈ Closer(a, b).
Suppose on the contrary thatx /∈ Closer(e, b) for any entitye. If πx(car(b)) /∈ b, then there exists
an entity e ⊂ b s.t. x ∈ Closer(e, b) (Lemma 5), and contradiction. Thereforeπx(car(b)) ∈ b.
b /∈ α, therefore there exists an entitye s.t. x /∈ CloserEq(b, e). b ∩ e = c �= b, e (Lemma 4.1).x /∈
Closer(e, b) therefored(x, e) � d(x, b). x /∈ CloserEq(b, e) therefore there exists anε > 0 s.t. every
y ∈ B(x, ε) satisfies thatd(y, e) � d(y, b). Therefore (Lemma 2)d(x, e) = d(x, b) = d(x, c), and
x ∈ CloserEq(c, e). If x ∈ CloserEq(b, c) thenx ∈ CloserEq(b, e) (Lemma 7.3) and contradiction.
Thereforex ∈ Closer(c, b) (Lemma 4.1). Contradiction.
Suppose on the contrary that there does not exist an entitya ∈ α s.t. x ∈ Closer(a, b). We have
shown that there exists an entitye1 s.t. x ∈ Closer(e1, b). e1 /∈ α, therefore there exists an entity
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e2 s.t.x ∈ Closer(e2, e1). x ∈ Closer(e2, b) (Lemma 7.1). Therefore there exists an infinite sequence
of entities{ei} s.t.x ∈ Closer(ej , ei) for anyj > i. Contradiction.

4. Letb be a governor of a neighborhood ofx in carbis(α) \Rα. x ∈ Rb (Lemma 8.1). Ifb /∈ α, then we
are done. Otherwiseb ∈ α. Let y be a point in this neighborhood. We show in the following that there
exists an entitya ∈ α s.t.πcar(a)(y) /∈ a.
Suppose on the contrary that for everya ∈ α πcar(a)(y) ∈ a. Then for everya ∈ α, y ∈ bis(a, b)
(Lemma 6.3). Theny ∈ Rα (Lemma 7.3), and contradiction.
πcar(a)(y) /∈ a, therefore there exists an entitya′ ⊂ a s.t.y ∈ Closer(a′, a) andπcar(a′)(y) ∈ a′ (Lem-
ma 5).x ∈ CloserEq(a′, a) (Lemma 8.1). Thereforex ∈ Ra′ (Lemma 7.3). Ifa′ /∈ α, then we are
done. Otherwisea′ ∈ α. Thend(y, a) > d(y,car(a)) = d(y,car(a′)) = d(y, a′). Contradiction, since
a′ ⊂ a.

5. Implied from Lemma 8.2 and Lemma 8.4.✷
Lemma 9 (Starness ofRa). If x ∈ Ra then[x,πa(x)] ⊆Ra .

Proof. x ∈ Ra thereforeπcar(a)(x) = πa(x) (Lemma 5), and for everye ∈ Q x ∈ CloserEq(a, e). Let y
be a point in[x,πa(x)]. We have to show thaty ∈ CloserEq(a, e). d(x, a)− d(y, a) = d(x, y). By Lem-
ma 1d(x, y) � d(x, e)− d(y, e). These two equations imply thatd(x, a) − d(y, a) � d(x, e) − d(y, e).
x ∈ CloserEq(a, e) and therefored(x, a) � d(x, e). The last two equations imply thatd(y, a) � d(y, e).
Consider the following cases:
1. a ∩ e = ∅ or a ⊂ e. The fact thatd(y, a) � d(y, e) implies thaty ∈ CloserEq(a, e).
2. a ⊃ e. The fact thatx ∈ CloserEq(a, e) implies thaty ∈ CloserEq(a, e).
3. a∩e = b �= a, e. If y /∈ CloserEq(a, e), the fact thatd(y, a) � d(y, e) implies thatd(y, a) = d(y, e) =

d(y, b) (Lemma 2). Thereforey ∈ CloserEq(b, e). The fact thatx ∈ CloserEq(a, b) implies that
y ∈ CloserEq(a, b). Thereforey ∈ CloserEq(a, e) (Lemma 7.3). ✷

Lemma 10 (The endpoint of a Voronoi edge (face) is a Voronoi vertex (edge)).Letα be a set of entities
of the polyhedronQ.
1. Let eα be an edge of VD(Q). If x is a point on∂eα in the relative topology of carbis(α), thenx is a

vertexvβ of VD(Q) s.t.α ⊂ β.
2. Letfα be a face of VD(Q). If x is a point on∂fα in the relative topology of carbis(α), thenx is on an

edgeeβ of VD(Q) s.t.α ⊂ β.

Proof. Implied from Lemma 8.4. ✷
Lemma 11 (A lower bound to the number of governors of a Voronoi element).
1. If fα is a Voronoi face, then|α| � 2.
2. If eα is a Voronoi edge, then|α| � 3.
3. If vα is a Voronoi vertex, then|α| � 4.

Proof. If α contains one entity, thencarbis(α) = �3. Therefore iffα is a Voronoi face, then|α| � 2
(Lemma 8.5). Item 2 and item 3 are implied from item 1 by Lemma 10.✷
Lemma 12 (The relationship between the Voronoi diagram and the medial axis).For a set of entitiesα
defineE(α)= α \ {a: a ⊃ b, b ∈ α}. MA(Q) = VD(Q) \ ⋃{Rα: |E(α)| = 1}.
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Proof.
1. MA(Q) ⊂ VD(Q) \ ⋃{Rα: |E(α)| = 1}. Let x ∈ MA(Q). First we show thatx ∈ VD(Q). Let

p1, . . . , pn be the footpoints ofx on ∂Q. x ∈ MA(Q), thereforen � 2. Let ai be the entitypi is
incident on. If a pointpi is incident on more than one entity, then we take the lowest dimensional
among these entities. Letα = {a1, . . . , an}. In order to show thatx ∈ VD(Q), it is enough to show
that x ∈ Rα since |α| � 2. We have to show thatx ∈ CloserEq(ai, b) for everyai ∈ α andb ∈ Q.
d(x, ai) � d(x, b) sinced(x,pi) � d(x, q) for everyq ∈ ∂Q. Consider the following cases:
(a) ai ∩ b = ∅ or ai ⊂ b. Thend(x, ai) � d(x, b) implies thatx ∈ CloserEq(ai, b).
(b) b ⊂ ai . If x /∈ CloserEq(ai, b) thend(x, ai) = d(x, b). In this casepi ∈ b, andb ∈ α. Therefore

ai /∈ α. Contradiction.
(c) ai ∩ b = c �= ai, b. If x /∈ CloserEq(ai, b) then d(x, ai) = d(x, b) and there exists anε > 0

s.t. everyy ∈ B(x, ε) satisfies thatd(y, ai) � d(y, b). Thereforeπai (x) = πb(x) (Lemma 2),
andd(x, ai) = d(x, b) = d(x, c). Thereforex ∈ CloserEq(c, b). The previous item implies that
x ∈ CloserEq(ai, c). πcar(ai)(x) ∈ ai , since otherwisex ∈ Closer(d, ai) for somed ⊂ ai (Lem-
ma 8), in contradiction to previous item. Thereforex ∈ CloserEq(ai, b) (Lemma 7.3).

Now we show that|E(α)| � 2. It is enough to show thatE(α) = α, since|α| � 2. Suppose on the
contrary there is an entityai ∈ α \E(α). Then there exists an entityb ∈ α s.t.b ⊂ ai . pi ∈ b therefore
ai /∈ α, contradiction.

2. MA(Q) ⊃ VD(Q) \ ⋃{Rα: |E(α)| = 1}. Let x ∈ VD(Q) \ ⋃{Rα: |E(α)| = 1}. Let α be a set of
entities s.t.x ∈ Rα and|E(α)| = 1. Leta1, . . . , an be the entities ofE(α). n � 2. x ∈ CloserEq(ai, b)
for everyai ∈ α andb ∈ Q. Therefored(x, ai) � d(x, b) for everyai ∈ α andb ∈ Q. Letpi = πai (x).
d(x,pi) � d(x, q) for everyq ∈ ∂Q. In order to prove thatx ∈ MA(Q), it is enough to show that
pi �= pj for every i �= j . If pi = pj , thenai ∩ aj �= ∅. Let b = ai ∩ aj . b ⊂ ai or b ⊂ aj or both.
Thereforeai /∈ E(α), or aj /∈ E(α) or both. Contradiction. ✷

Lemma 13 (Voronoi faces are simply connected).If the boundary ofQ is connected, and the faces ofQ

are simply connected, then the faces of VD(Q) are also simply connected.

Proof. Sherbrooke [19] proves this claim for the faces ofMA(Q). In order to complete the proof of
the present lemma, we have to show that a facefα ∈ VD(Q) \ MA(Q) is simply connected. Lemma 12
implies that such a facefα satisfies that|E(α)| = 1. Thereforeα contains an entityb s.t. every entity
a ∈ α satisfies thatb ⊆ a. Let x ∈ Rα. πb(x) ∈ a for everya ∈ α, therefore[x,πb(x)] ⊆ Rα (Lemma 9).
ThereforeRα is connected.

Suppose on the contrary thatRα is not simply connected. Thencarbis(α) is a plane, and there exists
a point x ∈ carbis(α) \ Rα which is enclosed by a loopL ⊆ Rα. Consider the lineM throughx and
πb(x). M ⊆ carbis(α). Let y be the intersection point ofL andM which is farthest fromπb(x). y ∈ Rα.
Therefore[y,πb(x)] ⊆ Rα (Lemma 9). Contradiction, sincex ∈ [y,πb(x)]. ✷
Lemma 14 (VD(Q) does not contain a loop of edgeseabc�). LetQ be a polyhedron whose boundary is
connected, and whose faces are simply connected. Letfα be a bounded Voronoi face of VD(Q). There
does not exist a set of entitiesβ ⊃ α s.t. all the edges offα are governed byeβ�.

