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Abstract: We present a novel approach to the problem of generating a polygon sequence that blends two simple
polygons given a correspondence between their boundaries. Previous approaches to this problem, including direct
vertex interpolation and an interpolation based on edge lengths and angles between edges, tend to produce self
intersections and shape distortions. Our approach introduces the star-skeleton representation, a structure com-
prised of equivalent decompositions of the two polygons into star-shaped pieces and a skeleton connecting the star
pieces. We utilized the concept of a star polygon since two star polygons can be fairly blended without any self
intersections.

We present algorithms for creating equivalent star-skeletons for the two polygons and for blending two star-
skeletons by interpolating their skeletons and unfolding intermediate polygons from the skeletons. We also demon-
strate the usage of the star-skeleton for blending multiple polygons and images. We show examples from a working
system that demonstrate the improved blend sequences generated by the method.

The intrinsic reasons for the good results obtained are the fact that the interiors of the polygons are considered,
not only the boundaries, and that the star-skeleton explicitly models an interdependence between all the vertices of
the polygons.
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tion, equivalent decompositions.

Publication: To be published in IEEE Computer Graphics and Applications, March 1995.

1



1 Introduction

Shape blending is a central problem in 2-D computer animation, involving a metamorphosis of one shape into
another. In spite of impressive productions which utilize morphing, the problem is far from being solved. Efforts
are needed for greater automation and reduction of manual work.

1.1 Background

In most animation systems 2-D shapes are represented as polygons. Polygon blending is usually considered a
two-part process: generation of vertex correspondence and vertex interpolation to create intermediate polygons.

The choice of a suitable correspondence is best made by the animator, since it has a strong emphasis on the
resulting animation and should depend on the animation script. There have been attempts for automatic determi-
nation of correspondence, in 2-D [1] and even in 3-D [2] [3]. Whether correspondence is given by the user or
computed automatically, it still remains to specify an interpolation, a task which is more suitable for automation.

As mentioned above, the most common type of interpolation is vertex interpolation. Vertex interpolation
can produce highly unpleasant results, even for simple shapes and simple transformations. Polygon edges easily
intersect each other, causing a loss of the sense of blending between shapes. Simple geometric properties, such
as lengths, angles, and areas, do not change in a consistent manner. An example is shown in the lower part of
Figure 2. The principal reason for the bad results given by vertex interpolation is that the path of each vertex is
determined independently of the path of any other vertex, and depends only on its interpolated positions.

Figure 1: Above: compatible star decompositions, each star piece shown in a different color. Below: the same
sequence, showing the skeletons.

Sederberg et al [4] presented an improved interpolation method, in which interpolated entities are edge lengths
and angles between edges rather than vertex locations. An optimization algorithm is performed, solely for the
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Figure 2: Above: star-skeleton. Below: vertex interpolation.

purpose of ensuring that the intermediate polygons define closed shapes. We will refer to this method as edge-
angle interpolation. The method deals successfully with many situations, among which are cases in which the
shapes are affine transformations of each other or in which parts of the shapes are transformed affinely. The
upper part of Figure 2 shows the result obtained from the approach presented in the present paper. Edge-angle
interpolation produces similar results.

However, there are many cases in which the method produces self-intersections of the boundary (Figures 5
and 6.) In addition, the method tends to distort the polygon area in intermediate shapes (Figures 3-6.) The reason
is that different parts of the boundary are unaware of each other and that there is no explicit consideration of the
interior area of the shape.

Similar types of problems also arise in image morphing, a computer animation technique in which intermediate
information is required for each pixel, not only for a shape’s outline. Beier and Neely [5] present an image
morphing approach in which a set of corresponding line segments is drawn on the images. Every pixel is given
local coordinates with respect to this set, an interpolation is performed on the line segments, and pixel values
are determined according to their local coordinates and colors. Animators using the technique have demonstrated
impressive results, but at a large manual and computational costs. The path of each line segment is independent
of the paths of any other segment. As a result, one can encounter the same disturbing effects as with vertex
interpolation. Fixing this problem necessitates manual intervention.
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Figure 3: Above: star-skeleton. Below: edge-angle interpolation.

1.2 The Star-Skeleton Approach

We present a novel approach to automatic polygon blending, which takes into account the interior of the polygons
as well as its boundary. The approach is based on a new polygon representation scheme which we call the star-
skeleton. A star polygon is a polygon for which there exists a point (a star point) from which all other points
are visible. The star-skeleton is comprised of two parts: a decomposition of the polygon into star-shaped pieces,
each represented by its vertices and a special star point called the star origin (upper part of Figure 1); and a planar
graph, the skeleton, that joins the star origins (lower part of Figure 1.) Shape interpolation is achieved by first
interpolating between the skeletons and then unfolding the star pieces from the skeleton.

