
The Generic Geometric Complex (GGC): a
Modeling Scheme for Families of Decomposed

Pointsets

Ari Rappoport

Institute of Computer Science, The Hebrew University, Jerusalem 91904, Israel.

http://www.cs.huji.ac.il/∼arir. arir@cs.huji.ac.il.

Abstract: Modeling of families of geometric objects is a major topic in modern
geometric and solid modeling. Object families are central to many important solid
modeling applications, including parametric modeling schemes based on features,
constraints and design history.

In this paper we introduce the Generic Geometric Complex (GGC), a modeling
scheme for families of decomposed pointsets. Each member of the modeled family
is modeled using an improved version of the selective geometric complex. Hence,
the GGC can be viewed as a generalization of the boundary representation to a
modeling scheme for families of objects.

The GGC models a family in the classifying sense, supporting the object mem-
bership classification query. Association of corresponding boundary entities (e.g.
vertices, edges and faces) in different members of the modeled family is supported
by the entity-to-name (E2N) and name-to-entity (N2E) queries. We refer to generic
naming mechanisms that possess knowledge only about the boundaries of the mod-
eled objects as invariant naming schemes. We discuss several concrete ingredients
of generic names, present a general algorithm for invariant naming of entities in
selective geometric complexes in any dimension, and completely characterize in-
variant naming in the 2-D case.

Keywords: Generic Geometric Complex (GGC), shape families, Selective Geo-
metric Complex (SGC), invariant naming, persistent naming, generic naming, clas-
sifying models, modeling schemes.



1 Introduction

Geometric modeling deals with the representation and manipulation of geometric
objects in a computer. The primary objects of interest have mostly been Euclidean
pointsets. The boundary representation (Brep) is the modeling scheme of choice
for pointsets in most applications [Mäntylä88]. The Selective Geometric Complex
(SGC) [Rossignac88] is a generalization of the Brep, capable of representing de-
composed pointsets (pointsets with internal structures and mixed dimensionalities).

In modern geometric and solid modeling there is a shift of interest towards
the study of families of pointsets. The concept of a family of pointsets is central
to all modern modeling paradigms, including parametric modeling, feature-based
modeling, modeling with constraints, modeling of assemblies and modeling of en-
gineering tolerances. It is thus essential to provide a formal theoretical foundation
to the modeling of families of decomposed pointsets.

1.1 Background and Previous Work

Modeling framework. Requicha [Requicha80] defined a representation to be a
structure of symbols from an alphabet and a representation scheme to be a relation
between a space of representations and an abstract mathematical space containing
the things to be represented. In other words, a representation contains data which
can be read, interpreted, and operated upon by algorithms.

In this paper we use the concept of a modeling scheme and the distinction
between a modeling scheme and a representation scheme as presented in [Rap-
poport95]. A model is defined to be a ‘black box’ with a well defined interface
stating which queries it supports. A modeling scheme is a relation between a space
of models and an abstract modeling space containing the things to be modeled. A
model can thus be viewed as a representation encapsulated by a specification and
an implementation of the queries it supports. For example, the most common op-
erations performed on geometric models are display and selection, both of which
efficiently supported by the Brep [Rappoport96]. The motivation for these defini-
tions is that the only reason to build a model of something is to do something with
it; the queries specify what we desire to do and what are the abstract properties of
the modeled thing in which we are interested.

In addition to queries, which are operations relating a model to its external
users, there are synthesis operations, which enable the creation of models (either
from scratch or from other models and representations) and their modifications.

Modeling families of objects. Surprisingly, there is not much previous work
on modeling pointset families in general and Brep families in particular. Most

2



studies of families of pointsets have been from the parametric, feature-based and
constraint-based points of view. Geometric operation graph (GOG) schemes sup-
porting parametric models were described in [Rossignac86, Rossignac89, Em-
merik90, Solano94, Shah96]. These methods concentrate on providing high-level
synthesis operations needed to create models but cannot explicitly relate Brep enti-
ties (vertices, edges etc) in different members of the modeled family. Since explicit
support for those entities is the central ingredient of the Brep, these methods are
not very relevant to the study of families of Breps. A scheme for naming single
instances in assembly graphs was given in [Rappoport93]. This scheme is also lim-
ited to dealing with complete sub-objects. [Shapiro95] raises some questions con-
cerning the relationship between a GOG-like family and the corresponding Brep,
but does not provide answers.