Proof. Suppose on the contrary that there exists such a set of entitiesβ. We first show that there do
not exist two entitiesa, b ∈ β s.t. a ⊃ b. Suppose there are. Letc ∈ β \ {a, b}. ∂fα ⊆ carbis(a, b)
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(Lemma 8.2).carbis(a, b) is either a line or a plane. Sincefα is a bounded face,carbis(a, b) cannot
be a line, so it is a plane. Letx be a point infα . The line throughx andπb(x) intersects∂fα in two
pointsx1 andx2. d(x1, b) = d(x1, c) and alsod(x2, b) = d(x2, c). Thereforeπb(x) = πc(x) (Lemma 1).
ThereforeE(β) = 1. Therefore∂fα is a line. Contradiction.

Let a, b ∈ α, andc ∈ β \ {a, b}. DefineSa to be the solid composed of the projection segments offα

on a. DefineSb similarly. LetCc be the projection of∂fα on c. Sincec is simply connected, the region
bounded byCc is in c. DefineTc to be the surface composed of the projection segments of∂fα on c

together with the part ofc enclosed byCc. Sa ⊆ Ra, Sb ⊆ Rb, Tc ⊆ Rc (Lemma 9). Thereforeint(Sa)

does not intersectSb andTc, and int(Sb) does not intersectSa andTc. ThereforeSa (or Sb) is in the
interior of the solid defined byTc. Thereforea is in the interior of the solid defined byTc. We show in
the following that this implies thata andc are not in the same connected component of the boundary of
Q, in contradiction to the assumption of the lemma.

Entitiesa andc are not incident one on the other, therefore if they are connected, there is an entityd

that intersectsTc. SinceTc ⊂ Rc, d must intersectTc in a point incident onc andd. Therefored is wholly
in the interior of the solid defined byTc, andd either containsc or is adjacent toc. In this case there
exists a pointx ∈ ∂fα s.t.x ∈ Closer(d, c) in contradiction to∂fα ⊆Rc. ✷

4. The space subdivision algorithm

In this section we define the proximity structure subdivision and give an algorithm for constructing
it. We prove that the algorithm halts, and show that when utilizing cells with linear boundaries, the
geometric operations involved amount to solving a quadratic equation in a single variable.

Intuitively, the general idea is to recursively subdivide space according to the distances of the cells
from the entities of the polyhedron, such that all the points in a cell share the same nearest entities. We
would like the cells to separate Voronoi vertices, i.e., that each cell will contain no more than one Voronoi
vertex. Therefore we stop the subdivision process when the number of entities attached to a cell is smaller
than or equal to four. This subdivision process might not halt, since it is possible that a point has more
than four governors. For example, every vertex ofQ has a set of governors that includes all the entities
of Q containing that vertex. Note that this situation is not degenerate, since a small perturbation of the
polyhedron does not necessarily modify the symbolic structure of the Voronoi diagram.1 Lemma 18
states the situations in which a point has more than four governors in a non-degenerate diagram. These
situations are added to the halting criteria of the recursion.

4.1. Definition and algorithm

Definition 1. A proximity structure subdivision(PSS) is a space subdivision2 in which each cellC is
labeled by a setα of polyhedron entities, such that two conditions hold. LetCα be a cell that is labeled
by a setα of polyhedron entities. The two conditions are the following:
1. b /∈ α iff there exists an entitya of Q such thatCα ⊆ Closer(a, b).

1 As a result, it is inaccurate to define ‘degeneracy of a Voronoi diagram of a polyhedron’ by saying that there exists a point
with more than four nearest sites.

2 We treat all subdivision cells as closed sets, hence they include their boundaries.
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2. At least one of the following holds:
(a) |α| � 4.
(b) |α| = 5, andα includes an edge and two coplanar faces containing that edge.
(c) |α| = 5, andα includes a vertex and two colinear edges containing that vertex.
(d) |α| = 6, andα is composed of two disjoint sets, each consists of an edge and two coplanar faces

containing that edge.
(e) |α| = 6, andα is composed of two disjoint sets, each consists of a vertex and two colinear edges

containing that vertex.
(f) |α| = 6, andα is composed of two disjoint sets, one consists of an edge and two coplanar faces

containing that edge, and the other consists of a vertex and two colinear edges containing that
vertex.

(g) All the entities inα share a vertex.
(h) All the entities inα except one share a vertex and a plane.

The first condition serves for reducing the number of polyhedron entities relevant to proximity
information of a cell, and is thus similar in purpose to the condition used in [9]. The second condition
refines the subdivision to enable extraction of the structure of the Voronoi graph. The following lemmas
give basic properties of the subdivision.

Lemma 15. LetCα be a cell in a PSS. Letb be an entity. Ifb /∈ α, thenCα ∩ Rb = ∅.

Proof. If b /∈ α, then there exists an entitya s.t.Cα ⊆ Closer(a, b). Therefore, by Lemma 4.2,

Cα ∩ CloserEq(b, a) = ∅. ✷
Lemma 16. LetCα be a cell in a PSS. Letb be an entity. Ifb /∈ α, then there exists an entitya ∈ α s.t.
Cα ⊆ Closer(a, b).

Proof. We show in the following that ifb /∈ α and there does not exist an entitya ∈ α s.t. Cα ⊆
Closer(a, b), then there is an infinite number of entities inQ. Let a1 = b. a1 /∈ α, therefore there exists
an entitya2 of Q such thatCα ⊆ Closer(a2, a1). a2 /∈ α, therefore there exists an entitya3 of Q such
thatCα ⊆ Closer(a3, a2). Lemma 7.1 implies thatCα ⊆ Closer(a3, a1) and thereforea3 /∈ α. Thus there
exists an infinite sequence of entities{ai} s.t.Cα ⊆ Closer(aj , ai) for any i < j . Therefore for anyi �= j

ai �= aj . ✷
Subdivision process

A proximity structure subdivision is easily computed recursively. We start with a cell that bounds the
world of interest. For each cell, the setα is computed according to the first condition. Cells for which the
second condition does not hold are subdivided, and the algorithm is invoked recursively on the sub-cells.
Obviously, if Cα ⊆ Cβ thenα ⊆ β, and the computation ofα for sub-cells can be done efficiently by
considering only the entities attached to the parent cell. In practice, the simplest way to implement the
algorithm is by using an octree to represent the subdivision.
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4.2. Halting of the subdivision process

In this section we prove that the subdivision process halts ifVD(Q) is not degenerate. IfVD(Q) is
degenerate then an additional halting condition is needed (Section 6).

Definition 2. For a pointx, let f1(x), . . . , fk(x) be the footpoints ofx onQ, and letαi(x) be the set of
entities governingx and containingfi(x). We say thatVD(Q) is non-degenerateiff for every pointx the
two following conditions are satisfied:
1. For any permutation on{αi}: Let α(x) = α1(x) ∪ · · · ∪ αi(x) for 1 � i � k − 1. dim(carbis(α(x) ∪

αi+1(x))) < dim(carbis(α(x))).
2. For every 1� i � k and 1� j �= i � k, if |αj(x)| > 1, then dim(carbis(αi(x) ∪ αj(x))) <

dim(carbis(αi(x))) − 1.

The first item of the above definition is closely related to the definition usually used for degeneracy
of the medial axis or of the Voronoi diagram of disjoint sites. This item states that if the diagram is not
degenerate, then the dimension of the locus of points equidistant from a partial set of the footpoints of a
point decreases as additional footpoints are added to the set.

The second item of the above definition handles the case of non-disjoint sites. Consider a point with
two footpointsf1 andf2 incident onα1 andα2, respectively. The locus of points equidistant from the
entities ofα1 ∪ α2 is the intersection of three sets: (1) the set of points equidistant fromα1, (2) the set of
points equidistant fromα2, and (3) the set of points equidistant from an entitya1 ∈ α1 anda2 ∈ α2. If it
is not a degenerate case, then the dimension of the intersection set decreases as each of the three sets is
added.

In Lemmas 17–19 we assume thatVD(Q) is not degenerate. Lemma 18 states the conditions in which
a point has more than four governors. Lemma 17 is an auxiliary lemma of Lemma 18.

Lemma 17 (Thecarbis of entities sharing a vertex).Let v be a vertex ofQ. Let e1, . . . , en be edges of
Q containingv. Letf1, . . . , fk be faces ofQ containingv. Letα = {v, e1, . . . , en, f1, . . . , fk}. Suppose
n > 1 or k > 0 (or both).
1. If there exists a lineL s.t.a ⊂L for everya ∈ α, then carbis(α) is a plane orthogonal toL at v.
2. If all the entities ofα share a planeP , and do not share a line, then carbis(α) is a line orthogonal to

P at v.
3. If the entities ofα do not share a plane, then carbis(α) = v.

Proof.
1. The bisector of a line and a point incident on the line is a plane orthogonal to the line at the point.
2. Let L be the line orthogonal toP at v. First we prove thatL ⊆ carbis(α). Let x ∈ L. d(x,P ) =

d(x, v). Therefored(x,car(fi)) = d(x, v) for every 1� i � k, sincecar(fi) = P for every 1� i � k.
Similarly, d(x,car(ei)) = d(x, v) for every 1� i � n, sincev ∈ car(ei), andcar(ei) ⊂ P for every
1� i � n.
Now we prove thatcarbis(α) ⊆ L. Let x ∈ carbis(α). If k > 0 thend(x, v) = d(x,P ), and therefore
x ∈ L. If k = 0 thenn > 1. Let e1 ande2 be two edges inα s.t.car(e1) �= car(e2). carbis(v, e1) and
carbis(v, e1) are two different planes, and their intersection is a line.

3. It is clear thatv ⊆ carbis(α), sincev is incident on all the entities ofα. We prove in the following that
carbis(α) ⊆ v. Let β be a maximal subset ofα s.t. all the entities inβ share a planeP . Lemma 17.2
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implies thatcarbis(β) is a lineL orthogonal toP at v. Let a ∈ α \ β. If a is a face, thenL and
carbis(v, a) are two different lines, and their intersection is a point. Otherwisea is an edge. Let
R = carbis(v, a). R is a plane orthogonal tocar(a) at v. Suppose on the contrary thatcarbis(α) �⊆ v,
thenL ⊆ R. Thereforecar(a) is orthogonal toL at v, andcar(a) ⊆ P . Contradiction. ✷

Lemma 18 (The number of governors of a point).LetQ be a polyhedron s.t. VD(Q) is not degenerate.
Let α be a set of entities ofQ s.t. Rα �= ∅. One of the conditions2a–2hof the definition of the PSS
(Definition 1) holds.