The star-skeleton is appropriate for the shape blending problem for two reasons. First, it represents all points
in the interior of the shape as well as points on its boundary. Second, it defines an explicit dependence between
interpolated polygon vertices relative to a common structure (the skeleton.) The motivation for choosing a star-
based decomposition is that two star-shaped polygons can be blended such that their edges do not self intersect.
The vertices of a star polygon are sorted by angle around any star point. Linear interpolation preserves the order
of these angles. Thus the vertices of each intermediate polygon are also sorted by angle, which means that the
polygon’s edges do not self intersect. A star decomposition was preferred over, say, a convex decomposition
since it has much fewer pieces. The star-skeleton produced better results than skeletons using a minimal convex
decomposition or a triangulation.

In addition, we use the star-skeleton for multi-polygon shapes and image morphing. For the former, a meta-
skeleton that joins the star-skeleton of each polygon is computed and interpolated. The latter is easy to achieve
since the star-skeleton in effect defines local coordinates for each pixel inside every polygon.

The concept of a skeleton was used in animation already by Burtnyk and Wein in 1976 [6]. The user defined
a very simple and restricted ‘skeleton’, and its interpolation on the key-frames by hand, and the system used it for
correcting individual key-frames. A discrete medial-axis skeleton was used by Wolberg [7] for warping a single
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Figure 4: Above: star-skeleton. Below: edge-angle interpolation.

image from one polygon to another. This method does not generate intermediate images and works only in image-
space. Lazarus et al [8] use a skeleton to define a deformation entity. The user draws a skeletal curve which defines
local coordinates for each object point, computed by projecting the point on the nearest curve point. The user then
modifies the curve, and the object is deformed using these local coordinates. The method is very different from
ours, since we compute the skeleton automatically, our skeleton provides more flexibility and better control since
it is a tree, not just a curve, and our computation of local skeletal coordinates is based on the shape itself, not on a
simple projection on the skeleton.

From now on we assume that the problem is of blending between two polygons. Most presented concepts and
algorithms are suitable for more than two polygons. The paper is organized as follows. Section 2 gives notations,
an exact definition of the star-skeleton representation, and algorithms for computing compatible star-skeletons
of two polygons from their vertex lists. Section 3 describes how the star-skeleton is used for polygon blending.
Section 4 shows how to use the star-skeleton for blending multiple polygons and images. Results and examples
are given in Section 5.

2 The Star-Skeleton Representation

In this section we describe our notations, define the star-skeleton representation, and present algorithms for com-
puting compatible star-skeletons of two polygons from their vertex lists.

2.1 Notations and Basic Definitions

A polygon is defined by a sequence of points (vertices) such that the first vertex is identical to the last one. A
polygon edge is the line segment connecting two consecutive vertices. A simple polygon is a polygon whose edges
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Figure 5: Above: star-skeleton. Below: edge-angle interpolation.

do not intersect each other except when they topologically share a vertex. Let P denote a polygon, including its
interior and boundary. A point v ∈ P is visible from a point w ∈ P if the line segment [v, w] is contained in P

(including its boundary.) A simple polygon is convex if every pair of points in it see each other; it is star-shaped
(or a star polygon) if there exists a point v ∈ P that is visible from any other point in P . In such a case v is called
a star point. If a vertex is a star point it is called a star vertex. A line segment [u,w] is a diagonal of P if u,w are
vertices of P and see each other. A point u ∈ P is a Steiner point if it is not a vertex of P .

For every simple polygon we can define a graph called the visibility graph. Its nodes are the polygon vertices,
and an arc exists between two nodes if and only if the corresponding vertices see each other. A complete corre-
spondence between two polygons is a one-to-one mapping between their vertices that preserves vertex adjacencies
and orientation.

2.2 Definition of the Star-Skeleton

The star-skeleton of a simple polygon P is comprised of two components:

• The star set – a set of star-shaped polygons called star pieces. Each star piece possesses a special star point
called the star origin, and a direction called the reference direction.

If there is more than one star piece in the star set, each star piece possesses at least one star piece neighbor,
in the sense that they share an edge. Such an edge is called a shared edge, and its vertices are called shared
vertices. A shared edge must be internal to the polygon P . Shared vertices do not have to be vertices of P ,
since vertices of star pieces are not necessarily vertices of P . It is not prohibited that two star pieces intersect
each other.