Modeling schemes wishing to enable the identification of corresponding Brep
entities in different members of an object family can do that by supporting two
queries that we call entity-to-name (E2N) and name-to-entity (N2E). E2N gives
a unique generic name to an entity in a given object, which is guaranteed to be
identical to the name given to this entity in other object members of the same
family. N2E identifies the entity having the given name in a given member of the
family. We collectively call these queries generic naming queries.

There are very few modeling schemes supporting generic naming [Kripac97,
Lequette96, Chen95]. These systems are feature and history-based geometric op-
eration graph schemes. The main technique they utilize is tracking of entity splits,
unifications and modifications following the execution of synthesis operations.
These generic naming schemes rely on explicit knowledge of the operation graph.
Following their terminology, we call naming schemes that possess high-level knowl-
edge about the operation graph persistent naming schemes.

We refer to generic naming schemes that possess knowledge only about the
SGC (boundary and geometric structure) of members in the modeled family as
invariant naming schemes. The only previous work we are aware of that deals
with invariant naming is [Capoyleas96]. However, this work was done as part of
a specific GOG modeler [Hoffmann93], and does not discuss the general invariant
naming problem. It is limited to the needs and capabilities of that modeler, assum-
ing at certain points knowledge about synthesis operations. The results are mostly
applicable only in the context of the world view of this type of modeler.

Constraints specified over Brep entities define a parametric family of Brep ob-
jects. Most work on such so-called variational modeling techniques focus on algo-
rithms to solve and analyze systems of constraints (e.g. [Hel-Or94]; a recent survey
is given in [Bouma95]). It is assumed that once the constraint solver has computed
a consistent set of coordinates for the Brep entities then the final Brep of the ob-
ject can be easily recovered from them. As far as we know, nobody has studied

3



the relationship between this assumption and the invariant naming problem. Note,
however, that it is easy to represent such a family without generic names using an
example Brep, as proposed in [Pratt96].

1.2 Contribution

In this paper we provide the first study of modeling schemes for families of decom-
posed pointsets. We present the Generic Geometric Complex (GGC), a modeling
scheme for families of pointsets each modeled by a selective geometric complex.
We detail the queries supported by a GGC model, the most important of which
are entity-to-name and name-to-entity, and discuss the GGC as a classifying model
and as a parametric model. We also discuss representing and specifying a GGC
using an ‘example SGC’.

We define the invariant naming problem and discuss it in an abstract manner.
We define the notion of an ingredient of generic names of SGC entities and study
several concrete ingredients. We present a very general generic naming algorithm
based on ‘refinement by ingredients’, and completely solve the practical 2-D case,
proving that a connectivity component of a 2-D GGC can be uniquely named if
and only if a single entity in it can be uniquely named.

Section 2 describes a generalization of the SGC. Section 3 gives a formal defi-
nition of the GGC. Section 4 defines and presents general solutions to the invariant
naming problem. Section 5 completely characterizes the unique naming problem
in the practical 2-D case.

2 The Selective Geometric Complex (SGC)

The GGC models a family of Selective Geometric Complexes (SGCs), a concept
proposed by Rossignac and O’Connor [Rossignac88]. In this section, we present
a version of the SGC that is slightly more general than the original one and that
uses different terminology in some cases. The changes are explained and justified
where they appear.

An SGC is a model for a decomposed pointset. By the term ‘decomposed’ we
mean that the pointset is divided into disjoint subsets, each of which can be ad-
dressed independently. This term is shorter and more general than the description
used in the original article [Rossignac88], characterizing the SGC as a model for
‘pointsets having internal structures and incomplete boundaries’. The term ‘de-
composition’ naturally implies that the subsets have an arbitrary dimensionality.