Proof. Suppose|α| > 4. Let x be a point inRα. Lemma 8.2 implies thatx ∈ carbis(α). Let k be the
number of footpoints ofx onQ. Definition 2.1 implies thatk � 4. Letα1, . . . , αk be the subsets ofα, s.t.
αi is the set of entities sharing the footpointfi . Let l = |α|, andli = |αi|. The setsα1, . . . , αk are disjoint,
since otherwise ifa ∈ αi ∩ αj for i �= j , thena includes two different footpoints ofx, in contradiction
to the linearity and convexity ofa. Therefore the setsα1, . . . , αk are disjoint, and

∑
1�i�k li = l. Claim:

there exists 1� i � k s.t.dim(carbis(αi)) > 4− li .
Suppose on the contrary that for every 1� i � k dim(carbis(αi)) � 4− li . Consider the two cases:

1. There exist two setsαi andαj s.t. li > 1 andlj > 1. Then Definition 2.2 implies thatdim(carbis(αi ∪
αj)) < min(4− li ,4− lj )− 1. Consider the two cases:
(a) li > 2 or lj > 2. Thendim(carbis(αi ∪ αj)) < 0, in contradiction to the existence ofx.
(b) li = 2 andlj = 2. Thendim(carbis(αi ∪ αj )) = 0. li + lj = 4 < l, therefore there exists a third

footpoint fm. Definition 2.1 implies thatdim(carbis(αi ∪ αj ∪ αm)) < 0, in contradiction to the
existence ofx.

2. Only one setαi satisfies thatli > 1. li = l − (k − 1). Definition 2.1 implies thatdim(carbis(αi)) �
k − 1. These two equations imply thatdim(carbis(αi)) � l − li > 4− li . Contradiction.

3. There does not exist a setαi s.t. li > 1. Thenl � 4, and contradiction.
This completes the proof of the claim, i.e., there exists 1� i � k s.t.dim(carbis(αi)) > 4− li .

Let fi be a footpoint s.t.dim(carbis(αi)) > 4− li . fi is either a vertexv of Q, or incident on an edge
e of Q. Consider the two cases:
1. fi is a vertex ofQ. Lemma 17 implies that:

(a) If the entities ofαi do not share a plane, thendim(carbis(αi)) = 0. Definition 2.1 implies that
l = li , i.e., Definition 1.2g is satisfied.

(b) If all the entities ofαi share a plane, and do not share a line, thendim(carbis(αi)) = 1.
Definition 2.1 implies thatk � 2. If k = 1, then Definition 1.2g is satisfied. Ifk = 2, let fj be
the other footpoint. Definition 2.1 implies that|lj | � 1, and therefore Definition 1.2h is satisfied.

(c) If all the entities ofαi share a line, i.e.,αi consists of the vertexfi and two colinear edges
containing that vertex, thendim(carbis(αi)) = 2. Consider the two cases:
i. k > 2. Definition 2 implies that there are two additional footpointsfj andfm s.t. lj = lm = 1.

Therefore Definition 1.2c is satisfied.
ii. k = 2. Let fj be the other footpoint. Iflj = 1, then Definition 1.2a is satisfied. Iflj = 2,

then Definition 1.2c is satisfied. Supposelj > 2. li = 3, thereforedim(carbis(αj )) � 2
(Definition 2.2), and becauselj > 2, dim(carbis(αj )) > 4 − lj . fj is a footpoint satisfying
thatdim(carbis(αj )) > 4− lj , and therefore the discussion in the previous items (item 1a and
item 1b) applies also tofj as well. Therefore iffj is a vertex, then it is a vertex incident on
two colinear edges. Recall thatαi andαj are disjoint. Therefore Definition 1.2c is satisfied. If
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fj is on an edge, thenαj consists of the edge and two coplanar faces containing that edge, and
Definition 1.2f is satisfied.

2. fi is on an edge ofQ. In this caseαi consists of the edge and two coplanar faces containing that edge.
Therefore|αi | = 3 anddim(carbis(αi)) = 2. This case is analogous to item 1c. Therefore in this case
one of items 2a, 2b, 2d and 2f of Definition 1 is satisfied.✷

Lemma 19. If VD(Q) is not degenerate the subdivision process halts.

Proof. Suppose the subdivision process does not halt. Then there exists an infinite sequence of cellsCαi

s.t. (1)size(Cαi ) → 0, (2) for everyi, Cαi is not a leaf, and (3)Cαi+1 ⊆ Cαi . The sequence converges. Let
x be

⋂
∀i Cαi . Let α(x) be the set of governors ofx. For every entityb /∈ α(x) there exists an entitya

s.t.x ∈ Closer(a, b) (Lemma 8.3).Closer(a, b) is an open set (Lemma 3.2). Therefore for every entity
b /∈ α(x) there exists an entitya, andε(b) > 0 s.t. if pointy ∈ B(x, ε), theny ∈ Closer(a, b). LetDx be
the minimum of theεb for all b /∈ α(x). There exists an integerN s.t. for everyi > N , Cαi ∈ B(x,Dx).
Let i > N . If c ∈ αi then there does not exist an entityd s.t.Cαi ⊆ Closer(d, c) (definition of PSS), and
thereforec ∈ α(x). Therefore fori > N , αi ⊆ α(x), andCαi is a leaf (Lemma 18). Contradiction.✷
4.3. Geometric operations of the subdivision process

In order to compute the set of entities attached to a cell, we have to answer the query: Given a cell
C, and entitiesa, b, is C ⊆ Closer(a, b)? Lemma 3.4 implies that testing whetherC ⊆ Closer(a, b) is
equivalent to testing whether∂C ⊆ Closer(a, b).

Using linear cell boundaries, the algorithm in Fig. 3 tests whether∂C ⊆ Closer(a, b). In order to test
whether a faceF of C is in Closer(a, b), it is not enough to test the vertices ofF . Even if all vertices of
F are inCloser(a, b), there might still be a pointx ∈ F s.t.x /∈ Closer(a, b). Therefore we have to test
whetherF intersects the bisectorbis(a, b).

a and b are linear entities, thereforebis(a, b) is a piecewise quadratic surface. The bisector is a
piecewisequadratic surface, and not a quadratic surface, becausea andb are polyhedron entities, not
infinite lines or planes. Each section ofbis(a, b) is a part ofcarbis(a′, b′) s.t. a′ ⊆ a and b′ ⊆ b.
carbis(a′, b′) is a quadratic surface for any two entitiesa′ andb′.

In order to work with quadratic surfaces, and not piecewise quadratic surface, we first decompose each
face ofC into polygonsPa′b′ s.t. (1)a′ ⊆ a, (2)b′ ⊆ b, and (3) a pointx ∈ Pa′b′ iff d(x, a) = d(x,car(a′))
andd(x, b) = d(x,car(b′)) (line 2). The part ofbis(a, b) in Pa′b′ is equal tocarbis(a′, b′), and therefore
the location ofPa′b′ with respect tobis(a, b) can easily be tested (lines 4–23).

If a′ = b′ thenPa′b′ /∈ Closer(a, b) iff a �⊂ b or there exists a vertex ofPa′b′ on bis(a, b) (lines 5–11).
Note that in this case (a ⊂ b) bis(a, b) is a piecewiselinear surface which can be easily computed. If
a′ �= b′ thenPa′b′ ∈ Closer(a, b) iff d(x,car(a′)) < d(x,car(b′)) for all pointsx ∈ Pa′b′ (lines 12–23).
This condition is tested by comparing the distances from an arbitrary pointx to car(a′) andcar(b′). If
d(x,car(a′))� d(x,car(b′)), thenPa′b′ �⊆ Closer(a, b) (lines 12–14). Otherwise,Pa′b′ �⊆ Closer(a, b) iff
carbis(a′, b′) intersectsPa′b′ (lines 15–23). This is tested by testing whethercarbis(a′, b′) intersects the
plane containingPa′b′ (lines 16–17), the boundary ofPa′b′ (lines 18–20), or the interior ofPa′b′ (lines 21–
23).

The algorithm of Fig. 3 uses three auxiliary functions. The functionPointOnPolygon(P ) picks any
point on the polygonP , and the functionPointOnConicSection(B) picks any point on the conic sectionB.
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CellIsCloser (CellC, Entity a, Entity b)
1 for every faceF of C
2 PL = DecomposeCellFace(F, a, b);
3 for every polygonPa′b′ in PL
4 if a′ = b′
5 if a ⊂ b

6 for every vertexv of Pa′b′
7 if v ∈ bis(a, b)
8 return NO;
9 continue;
10 else
11 return NO;
12 v = PointOnPolygon(Pa′b′);
13 if d(v,car(a′) � d(v,car(b′))
14 return NO;
15 B = carbis(a′, b′)∩ plane(Pa′b′);
16 if B = ∅
17 continue;
18 for every edgeE of Pa′b′
19 if B ∩E �= ∅
20 return NO;
21 x = PointOnConicSection(B);
22 if x ∈ Pa′b′
23 return NO;
24 return YES;

Fig. 3.CellIsCloser(C,a, b) returns YES iffC ⊆ Closer(a, b). The function solves at most a quadratic equation.

The functionDecomposeCellFace(F,a, b) decomposes a faceF of a cell C into polygonsPa′b′ s.t.
(1) a′ ⊆ a, (2) b′ ⊆ b, and (3)x ∈ Pa′b′ iff d(x, a) = d(x, a′) = d(x,car(a′)) andd(x, b) = d(x, b′) =
d(x,car(b′)).