The vertices of each star piece are represented in polar coordinates with respect to the star origin of the piece
and its reference direction. That is, each vertex is defined by the distance from the star origin and by the
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Figure 6: Above: star-skeleton. Below: edge-angle interpolation.

angle formed between the vector from the star origin in the reference direction and the vector from the star
origin to the vertex.

• The skeleton – a planar tree alternately comprised of two kinds of points: the star origins and mid-points of
shared edges, referred to as mid-points.

Each skeleton vertex has an associated direction called the reference direction. The root’s reference direction
is the x axis. The reference direction of any other vertex is the vector from the vertex to its parent. The
reference direction of a star piece is the reference direction of its star origin.

The root is represented in Cartesian coordinates. Each other vertex is represented in polar coordinates with
respect to the parent and its reference direction. That is, a vertex stores the distance to the parent and the
angle between the reference directions of the parent and of itself.

Figure 7 shows two star-skeletons. For the polygon on the left, the star set consists of three star pieces. For
example, the bottom one is defined by vertices 2-7. The three star origins are shown as black squares. The star
origin of the middle star piece coincides with vertex 8, which is also the root of the skeleton. There are two shared
edges, [0, 11] and [2, 7], and two mid-points, drawn as white squares.

Angles of star piece vertices are always measured from the star piece reference direction. However, there is still
an ambiguity regarding the actual number that represents the angle, since 2π can be added or subtracted and the
angle remains the same. The choice of number is important, since two such numbers are interpolated to form the
angle in an intermediate polygon. It order to avoid self intersection of the star piece in an intermediate polygon, the
angles of the star vertices should be equivalently sorted in both input polygons, and their range should not exceed
2π. This is achieved by denoting the angle of a vertex by the sum of the angle of the vertex from the the first vertex
of the star, and the angle of the first vertex from the reference direction (α). Thus the angles of the vertices are
equivalently sorted in both polygons, and ranged from α to α + 2π.
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Figure 7: Compatible star-skeletons.

2.3 Definition of Compatible Star-Skeletons

Our task is to find a nice blend between two polygons P and Q. Compatible star-skeletons are needed in order to be
able to interpolate the skeletons. A prerequisite for defining compatible star-skeletons is a complete correspondence
between P and Q. If only a partial correspondence is given, we first expand it into a complete correspondence
(Section 5.)

Let A and B be two star-skeletons of P and Q, respectively. Denote the i-th star piece in A by Ai and
the j-th vertex of Ai by Aij , and similarly for B. Assume that there exists a one-to-one mapping between the
set VA of vertices of all star pieces in A and the set VB of vertices of all star pieces in B. Star piece vertices
that are also vertices of P or Q possess such a mapping due to the complete correspondence requirement. The
mapping assumption means that vertices which are not vertices of P or Q (Steiner vertices) must also possess such
a mapping. In both cases we use the phrase ‘a vertex in VA corresponds to a vertex in VB’.

We say that A and B are compatible if:

• The star sets of A and B are comprised of compatible star pieces. Two star pieces Ai, Bi are compatible if

– For each j, Aij corresponds to Bij . That is, Ai and Bi are defined by corresponding vertices of VA

and VB .

– Their star origins are convex combinations involving corresponding vertices weighted by the same
weights. In this case we say that we have corresponding star origins.

Note that if two star pieces are compatible and they have shared edges then they have corresponding shared
vertices and corresponding mid-points.

• The two skeletons are isomorphic when identifying corresponding star origins and corresponding mid-points.
That is, the skeleton trees have exactly the same structure.

Figure 7 shows two compatible star-skeletons. Note that the numbers, adjacencies and character of star pieces,
polygon vertices and skeleton vertices are identical.

The motivation for the convex combination requirement is that a correspondence between the origin points and
the boundaries induces a correspondence between all internal points of the polygons. Hence the choice of star
origins has to be consistent with the existing correspondence between the boundaries.
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2.4 Computation of Compatible Star-Skeletons

Construction of compatible star-skeletons for two polygons is done in four stages: construction of compatible
star decompositions; determination of a star origin in each star piece; construction of the skeleton itself; and
representation of the vertices of each star piece in polar coordinates with respect to the skeleton.

2.4.1 Construction of Compatible Star Decompositions

Star decompositions of two polygons are compatible iff (1) every star piece in one decomposition has a mate in
the other decomposition which is defined by corresponding vertices; (2) in each pair of corresponding star pieces
there is at least one pair of corresponding star vertices. The reason for the second requirement is to ensure that
corresponding star origins can be found for each pair of star pieces.