Each polygonPa′b′ is the intersection of two polygonsPa′ and Pb′ . Pa′ = F ∩ H(a′, a) where
H(a′, a) = {x|d(x, a) = d(x, a′) = d(x,car(a′))}. Pb′ is defined similarly.H(a′, a) is an intersection
of a finite number of half-spaces each defined by a single plane. Consider the three cases:
1. a is a vertexv. Thena′ = v andH(v, v) is the whole space.
2. a is an edgee. If v is a vertex ofe thenH(v, e) is the half-space defined by the plane orthogonal toe

at v, and which does not containe. H(e, e) is the intersection of two half-spaces defined by the two
planes orthogonal toe at its vertices, and which containe.

3. a is a facef . If v is a vertex off , thenH(v,f ) is the intersection ofH(v, e1) andH(v, e2) where
e1 ande2 are the two edges containingv in f . If e is an edge off , thenH(e,f ) is the intersection
of H(e, e) and the half-space defined by the plane orthogonal tof at e and which does not contain
f . H(f,f ) is the intersection of half spaces each defined by the plane orthogonal tof at one of its
edges, and which containsf .

Lemmas 20 and 21 prove that the algorithm of Fig. 3 is correct.
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Lemma 20. Let a, b, a′ ⊆ a, b′ ⊆ b be entities. LetPa′b′ be a planar polygon s.t.x ∈ Pa′b′ iff d(x, a) =
d(x,car(a′)) andd(x, b) = d(x,car(b′)).
1. If a′ = b′ anda �⊂ b, thenPa′b′ �⊆ Closer(a, b).
2. If a′ = b′ anda ⊂ b, thenPa′b′ ⊆ Closer(a, b) iff every vertexv of Pa′b′ satisfies thatv /∈ bis(a, b).
3. If a′ �= b′ thenPa′b′ ⊆ Closer(a, b) iff ∀x∈Pa′b′d(x,car(a′)) < d(x,car(b′)).

Proof.
1. For everyx ∈ Pa′b′ d(x,car(a′)) = d(x,car(b′)), and therefored(x, a) = d(x, b). ThereforePa′b′ �⊆

Closer(a, b), sincea �⊂ b.
2. Suppose there exists a vertexv of Pa′b′ s.t.v ∈ bis(a, b). Thenv ∈ CloserEq(b, a), and by Lemma 4.2

v /∈ Closer(a, b).
Suppose every vertexv of Pa′b′ satisfies thatv /∈ bis(a, b). For everyx ∈ Pa′b′ d(x,car(a′)) =
d(x,car(b′)), and therefored(x, a) = d(x, b). ThereforePa′b′ ⊆ CloserEq(a, b). Suppose on the
contrary that there is a pointx ∈ Pa′b′ s.t. x /∈ Closer(a, b). Therefore for everyε > 0 there exists
a point y s.t. d(x, y) < ε and d(y, b) < d(y, a). y /∈ Pa′b′ . Thereforex ∈ ∂Pa′b′ . We show in the
following that if there exists a pointx ∈ bis(a, b) ∩ ∂Pa′b′ , then one at least of the vertices ofPa′b′
satisfies thatv ∈ bis(a, b).
Suppose on the contrary that there exists such a pointx, and no vertexv satisfies thatv ∈ bis(a, b).
Let v1 andv2 be the vertices of the edge ofPa′b′ containingx. v1, v2 ∈ Closer(a, b). If a is a vertex
thenCloser(a, b) is convex, and contradiction. Otherwisea is an edge, andb is a face. Letu1 andu2

be the two vertices ofa. Closer(a, b) is composed of three regions: (1)Closer(a, b) ∩ Closer(u1, a),
(2) Closer(a, b) ∩ Closer(u2, a) and (3)Closer(a, b) ∩ Closer(a, u1) ∩ Closer(a, u2). Each of the
three regions is convex. Thereforev1 andv2 are in two different regions. Ifvi is in the first region,
then a′ = u1. If vi is in the second region, thena′ = u2. If vi is in the third region, thena′ = a.
Contradiction.

3. SupposePa′b′ ⊆ Closer(a, b). Let x ∈ Pa′b′ . a �⊂ b since ifa ⊂ b thenπa(x) = πb(x), and therefore
a′ = b′ (sincea′ andb′ is the lowest dimensional entity ofQ containingπa(x) = πb(x)). The facts
that a �⊂ b andPa′b′ ⊆ Closer(a, b), imply that for everyx in Pa′b′ d(x, a) < d(x, b), and therefore
d(x,car(a′)) < d(x,car(b′)).
Suppose∀x∈Pa′b′d(x,car(a′)) < d(x,car(b′)). Then ∀x∈Pa′b′d(x, a) < d(x, b). Then ∀x∈Pa′b′x ∈
Closer(a, b). ✷
The following lemma justifies lines 21–23 of the algorithm.B = carbis(a′, b′) ∩ plane(Pa′b′), and

therefore a conic section. We show in this lemma that ifB does not intersect any edge of a polygon
(lines 18–20), then it is enough to test one point ofB in order to determine whetherB intersects the
polygon.

Lemma 21. LetB be a conic section, andP a polygon. IfB ∩P �= ∅, andB ∩ ∂P = ∅, thenB is wholly
in the interior ofP .

Proof. It is clear thatB ∩ P is wholly in the interior ofP . B is not wholly in the interior ofP , if B has
more than one connected component, and one of the connected components is bounded. This is not the
case, sinceB is a conic section. ✷
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The only geometric operations used in the algorithm are the ones used in order (1) to decompose a
planar polygon by planes, (2) to decide whether a pointx is closer to the carrier of entitya than to the
carrier of entityb, (3) to decide whether an edge of a polygon intersects a conic section, and (4) to pick
a point on a conic section. The first two queries are answered by linear operations. The last two queries
are answered by solving a uni-variate quadratic equation.

5. Extraction of Voronoi elements

In this section we show how to construct the Voronoi graph from a proximity structure subdivision.

5.1. Computing Voronoi edge witnesses

As a first step, we find which Voronoi edges intersect the boundaries of the cells. Only cells labeled
by three or more entities should be considered, since the other cells do not intersect Voronoi edges. The
computation is done separately for each cell faceF (Fig. 4). For a given cellCα , a faceF of the cell, and
three entitiesa, b, c ∈ α, CellFaceVoronoiEdgeIntersection computes the intersection points ofF and
Voronoi edgeseβ s.t.a, b, c ∈ β.

A point is on a Voronoi edgeeβ iff it lies on bis(a, b) for any a, b ∈ β, and is not closer to any
other polyhedron entity than to the entities ofβ. The algorithm intersects the bisectors of the carriers
of a, b, c ∈ β with the plane of the faceF (lines 1–2), resulting in two conic sections, which are then
intersected (line 3). Intersection points that are outside of the face (lines 5–6) or that do not obey the above

CellFaceVoronoiEdgeIntersection
(CellEntitiesα, CellFaceF , Entity a, Entity b, Entity c)

1 Wab = carbis(a, b)∩ plane(F );
2 Wac = carbis(a, c)∩ plane(F );
3 W = Wab ∩Wac;
4 for every pointx ∈ W

5 if x /∈ F

6 goto 4;
7 if (πcar(a)(x) /∈ a) or (πcar(b)(x) /∈ b) or (πcar(c)(x) /∈ c)
8 goto 4;
9 β(x)= {a, b, c};
10 for every entitye ∈ α \ {a, b, c}
11 if (x ∈ carbis(a, e)) and (πcar(e)(x) ∈ e)
12 β(x)= β(x)∪ {e};
13 goto 10;
14 if x ∈ Closer(e, a)
15 goto 4;
16 output (x,β(x));
17 return;

Fig. 4. Computing the intersection points of a faceF of C = Cα and Voronoi edgeseβ s.t.a, b, c ∈ β . The function
computes the intersection of two conic sections, i.e., the roots of at most a quartic uni-variate polynomial.
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criterion (lines 7–8 and lines 14–15) are removed. Voronoi edges having more than three governors are
detected in lines 11–12.

If W includes an infinite number of points, thenW is part of a conic section contained inF . In this
caseW is modified to contain only the intersection points betweenW and∂F .

Lemma 22 (The algorithm of Fig. 4 is correct).Let the set of pairs{(xi, βi)} for 1� i � n be the output
of the algorithm of Fig. 4. LetX = {xi} for 1� i � n.
1. For every1 � i � n: xi ∈ eβi .
2. X = eabc� ∩ F .

Proof.
1. (a) xi ∈ bis(a, b) for everya, b ∈ βi . Implied by Lemma 6.3.

(b) For every pair of entitiese ∈ α and b ∈ βi xi /∈ Closer(e, b). Suppose on the contrary that
xi ∈ Closer(e, b). πcar(b)(xi) ∈ b, and thereforee �⊆ b (Lemma 5). Thereforexi ∈ Closer(e, b)
implies thatd(xi, e) < d(xi, b). xi /∈ Closer(e, a) (lines 14–15), therefored(xi, e) � d(xi, a).
Therefored(xi, b) > d(xi, a), in contradiction to item 1a.

(c) For every pair of entitiese ∈ Q and b ∈ βi xi /∈ Closer(e, b). Suppose on the contraryxi ∈
Closer(e, b). e /∈ α (item 1b), therefore there exists an entityf ∈ α s.t.xi ∈ Closer(f, e) (Lem-
ma 16). Thereforexi ∈ Closer(f, b) (Lemma 7.1). Contradiction to item 1b.

(d) For every pair of entitiese ∈ Q and b ∈ βi xi ∈ CloserEq(b, e), i.e., xi ∈ eβi . If b ⊂ e or
e ⊂ b or b ∩ e = ∅, then it is implied from item 1c (Lemma 4.1). Supposee ∩ b = d �= b, e.
xi /∈ Closer(e, b), therefored(xi, b) � d(xi, e). Suppose on the contraryxi /∈ CloserEq(b, e).
Then there exists anε > 0 s.t. if y ∈ B(xi, ε) then d(y, b) � d(y, e). Therefored(xi, b) =
d(xi, e) = d(xi, d) (Lemma 2). Thereforexi ∈ CloserEq(d, b) ∩ CloserEq(d, e). By the result
of the present item ford andb, xi ∈ CloserEq(b, d). Thereforexi ∈ CloserEq(b, e) (Lemma 7.3).
Contradiction.

2. (a) X ⊆ eabc� ∩F . Let xi ∈ X. xi ∈ F (lines 5–6).xi ∈ eβi (item 1).a, b, c ∈ βi (lines 9, 12). Therefore
xi ∈ eabc� ∩ F .

(b) X ⊇ eabc� ∩ F . Let x ∈ eabc� ∩ F . We show in the following that there exists 1� i � n

s.t. x = xi . Let β be a set of entities s.t.x ∈ eβ ∩ F and β = abc�. Let b be an entity in
β. x ∈ eβ , thereforex ∈ CloserEq(b, e), for any entity e of Q, and in particular fore ⊂ b.
Therefored(x, b) = d(x,car(b)) (Lemma 5). Thereforeπcar(b)(x) ∈ b. If a is also an entity
in β, then x ∈ CloserEq(a, b) ∩ CloserEq(b, a), and therefored(x, a) = d(x, b). Therefore
d(x,car(a)) = d(x,car(b)). It is clear thatx /∈ Closer(e, b) sinceCloser(e, b)∩CloserEq(b, e) =
∅ (Lemma 4.2). ✷

In lines 7–8 and 11 we test whetherπcar(a)(x) ∈ a for every entitya ∈ β. If πcar(a)(x) /∈ a, then the
facts thatx ∈ carbis(a, b) andx /∈ Closer(e, b) for any entitye ∈ Q do not imply thatx /∈ Closer(e, a).
This case is demonstrated in Fig. 5. In this figurex ∈ carbis(a, b)∩Rb. Howeverx ∈ Closer(e, a).

The highest degree operation performed in the algorithm of Fig. 4 is the intersection of two conic
sections in line 3. Therefore the geometric operations performed in the algorithm of Fig. 4 amount to
solving a uni-variate polynomial whose degree is (1) 1, if all three entitiesa, b, c are faces or all are
vertices, (2) not more than 2, if two of the entities are faces or two are vertices, or (3) not more than 4, in
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Fig. 5.x ∈ carbis(a, b)∩Rb. In spite of that,x ∈ Closer(v, a).

all other cases. In the last two cases, the degree is lower than 2 or 4 when (1) the entities are incident on
each other, or (2) two of the entities are edges sharing a plane. In summary so far, we have

Lemma 23. All intersection points between Voronoi edges and subdivision cell boundaries can be
computed using linear operations, distance comparisons, and computing roots of at most quartic uni-
variate polynomials.

5.2. Extraction of Voronoi vertices

After computing edge witnesses, we identify Voronoi vertices. In the following we prove that a cell
Cα does not contain a vertex ofVD(Q) not labeled byα. Assuming that a cell does not contain two
different vertices with the same governors, we provide a simple criterion to determine whether a cell
contains a vertex or not, using the set of Voronoi edge witnesses computed earlier. The implications of
the assumption are discussed in Section 8.

Lemma 24. LetCα be a cell in a PSS. If it contains a vertex of VD(Q), it is vα .

Proof. Suppose on the contrary that there exists a vertexvβ in Cα, s.t.α �= β. Lemma 15 implies that
β ⊆ α, and thereforeβ ⊂ α. In the following we show thatdim(carbis(β)) > 0, in contradiction to
Lemma 8.5.α satisfies one of the conditions 2a–2h of Definition 1. Consider the following cases:
1. Condition 2a of Definition 1 holds.|α| � 4. Then|β| < 4 in contradiction to Lemma 11.
2. One of the conditions 2b–2f of Definition 1 holds. The proof is identical for all these cases. Consider

for example that condition 2b holds.|α| = 5, andα includes an edgee and two coplanar facesf1 and
f2 containinge. Let P be the plane carryinge, f1, f2. If two of e, f1, f2 are inβ, thenπP (vβ) ∈ e,
and therefore the third is also inβ. Thereforeβ = {e, f1, f2, a}.

dim
(
carbis(β)

) = dim
(
carbis(e, f1, f2)∩ carbis(a, e)

)
� dim

(
carbis(e, f1, f2)

) − 1 = 1.

3. Condition 2g of Definition 1 holds. All the entities ofα share a vertexv. v = vα �= vβ . Let R be the
ray from v throughvβ . Let S = R ∩ Cα . We show in the following thatS ⊂ carbis(β). Therefore
dim(carbis(β)) > 0.
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Let b be an entity inβ. Let x be a point inS. There exists a real numbert � 0 s.t.x = tvβ + (1− t)v.
We show in the following thatd(x,car(b)) = td(vβ,car(b)). This implies thatx ∈ carbis(β), i.e.,
S ⊂ carbis(β).
If b = v then it is clear thatd(x,car(b))= td(vβ,car(b)). Otherwisecar(b) is a line or a plane passing
throughv. Consider the two triangles:�vxπcar(b)(x) and�vvβπcar(b)(vβ). They are similar triangles,
and therefore

d(vβ,car(b))

d(vβ, v)
= d(x,car(b))

d(x, v)
.

4. Condition 2h of Definition 1 holds. All the entities ofα except one (a) share a vertexv and a plane
P . |β| � 4. Thereforeβ contains at least three entities incident onP and containingv. The bisector
of the carriers of three such entities is the lineL orthogonal toP at v. Thereforevβ ∈ L. Every point
on L is equidistant fromall the carriers of entities incident onP and containingv, and therefore if
vβ ∈ L, thenα \ {a} ⊆ β. If a ∈ β, thenα = β, and contradiction. Ifa /∈ β, thencarbis(β) is L and
thereforedim(carbis(β)) > 0. ✷

Lemma 25. LetC be a cell in a PSS. Letk > 0 be the number of intersection points of a Voronoi edge
eβ and∂C. There exists a vertex of VD(Q) in C iff k is odd.

Proof. carbis(β) is a 1-manifold curve (Lemma A.10). Therefore ifcarbis(β)∩C �= ∅, thencarbis(β)∩
C is composed of disjoint portions ofcarbis(β), each homeomorphic to a linear segment.3 Suppose there
does not exist a vertex ofVD(Q) in C. Hence, ifcarbis(β) entersC in a point ineβ , it exitsC in a point
in eβ (Lemma 10). Suppose there exists a vertex ofVD(Q) in C. This vertex isvβ�. Assuming that the
cell does not contain two vertices with the same governors, Lemma 24 states that there exists a single
vertex inC. Therefore there is exactly one connected portion ofcarbis(β) in which it enters intoC in a
point in eβ , and exits in a point outside ofeβ (Lemma 10). ✷

Lemma 25 provides a criterion to decide whether a cell contains a Voronoi vertex. If no Voronoi edge
intersects the cell, then the cell does not contain a Voronoi vertex, otherwise either there exists more than
one Voronoi vertex in the cell, or the edge is a closed loop, in contradiction to Lemma 14. Voronoi vertices
that are on the boundary of a cell are detected when computing Voronoi edge witnesses. There is one type
of vertices that the criterion of Lemma 25 might not detect. The criterion will not detect a Voronoi vertex
vα s.t. for every edgeeβ emanating fromvα , there exists another edgeeβ emanating fromvα . Such a
vertexvα cannot be detected without computing its exact location. Such vertices can be thought of as
vertices lying in the interior of edges; their presence results from a degenerate configuration.

5.3. Extraction of Voronoi edges

After computing edge witnesses and identifying Voronoi vertices, we identify Voronoi edges. We
describe how to determine the edges ofVD(Q) and the incidence relationships between the edges and
the vertices ofVD(Q). We first prove that the algorithm of Fig. 4 computes witnesses foreveryedge of
VD(Q) (Lemma 26).

3 Unlesscarbis(β) is tangent toC. This situation is avoided as explained in Section 5.1.
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Fig. 6. vabc andvabf share a path of cells intersectingeab, but do not share an edgeeab. Edges of the Voronoi
diagram are shown by solid curves. The dashed curve shows a part ofcarbis(a, b) that is not a Voronoi edge.

Lemma 26. Let e be an edge of VD(Q). There exists a cellC in a PSS s.t.e intersects the boundary
of C.

Proof. Suppose on the contrary that there exists a cellC and an edgee s.t. e ⊆ int(C). Assuming that
the cell does not contain two vertices with the same governors, there is at most one vertex ofVD(Q) in
C (Lemma 24). Thereforee is a closed loop, in contradiction to Lemma 14.✷

Lemma 26 implies that all edges ofVD(Q) are witnessed. In order to complete the identification of
Voronoi edges, we have to determine which witnesses share the same Voronoi edge. Note that there may
be several Voronoi edges having identical labels. We would like to say that two pointsx, y ∈ Rα share
the same edgeeα if there exists a path of cells connecting them s.t. every pair of consecutive cells in the
path shares a witness ofeα . This might be incorrect, as shown for the 2-D case in Fig. 6. Therefore we
subdivide leaf cells with more than two witnesses ofcarbis(α). Lemma 27 proves that this refinement
process halts. We call the resulting structure arefined proximity structure subdivision. Note that the new
generated sub-cells also satisfy the halting conditions of the PSS process.

Lemma 27. The refinement process defined above halts.

Proof. Let C be a cell in a PSS.carbis(α) is an intersection of two quadratic surfaces, and therefore
intersects a plane in a finite number of points (� 4).4 Therefore it intersectsC in a finite number of
points. Therefore there is a finite number of portions ofcarbis(α) in C. Sincecarbis(α) is a 1-manifold
curve (Lemma A.10), these intervals are disjoint, and each of them is homeomorphic to a linear segment.
Let m(C) be the minimal distance between two of these intervals. Since these intervals are disjoint
m(C) > 0. A cell of size smaller thanm(C) contains only one interval ofcarbis(α), and therefore
intersectscarbis(α) in no more than two points. ✷
Lemma 28 (A criterion to determine whether two points share a Voronoi edge).LetS be a refined PSS.
Let α be a set of entities s.t. dim(carbis(α)) = 1. Let x and y be points ineα . Let Cx be a cell ofS
containingx, and letCy be a cell ofS containingy. x andy are incident on the same Voronoi edgeeα
iff there exists a sequence of cellsC1, . . . ,Cn s.t.C1 = Cx , Cn = Cy , andCi andCi+1 share a witness
of eα .