Note that a pair of polygons might not possess compatible star decompositions without adding Steiner ver-
tices. This case is illustrated in Figure 8. The two polygons cannot be compatibly star decomposed without adding
Steiner points. The polygon on the right is not a star, and any diagonal of this polygon is not a valid diago-
nal in the left polygon. In order to decompose the two polygons compatibly, Steiner points must be added, as
shown in Figure 8. In this case, two Steiner points were added, yielding a star decomposition of four star pieces:
{0, 1, a, 7}, {a, 1, 2}, {2, 3, 4, b, a}, {a, b, 4, 5, 6, 7}.
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Figure 8: Compatible star decompositions with Steiner points.

Algorithms for constructing compatible star decompositions are given in [10]. These algorithms are not de-
scribed here since they solve an independent problem, and can be regarded as a black box for the algorithms
given here. Any algorithm which constructs compatible star decompositions of two polygons can be used to build
the compatible star skeletons. Two algorithms are described in [10]. The first one constructs compatible star
decompositions with minimal number of star pieces without adding Steiner points. This algorithm is a dynamic
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programming algorithm based on an algorithm by Mark Keil [11] [12] for computing a minimal star decomposi-
tion of a single simple polygon. It runs in O(n4) time, where n is the number of vertices of each polygon. The
second algorithm constructs compatible star decompositions with Steiner points in time O(C ×S), where C is the
size of the minimal convex decomposition of one of the polygons, and S is the time needed for decomposing a
single polygon into star pieces. The decompositions created by the second algorithm are not minimal, but possess
no more than O(n2) Steiner points (which also means they possess no more than O(n2) star pieces.) The output
of these algorithms consists of two structures. The first structure is two compatible star decompositions of the
two polygons. The second is the visibility graphs of the star pieces in the two polygons which are needed for the
determination of the star origins (see below.)

Decomposing a polygon into star pieces requires computation of the polygon’s visibility graph. Hence, the
star-skeleton blending algorithm’s robustness is related to the robustness of the computational primitive “do two
points see each other”.

2.4.2 Determination of Star Origins

Each pair of corresponding star pieces is handled independently of any other pair. For each star piece pair we
determine the set of common star vertices using the visibility graphs of the star pieces, which were created in the
previous stage. Recall that each pair of corresponding star pieces includes at least one pair of corresponding star
vertices. This ensures that the set of common star vertices is not empty. The star origins are taken to be convex
combinations of these star vertices, which guarantees that the chosen star origin is a star point (since the set of all
star points is convex.) In our implementation, the vertex weights in the convex combination are identical, so the
star origin is simply the center of mass of the common star vertices. We experimented with other alternatives, but
none was superior to the center of mass.

2.4.3 Skeleton Construction

The skeleton consists of two types of vertices, star origins and mid-points. The role of the skeleton is to join the
star origins so that the relative motion of star pieces during the blending process can be determined. Mid-points
were added to ensure that the skeleton lies completely inside the polygon, otherwise its motion does not reflect the
motion of the shape as a whole.

To construct the skeleton, view the star pieces as forming the nodes of a planar graph, with an arc between two
nodes whose corresponding star pieces have a shared edge. A tree must be extracted from this planar graph. The
main issue here is the choice of a root, since after that any graph traversal (e.g. depth-first) can be used to extract a
tree.

The choice of a root has an influence on the resulting blend. The root is the only skeleton vertex represented in
Cartesian coordinates; during the blend, its location is simply an interpolation of its positions in the two blended
polygons. As a result, a sense of being the shape’s ‘center’ is created. One of the star origins or mid-points can be
selected as a root by the user, or the system can find a star piece with a maximal number of neighbors and define
the root to be its star origin.

2.4.4 Polar Vertex Coordinates

Once we have the skeleton, each star origin possesses an associated reference direction, and the vertices of each
star piece can be represented by polar coordinates relative to the star origin and its reference direction.
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3 Polygon Blending

In this section we describe the usage of the star-skeleton for polygon blending. Generation of an intermediate
polygon at a given time instance t is done in two steps: first, generation of an intermediate star-skeleton, and
second, unfolding the polygon from its star-skeleton. To get a feeling for the process, see Figure 1.

3.1 Star-Skeleton Interpolation

The star-skeleton is defined by a collection of points of different types: polygon vertices, star origins, and mid-
points. Generation of an intermediate star-skeleton is performed by interpolating the coordinates of these points at
the desired time instance. Each of the above points, except the skeleton root, is represented in polar coordinates.
Polar coordinates interpolation involves interpolation of distances and angles. In our implementation we perform
a simple linear interpolation. Interpolation of the root vertex is done in Cartesian coordinates.