4 Unlesscarbis(α) is incident on the plane. This situation is avoided as explained in Section 5.1.
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Proof. If x andy are incident on the same edgeeα , then it is clear that the condition is satisfied. Suppose
now that the condition is satisfied. First we show that there exists a connected partP of carbis(α) which
connectsx andy and which is contained in the cellsC1, . . . ,Cn. Then we prove thatP is wholly in eα .

If C1, . . . ,Cn do not include a connected part ofcarbis(α), then the boundary of one of these cells
intersectscarbis(α) in more than two points, contradicting the fact thatS is a refined PSS. Suppose on
the contrary thatP contains a pointx ∈ Ci s.t. x /∈ eα . ThenCi contains two Voronoi vertices (Lem-
ma 10), in contradiction to Lemma 24 (assuming that the cell does not contain two vertices with the same
governors). ✷

Lemma 28 determines which witnesses share the same Voronoi edge. It also determines which
Voronoi vertices share the same Voronoi edge. Thus determining the edges ofVD(Q) and the incidence
relationships between the edges and the vertices ofVD(Q).

5.4. Extraction of Voronoi faces

Lemma 29. A setE = {e1, . . . , en} of Voronoi edges defines a Voronoi facefα iff the following conditions
are satisfied:
1. dim(carbis(α))= 2.
2. Every edgee ∈ E is governed byα�.
3. There does not exist a set of entitiesβ ⊃ α s.t. every edgee ∈ E is governed byβ�.
4. E is connected, i.e., every two edgesei andei+1 share a vertex of VD(Q).

Proof. Suppose there exists a set of edgesE as defined above. The set of edgesE establish a connected
region inRα. dim(carbis(α))= 2, therefore this region is a Voronoi facefα iff there does not existβ ⊃ α

s.t. the region is contained inRβ .
Suppose there exists a facefα. Thendim(carbis(α))= 2 (Lemma 8.5).fα is simply connected (Lem-

ma 13). Lemma 10 implies thatfα is bounded by a set of edgeseα�. Lemma 14 implies that it cannot be
that all the edges offα are governed byβ for β ⊃ α. ✷

6. Dealing with degenerate diagrams

In Section 4 we assumed thatVD(Q) is not degenerate. IfVD(Q) is degenerate, then the subdivision
process might not halt. In the following we describe the modifications that should be applied to the
algorithm in order to handle degenerate diagrams as well.

The modifications are the following:
1. Subdivision process: An additional halting condition is added. The subdivision process is stopped also

when the diameter of a cell is smaller than a given tolerance parameterε. In the following we will
refer to such cells asε cells.

2. Extraction of the Voronoi graph from the subdivision:
(a) ε cells are ignored in the extraction of Voronoi vertices.
(b) The condition of Lemma 28 used in the extraction of Voronoi edges is modified as follows. Two

points are incident on the same Voronoi edge iff there exists a sequence of cellsC1, . . . ,Cn as
defined in Lemma 28,and the intermediate cells are notε cells.
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In Section 5 we did not assume that the diagram is not degenerate, but we handled only cells that
satisfy the conditions 2a–2e of a PSS cell (Section 4.1). Therefore applying the algorithm (with the
above modifications) on a degenerate diagram, yields a correct Voronoi graph in the cells that are not
ε cells. In theε cells we know the governing entities, but we do not know how these governors share
the cell. Anε cell is a small area where a degeneracy or an almost-degeneracy occurs. We do not want
to further investigate these small areas, therefore we regard eachε cell as a single node in the Voronoi
graph. Note that the extraction of the Voronoi edges emanating from theε cells is correct.

The graph extracted by applying the above algorithm on a degenerate diagram is called anApproximate
Voronoi Graph(AVG). An AVG approximates the Voronoi graph ofQ to a tolerance ofε in the sense that
a connected subgraph of the Voronoi graph that lies in a region of space of size smaller thanε is replaced
by a single graph node.

Formally we define an approximate Voronoi graph as follows. LetG be an undirected graph s.t. every
node is labeled by: (1) a set of entities ofQ, (2) type: ‘subgraph’, ‘face’, ‘edge’ or ‘vertex’.G is an
ε-approximation of the Voronoi graph ofQ if for every noden of type ‘subgraph’ there exists a subgraph
Gn of the Voronoi graph ofQ s.t. (1)Gn is governed only by the entities attached ton, (2) the part of
VD(Q) corresponding toGn is bounded by a sphere of radiusε, and substitution of all such nodesn by
their corresponding subgraphsGn results in the Voronoi graph ofQ.

7. The proximity structure diagram

The main contribution of this paper is the introduction and computation of the Voronoi graph,
containing thestructure of the Voronoi diagram of a polyhedron. In addition, the specific space
subdivision algorithm that we use enables us to easily compute a quantifiable approximation to the
geometryof the diagram as well.

We define aProximity Structure Diagram(PSD) of Q with a parameterδ to be a Voronoi graph ofQ
s.t. every node of the Voronoi graph carries also a geometric approximation (of the appropriate type) to
the corresponding element inVD(Q), to an accuracy ofδ. Formally, ifh is a Voronoi element andha its
geometric approximation, then∀x ∈ h,∃y ∈ ha s.t.d(x, y) < δ and∀y ∈ ha,∃x ∈ h s.t.d(x, y) < δ.

We use the term ‘proximity structure diagram’ for what many readers would informally call an
‘approximate Voronoi diagram’. We feel that the latter term is misleading, because it does not specify
whether the approximation is of the connectivity of the Voronoi diagram, its geometry, or both. In our
terminology, an AVG has approximate connectivity, and a PSD has exact connectivity and approximate
geometry. The parameter controlling the connectivity approximation isε, and the one controlling the
geometry approximation isδ.

An easy way to construct a PSD is to first construct the Voronoi graph using the proximity structure
subdivision algorithm, and then subdivide each cell that intersects a Voronoi edge until its diameter is
smaller thanδ. To obtain the desired approximation, we can either approximate directly in 3-D or work
in the parameter space of the carrier surfaces of the entity bisectors. Direct 3-D approximation works best
for vertices and edges, since centers of cells that contain Voronoi vertices, and piecewise linear curves
connecting Voronoi edge witnesses, obviously provideδ approximations to the vertices and edges of
VD(Q). Faces are most efficiently approximated by representing them as trimmed surfaces in parameter
space. Note that in this case if it is desired that the vertex, edge and face approximations be self-consistent
then they must all be represented by mappings from parameter space.
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8. Discussion

In this paper we introduced the Voronoi graph, the approximate Voronoi graph, and the proximity
structure diagram of a polyhedron, and presented a simple approach to construct them for 3-D linear
polyhedra. The Voronoi graph contains the complete symbolic information of the Voronoi diagram. The
AVG and PSD complement each other in the sense that the first approximates the symbolic part of the
Voronoi diagram and the second approximates the geometric part of the Voronoi diagram.

The skeletons are important for both theoretical and practical reasons. The main advantages of our
computational approach are that it uses relatively low-degree algebraic operations in a single variable and
that it enables local computation of the skeletons. Our results thus constitute a substantial improvement
over the many previous approaches for computing Voronoi diagrams of 3-D polyhedra and for defining
related approximations.

The algorithm has been implemented. Examples of its output are given in Figs. 7–9. Each of these
figures includes a polyhedron and part of its Voronoi graph. The polyhedron edges are shown in black.
The Voronoi graph does not contain any geometry; in order to visualize it, spheres denoting Voronoi
vertices are displayed in the centers of the subdivision cells containing them, and gray polylines denoting
Voronoi edges connect their Voronoi vertices while passing through the edge witnesses. Note that these
edge polylines are not geometric approximations to the edges and are given only for visualization
purposes. A geometric approximation could easily be made much more accurate.

In order to make the figures less cluttered, only part of the graph is displayed. The displayed part is the
‘central’ part of the graph: only its portion inside the polyhedron, and without Voronoi elements that are

Fig. 7. Visualization of the central part of the Voronoi graph of the polyhedron. Polyhedron edges are shown as
black lines, Voronoi edges as gray lines, and Voronoi vertices as spheres.
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Fig. 8.ε cells are shown as cubes.

Fig. 9. A more complex example.
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incident on polyhedron vertices (equivalent to the medial axis, without elements touching convex vertices
and edges).

Fig. 7 shows a simple example. The polyhedron of Fig. 8 is degenerate, and therefore its PSS contains
ε cells, denoted by small cubes. The geometry of the cubes is not identical to the geometry of theε

cells—a connected set ofε cells is displayed by a constant size cube. Fig. 9 shows a more complex part
with three holes.

We assumed in this paper that the polyhedron’s boundary is connected, and composed of convex
faces. When the boundary is disconnected, the polyhedron contains cavities. In this case there might
be (1) Voronoi edges that are loops, and (2) Voronoi faces that are multiply connected. A Voronoi edge
that is a loop might be wholly in the interior of a cell (we have no example for such an occurrence). Such
an edge will not be detected by the algorithm. The criterion to extract Voronoi faces should be extended
if multiply connected Voronoi faces exist. If two Voronoi edges share the same loop in a Voronoi face
fab, then there exists a sequence of Voronoi edgeseab� connecting them. If two Voronoi edges share the
same facefab, but not the same loop offab, then there is a path incarbis(a, b) connecting points in the
two edges s.t. the interior of the path does not intersect an edgeeab�, and the path includes a point in
Ra. While the first criterion can be implemented by finding paths in the already computed edge graph,
the second criterion requires a search in the PSS and additional numerical computations similar to those
executed when computing Voronoi edge witnesses.

Requiring that the faces of the polyhedron are convex makes both the proofs and the implementation
simpler. This requirement does not limit the range of polyhedra handled by the algorithm. For any
polyhedronQ, we can decompose its faces into convex pieces, compute the Voronoi diagram (or Voronoi
graph or proximity structure diagram) of the resulting polyhedronQ′, and then easily obtain the Voronoi
diagram ofQ from the Voronoi diagram ofQ′ in the following manner. For every element ofVD(Q′) we
know its set of governors inQ′, and therefore its set of governors inQ. VD(Q) is obtained fromVD(Q′)
by removing Voronoi elements whose set of governors inQ consist of a single entity, and by merging
Voronoi edges (faces) whose connecting vertices (edges) were removed. This is how the part in Fig. 9
was handled.

The proofs in this paper are correct when assuming that there does not exist a cell with a multiplicity
of Voronoi vertices all possessing the same set of governors (Section 5). If there exists a cell containing
a multiplicity of Voronoi vertices, and all of these vertices are labeled by the same set of governors,
then our algorithm might miss these vertices and identify the edges connecting them as the same edge.
In all other cases the algorithm computes the correct result. Even in the former case, the inaccuracy in
the Voronoi graph is limited to this specific cell, and the construction of the rest of the Voronoi graph is
correct.

The skeletons introduced in this paper have many applications in geometric computing. For
example, [20] presents a hexahedral mesh generation algorithm that uses the Voronoi graph to decompose
the polyhedron into simple sub-volumes that are easy to mesh by basic methods. The medial axis of an
object provides a natural subdivision of the object into simple parts. This application demonstrates that
the exact location of the Voronoi elements is not always needed. The Voronoi graph contains enough
information needed in order to determine where to decompose the polyhedron. If the polyhedron should
be decomposed with respect to a specific Voronoi element, then a geometric approximation of this specific
Voronoi element is computed. Fig. 10 shows the mesh generated using the algorithm of [20].

The focus in this paper has been on the new concepts and the correctness of the algorithm. The
computational aspects, including implementational issues and timing are discussed in another paper [6].
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(a) (b)

(c) (d)

Fig. 10. Hexahedral mesh generation using the Voronoi graph: (a) the initial polyhedron; (b) the Voronoi graph of
the polyhedron; (c) the decomposition faces generated based on the Voronoi graph; (d) the final mesh.

Additional topics for future work include enhancing the domain to curved polyhedra, and demonstrating
further applications of the new skeletons.
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Appendix A. carbis(a, b, c) is 1-manifold

Let α be a set of entities ofQ. In this appendix we show that ifdim(carbis(α)) = 1, thencarbis(α)
is a 1-manifold curve. Ifdim(carbis(α)) = 1 then α contains three entitiesa, b, c s.t. carbis(α) =
carbis(a, b, c). Therefore it is sufficient to show thatcarbis(a, b, c) is a 1-manifold curve for any three
entities ofa, b, c of Q.

This section is composed of two parts. In Appendix A.1, cases in whichcarbis(a, b, c) might not
be 1-manifold are identified, and the definition ofcarbis(a, b, c) is slightly modified accordingly. In
Appendix A.2 we prove thatcarbis(a, b, c) is a 1-manifold curve, when using the new definition.

A.1. Splitting the bisectors

carbis(a, b, c) might not be 1-manifold whena, b, c includes a plane, or two edges sharing a plane. In
these casescarbis(a, b, c) is composed of few 1-manifold parts. In order to splitcarbis(a, b, c) into its 1-
manifold components we use the notion of signed distance. The signed distanced� between a pointx and
a planeP is defined as follows. Ifx ∈ In(P ), thend�(x,P ) = d(x,P ), otherwised�(x,P ) = −d(x,P ).
The signed distance between a pointx and an oriented lineL with respect to a planeP containingL, is
defined as follows. IfπP (x) ∈ In(L,P ), thend�(x,L) = d(x,L), otherwised�(x,L) = −d(x,L).

Lemma A.1. Let a and b be two faces ofQ. Supposea and b are not parallel, and are not coplanar.
carbis(a, b) is composed of two planesP1 andP2 s.t.x ∈ P1 iff d�(x,car(a)) = d�(x,car(b)), andx ∈ P2

iff d�(x,car(a)) = −d�(x,car(b)).

Lemma A.2. Leta be a face ofQ, andb be a vertex ofQ. Supposea �⊃ b. carbis(a, b) is a paraboloid
s.t.x ∈ carbis(a, b) iff d�(x,car(a)) = sign(d�(b,car(a))) ∗ d(x, b).

In the following when we say “half a cone”, we mean one part of the two parts of a cone obtained by
intersecting the cone with a plane that intersects it only in its apex.

Lemma A.3. Let a be a face ofQ, and b be an edge ofQ. Supposea �⊃ b, and a and b are
not parallel. carbis(a, b) is a cone composed of two halves of a coneH1 and H2 s.t. x ∈ H1 iff
d�(x,car(a)) = d(x,car(b)), andx ∈ H2 iff d�(x,car(a)) = −d(x,car(b)).

Lemma A.4. Let a and b be two edges ofQ sharing a planeP . Supposea and b are not parallel,
and are not colinear. carbis(a, b) is composed of two planesP1 andP2 s.t. x ∈ P1 iff d�(x,car(a)) =
d�(x,car(b)), andx ∈ P2 iff d�(x,car(a)) = −d�(x,car(b)), whered� is w.r.t.P .

Let a andb be two entities that satisfy one of the following:
1. a andb are faces that are not parallel and are not coplanar.
2. a andb are two edges sharing a plane.a andb are not parallel and are not colinear.
3. a is a face andb is an edge.a �⊃ b, anda andb are not parallel.

Lemmas A.1–A.4 imply thatcarbis(a, b) is composed of two parts, either two planes, or two halves
of a cone. In the rest of Appendix A when we saycarbis(a, b, c), anda andb are of the types mentioned
above, we mean the part ofcarbis(a, b, c) that is incident on a specific half ofcarbis(a, b). Lemmas A.5–
A.6 prove that a Voronoi edgeeabc cannot be incident on two different halves ofcarbis(a, b),
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Lemma A.5. Let eα be a Voronoi edge, s.t.|H(α)|> 1. 5 Let a be an entity inα that is a face ofQ. Let
x1, x2 be two points ineα . d�(x1,car(a)) ∗ d�(x2,car(a)) > 0.

Proof. Consider the two cases:
1. d�(xi,car(a)) = 0. Thenxi ∈ car(a). Sincexi ∈ Ra, xi ∈ a. xi ∈ eα , thereforexi ∈ b for everyb ∈ α.

Therefore|H(α)| = 1. Contradiction.
2. d�(x1,car(a)) > 0 andd�(x2,car(a)) < 0. Then there exists a pointy ∈ eα s.t. y ∈ car(a). y ∈ eα ,

and thereforeπcar(a)(y) ∈ a. Thereforey ∈ a. y ∈ eα , thereforey ∈ b for every b ∈ α. Therefore
|H(α)| = 1. Contradiction. ✷

Lemma A.6. Let eα be a Voronoi edge, s.t.|H(α)| > 1. Let a and b be two entities ofα that are
edges ofQ, and share a plane. Letx1, x2 be two points ineα . d�(x1,car(a)) ∗ d�(x2,car(a)) > 0 and
d�(x1,car(b)) ∗ d�(x2,car(b)) > 0, whered� is w.r.t.P .

Proof. Consider the two cases:
1. d�(xi,car(a)) = 0. Thenxi ∈ car(a). Sincexi ∈ Ra, xi ∈ a. xi ∈ eα , thereforexi ∈ c for everyc ∈ α.

Therefore|H(α)| = 1. Contradiction.
2. d�(x1,car(a)) > 0 andd�(x2,car(a)) < 0. Let R be the plane orthogonal toP at a. There exists

a pointy ∈ eα s.t. πP (y) ∈ car(a) ∩ car(b). y ∈ eα , thereforeπcar(a)(y) ∈ a. ThereforeπP (y) ∈ a.
Similarly πP (y) ∈ b. ThereforeπP (y) is a vertex ofa, b. Therefore|H(α)| = 1. Contradiction. ✷

A.2. carbis(a, b, c) is 1-manifold

Lemma A.10 proves thatcarbis(a, b, c) is 1-manifold. Lemmas A.7–A.9 are auxiliary lemmas of
Lemma A.10.

Lemma A.7. Letq be a point. LetL a line or a plane s.t.q /∈ L. Letp be a point on bis(q,L). If a plane
T is tangent to bis(q,L) at p, thenT = bis(q,πL(p)).

Proof. In order to prove thatbis(q,πL(p)) is tangent tobis(q,L) at p, it is sufficient to show that (1)
every pointx ∈ bis(q,πL(p)) satisfiesd(x,L) � d(x, q) and (2)p ∈ bis(q,πL(p)). (1) is correct since
if x ∈ bis(q,πL(p)) then d(x,L) � d(x,πL(p)) = d(x, q). (2) is correct sinced(p, q) = d(p,L) =
d(p,πL(p)). ✷
Lemma A.8. LetL1 andL2 be two lines that do not share a plane. Letp be a point on bis(L1,L2). If a
planeT is tangent to bis(L1,L2) at p, thenT = bis(πL1(p),πL2(p)).

Proof. Let p1 = πL1(p). Let p2 = πL2(p). Let R1 be the plane orthogonal toL1 at p1. Let C1 =
R1 ∩ bis(L1,L2). We show in the following thatC1 = R1 ∩ bis(p1,L2). Let x be a point inC1.
d(x,p1) = d(x,L1) = d(x,L2). Thereforex ∈ R1 ∩ bis(p1,L2). Let x be a pointR1 ∩ bis(p1,L2).
d(x,L1) = d(x,p1) = d(x,L2). Thereforex ∈ C1. ThereforeC1 = R1 ∩ bis(p1,L2). ThereforeC1 is
intersection of a plane and a swept parabola, and therefore 1-manifold.p ∈ C1. Let t1 be the line tangent
to C1 at p. SinceC1 ⊆ bis(p1,L2), t1 is incident on the plane tangent tobis(p1,L2) at p. Lemma A.7

5 Recall thatH(α) = α \ {a: a ⊃ b, b ∈ α}. If |H(α)| = 1, then no splitting ofcarbis(α) is done.
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implies that this plane isbis(p1,p2). Similarly we defineR2, C2 andt2. t1 andt2 are both incident onT
and onbis(p1,p2). We show in the following thatt1 �= t2. This implies thatT = bis(p1,p2).