3.2 Unfolding the Polygon

By ‘unfolding’ we mean the computation of the Cartesian coordinates of each vertex on the boundary of the
polygon so that it can be directly displayed. Unfolding is comprised of two stages: computation of the Cartesian
coordinates of each skeleton vertex, and computation of the Cartesian coordinates of each vertex of the resulting
polygon. The skeleton vertices adjacent to the root are first computed, then their neighbors in a recursive manner.
Once all star origins on the skeleton have been computed, the vertices of each star piece can be computed.

It is now clear why skeleton vertices and polygon vertices are represented using a reference direction. The
reference direction of a skeleton vertex is the skeleton edge connecting it to its parent in the tree. The coordinates
of its children are interpolated relative to this direction to achieve coordinated motion between the different star
pieces composing the skeleton. The reference direction of a polygon vertex is the reference direction of the star
origin of the star piece to which it belongs, itself changing during the interpolation since it is a skeleton edge. The
fact that the vertex coordinates are interpolated relative to this direction ensures that the star piece will move in
accordance with the skeleton motion.

It is certainly possible (in fact, it is the common occurrence) that a shared vertex will be given different Carte-
sian coordinates by the two star pieces to which it belongs. In this case we take the mid-point of the segment
connecting the two positions.

4 Multiple Polygons and Image Morphing

It is easy to extend the star-skeleton approach to provide blending for shapes defined by multiple simple polygons
and to morphing of images contained within simple polygons. For multiple polygons, we first compute compatible
star-skeletons for each pair of corresponding polygons. We then compute a meta-skeleton, which is a planar tree
connecting the roots of the computed star-skeletons. Meta-skeleton representation is similar to the representation
of the skeleton part of the star-skeleton. During the interpolation process, the star-skeletons will move according to
the motion of the meta-skeleton. This creates an automatic interdependence between the motions of the different
polygons. A simple example for multiple polygon blending is shown in Figure 9.

When images are contained within one or both of the input polygons, the star-skeleton can be used to compute
an intermediate image as well as an intermediate outline. The star-skeleton of a polygon provides local coordinates
for each point inside the polygon, not only for points on its boundary, by representing them in polar coordinates
relative to the star origin and its reference direction. To create an intermediate image, for each of its pixels we find
their corresponding pixels in the initial and final images and use any appropriate filtering procedure to generate the
pixel color [9]. An example is shown in Figure 10.
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Figure 9: Above: shape blending using the meta-skeleton. Below: separate interpolation of each polygon.

5 Results and Discussion

To experiment with the ideas presented in the paper, we implemented a 2-D shape blending system. The system
is written in C and runs under SGI Unix workstations using the Motif toolkit for the user interface and SGI/GL
for graphics. It lets the user draw polygons, specify partial correspondence between their boundaries, and choose
between three types of blends: vertex interpolation, edge-angle interpolation [4], and star-skeleton interpolation.
A partial correspondence is automatically expanded into a complete correspondence, if necessary adding new
vertices according to edge lengths. In addition, an image can be positioned inside a polygon, in which case the
system computes an image morph sequence. The system is capable of generating postscript files containing several
keyframes of an animation sequence. All figures in this paper, except Figure 8, were created using this software.

We compared our results to those obtained by the other two interpolation methods. Vertex interpolation pro-
duces unpleasant results in most cases (e.g. Figure 2) hence Figures 3-6 show only our results (in the upper part) vs.
edge-angle interpolation (in the lower part.) Note that edge-angle interpolation readily produces self intersections
and shape and area distortions, effects automatically solved by the star-skeleton method. The star-skeleton method
might also create self intersections. However, these sporadic self intersections are either ‘natural’ or local. We
deem a self intersection to be ‘natural’ if the polygon would be valid in a 2.5D world (Figure 11.) Self intersec-
tions like those shown in Figures 2, 5 and 6 where the whole polygon is distorted by one edge penetrating another,
causing the polygon’s interior to disappear, are avoided.

We feel that the reasons for the good results produced by the method are the fact that the polygon interiors are
explicitly considered and that the star-skeleton models an interdependence between the vertices of the polygons.
The fact that the method is so naturally generalized to deal with blending of multiple polygons (Figure 9) and
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Figure 10: An image morph sequence.

image morphing (Figure 10) provides another indication to its advantages.
To produce the simplest star-skeletons possible, we preferred a minimal star decomposition. The decomposition

algorithms described in [10] are computationally expensive, taking a few seconds for the examples in Figures 4 and
5. It is important to emphasize that the blend itself is performed in real-time once the two compatible star-skeletons
are computed. To improve the usability of the method, faster algorithms for compatible star decompositions
should be explored. These should not necessarily compute an optimal decomposition like ours, but one that yields
skeletons which are simple enough.
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