Suppose on the contrary thatt1 = t2. Let t be t1 = t2. C1 ⊆ R1, thereforet = t1 ⊆ R1. Similarly
t = t2 ⊆ R2. Also t ⊆ bis(p1,p2). Therefore every pointx ∈ t satisfies thatd(x,L1) = d(x,p1) =
d(x,p2) = d(x,L2). Thereforet is a line incident on the swept parabolabis(p1,L2). Thereforet is
orthogonal to the plane ofp1 andL2. Similarly t is orthogonal to the plane ofp2 andL1. ThereforeL1

andL2 share a plane. Contradiction.✷
Lemma A.9. LetR be a plane. LetL be a line s.t.L �⊆R. Letp be the point on bis(R,L). LetP be the
plane passing throughπL(p) and whose normal is[p,πL(p)].
1. L ⊂ P

2. If a planeT is tangent to bis(R,L) at p, thenT = bis(R,P ).

Proof.
1. Letx ∈ L. [x,πL(p)] is orthogonal to[p,πL(p)]. Thereforex ∈ P . ThereforeL ⊂ P .
2. p ∈ bis(R,P ) sinced(p,R)= d(p,L)= d(p,πL(p))= d(p,P ). Every pointx ∈ bis(R,P ) satisfies

thatd(x,R) = d(x,P ) � d(p,L), sinceL ⊂ P . ✷
Lemma A.10. If dim(carbis(a, b, c)) = 1, then carbis(a, b, c) is a 1-manifold curve.

Proof. Consider the following cases:
1. a, b, c are vertices. Thencar(a), car(b) andcar(c) are points, andcarbis(a, b, c) is a line.
2. a, b, c are faces. Thencar(a), car(b) andcar(c) are planes, andcarbis(a, b, c) is a line.
3. a andb are vertices, andc is a face.car(a) andcar(b) are points, andcar(c) is a plane.carbis(a, b)

is a plane, andcarbis(a, c) either is a line or a paraboloid. Thereforecarbis(a, b, c) is either a line
an intersection of a plane and a paraboloid. Thereforecarbis(a, b, c) is 1-manifold.

4. a andb are vertices, andc is an edge.car(a) andcar(b) are points, andcar(c) is a line.carbis(a, b)
is a plane, andcarbis(a, c) is either a linear swept parabola or a plane. Thereforecarbis(a, b, c) is
either the intersection of two planes or the intersection of a plane and a linear swept parabola, and
therefore 1-manifold.

5. a andb are faces, andc is a vertex.car(a) andcar(b) are planes, andcar(c) is a point.carbis(a, b)
is a plane, andcarbis(a, c) is either a line or a paraboloid. Thereforecarbis(a, b, c) is either a line
or the intersection of a plane and a paraboloid. Thereforecarbis(a, b, c) is 1-manifold.

6. a andb are faces, andc is an edge.car(a) andcar(b) are planes, andcar(c) is a line.carbis(a, b) is
a plane, andcarbis(a, c) is either a plane, or half a cone, or a swept parabola. The intersection of a
plane with a plane or half a cone is a 1-manifold curve. The intersection of a plane with half a cone
is not 1-manifold curve only if the plane is tangent to the cone. In this case, Lemma A.9 implies
thatcar(c) ⊆ car(b). Thereforecarbis(b, c) is a plane, andcarbis(a, b, c) is a line, i.e., a 1-manifold
curve.

7. a is a vertex andb andc are edges.car(a) is a point, andcar(b) andcar(c) are lines. Consider the
two cases:
(a) a ∈ car(b) or a ∈ car(c). Thencarbis(a, b, c) is the intersection of a plane and a swept parabola,

and therefore it is a 1-manifold curve.
(b) a /∈ car(b) anda /∈ car(c). Suppose on the contrary thatcarbis(a, b, c) is not 1-manifold. Then

there exists a pointp ∈ carbis(a, b, c) s.t. the tangent planes ofcarbis(a, b) andcarbis(a, c) at
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p are the same plane. Thereforebis(a,πcar(b)(p)) = bis(a,πcar(c)(p)) (Lemma A.7). Therefore
πcar(b)(p) = πcar(c)(p). Thereforecar(b) and car(c) intersect, and therefore share a plane. In
this casecarbis(b, c) is a plane, andcarbis(a, c) is either a linear swept parabola or a plane.
Thereforecarbis(a, b, c) is either the intersection of a plane and a linear swept parabola, or the
intersection of two planes, and therefore a 1-manifold curve.

8. a is a vertex,b is an edge, andc is a face.car(a) is a point,car(b) is a line, andcar(c) is a plane.
Consider the three cases:
(a) a ∈ car(b). Thencarbis(a, b) is a plane, andcarbis(a, c) is a paraboloid.carbis(a, b, c) is the

intersection of a line and a paraboloid, i.e., a 1-manifold curve.
(b) a ∈ car(c). Thencarbis(a, c) is a line. Sincedim(carbis(a, b, c)) = 1, carbis(a, b, c) is a line.
(c) a /∈ car(b) anda /∈ car(c). Suppose on the contrary thatcarbis(a, b, c) is not 1-manifold. Then

there exists a pointp ∈ carbis(a, b, c) s.t. the tangent planes ofcarbis(a, b) andcarbis(a, c) at
p are the same plane. Thereforebis(a,πcar(b)(p)) = bis(a,πcar(c)(p)) (Lemma A.7). Therefore
πcar(b)(p)= πcar(c)(p). Consider the two cases:
i. car(b) ⊂ car(c). Thencarbis(b, c) is a plane, andcarbis(a, b, c) is the intersection of a plane

and a paraboloid, and therefore 1-manifold.
ii. car(b) �⊂ car(c). Thencar(b) andcar(c) intersect in a pointq. q = πcar(b)(p) = πcar(c)(p).

If q �= p, then [p,q] is orthogonal tocar(b), and also[p,q] is orthogonal tocar(c),
and thereforecar(b) ⊂ car(c). Thereforep = q, and q = πcar(a)(p) = a. Thereforea ∈
car(b)∩ car(c).

9. a is a face andb andc are edges.car(a) is a plane, andcar(b) andcar(c) are lines. Consider the
three cases:
(a) car(b) ⊂ car(a) or car(c) ⊂ car(a). Suppose w.l.g.car(b) ⊂ car(a). Then carbis(a, b) is a

plane, andcarbis(a, c) is either a plane, or half a cone, or a swept parabola. The intersection
of two planes is a 1-manifold curve. The intersection of a plane and a swept parabola is a 1-
manifold curve. The intersection of a plane and half a cone is not 1-manifold only if the plane
is tangent to the cone. Ifcarbis(a, b) is tangent tocarbis(a, c), then Lemma A.9 implies that
car(c) ⊆ car(a). Thereforecarbis(a, c) is a plane, andcarbis(a, b, c) is a line.

(b) b andc share a plane. Thencarbis(b, c) is a plane, andcarbis(a, c) is either a plane, or half a
cone, or a swept parabola. The intersection of two planes is a 1-manifold curve. The intersection
of a plane and a swept parabola is a 1-manifold curve. The intersection of a plane and half
a cone is not 1-manifold only if the plane is tangent to the cone. Ifcarbis(b, c) is tangent to
carbis(a, c), then Lemma A.9 implies thatcar(b) ⊆ car(a). Thereforecarbis(a, b) is a plane,
andcarbis(a, b, c) is a line.

(c) car(b) �⊂ car(a), car(c) �⊂ car(a) andb andc do not share a plane. Suppose on the contrary that
carbis(a, b, c) is not 1-manifold. Then there exists a pointp ∈ carbis(a, b, c) s.t. the tangent
planes ofcarbis(a, b) andcarbis(a, c) atp are the same plane.6 Thereforeb andc share a plane
(Lemma A.9).

10. a, b, c are edges.car(a), car(b) and car(c) are lines. Letk be the number of pairs of edges in
{a, b, c}, s.t. a pair consists of two edges sharing a plane. Consider the following cases:
(a) k � 2. Thencarbis(a, b, c) is the intersection of two planes, and therefore 1-manifold.

6 If there does not exist a tangent plane to a cone at a pointq, thenq is the apex of the cone. If the apexq of the cone
carbis(a, b) is oncarbis(a, b, c), thencar(b) andcar(c) share a point (q), and thereforeb andc share a plane.
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(b) k = 1. Suppose w.l.g.a and b share a plane. Suppose on the contrary thatcarbis(a, b, c)
is not 1-manifold. Then there exists a pointp ∈ carbis(a, b, c) s.t. the tangent planes of
carbis(a, b), carbis(a, c) and carbis(b, c) at p are the same planeT . Since carbis(a, b)
is a plane,T = carbis(a, b). Lemma A.8 implies thatT = bis(πcar(a)(p),πcar(c)(p)) =
bis(πcar(b)(p),πcar(c)(p)). Thereforeπcar(a)(p) = πcar(b)(p). Thereforeπcar(a)(p) is the inter-
section point ofcar(a) andcar(b), and thereforeπcar(a)(p) ∈ carbis(a, b) = T . Contradiction to
T = bis(πcar(a)(p),πcar(c)(p)).

(c) k = 0. Suppose on the contrary thatcarbis(a, b, c) is not 1-manifold. Then there exists a point
p ∈ carbis(a, b, c) s.t. the tangent planes ofcarbis(a, b) and carbis(a, c) at p are the same
planeT . Lemma A.8 implies thatT = bis(πcar(a)(p),πcar(b)(p)) = bis(πcar(a)(p),πcar(c)(p)).
Thereforeπcar(b)(p)= πcar(c)(p). Thereforecar(b) andcar(c) intersect. Thereforeb andc share
a plane. Contradiction. ✷
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