An n-dimensional SGC is defined using a set of pointsets that we call carriers.
In general, a carrier can be any pointset in n-D, although there are two types of

4



carriers that are much more useful than others: algebraic hyper-surfaces (defined
as the zero set of a polynomial in n variables) and splines (pointsets defined by
parametric polynomials whose parameter spaces are k-dimensional, k < n). By
convention, space itself is also considered a carrier. In [Rossignac88], only alge-
braic hyper-surfaces and space itself were allowed. The fact that we allow any
pointset is the primary difference between the current presentation and the original
one.

The carriers are pointsets that in principle could be represented by any repre-
sentation scheme. However, the spirit of the SGC is that they should be specified by
a single easily computable mathematical formula. Each carrier possesses a math-
ematical nature. For example, a parametric quadric surface, a parametric cubic
surface, a parametric cubic curve, an implicit surface of total degree two and an
implicit surface of total degree three are of different natures. Depending on the
application, there can be a further sub-classification. For example, an ellipsoid and
a hyperboloid can be regarded as having different natures, even though both are
quadratic implicit surfaces.

Sometimes it is desired to label subsets of a carrier, either because it seems
intuitive to do so or because of application requirements. A primary example is the
cone: it seems natural to want to label its apex, and perhaps to distinguish between
the two subsets lying on different sides of the apex. Such a labeling actually consti-
tutes a decomposition of the carrier, which is exactly what the SGC was designed
to model. We assume that all carriers have already been decomposed.

The carriers induce a decomposition of space into entities as follows. The
pair-wise intersections of the carriers are divided into maximal connectivity com-
ponents. Each connectivity component is further decomposed into portions that
are relatively open, dimensionally uniform and possess no self-intersections. Each
maximal remaining pointset is called an entity of the SGC. For example, a 1-D en-
tity is a curve without self-intersections that does not include its end points, which
are 0-D entities. A study on the definition of entities in complexes defined by
algebraic equations is given in [Shapiro96].

Zero-, one-, two- and three-dimensional entities are called vertices, edges,
faces, and cells, respectively. In [Rossignac88], the term ‘cell’ was used for what
we here call an entity. We have chosen the word ‘entity’ due to lack of a natural
term for a 3-D entity other than ‘cell’.

Note that by definition, all points in an entity belong to exactly the same set of
carriers. The converse, however, is not true, since, for example, points belonging
to the same set of carriers may belong to different entities if the intersection set
between the carriers is composed of several connectivity components.

Note also that the decomposition of space into entities is completely defined
once the geometry of the carriers is known. One can say that the ‘real’ degrees

5



of freedom in classical boundary representations and space decompositions are
the geometries of the carriers and not the geometries of the entities, even if the
entities (vertices, edges, faces) play a more prominent role in applications and in
user interfaces.

Not all entities generated by the carriers are contained in the decomposed
pointset that the SGC is meant to model. Entities can be labeled as active or
passive to denote whether they are contained in the modeled pointset or not. In
general, each entity can be labeled with several symbolic attributes. The determi-
nation whether an entity is active or not is done according to additional structural
or other information. For example, the SGC could have been derived from a series
of Boolean operations between simpler SGCs, determining the appropriate label of
each generated entity. A particular representation might decide to store only active
entities, or entities having some attribute.

The decomposition induced by the carriers into entities might be too fine. The
user of the modeled decomposed pointset might wish to treat several entities as
a single entity in the modeled pointset. A further optional simplification stage
records such facts.

3 The Generic Geometric Complex (GGC)

In this section we introduce the Generic Geometric Complex (GGC) as a modeling
scheme for a family of SGCs. We describe supported queries related to carriers and
entities (Section 3.1), different senses in which the GGC models an SGC family
(Section 3.2), consideration for concrete representations for GGCs (Section 3.3),
and conclude in Section 3.4 with a formal definition of the GGC.

3.1 Carrier and Entity-Related Queries

The generic geometric complex models a family of SGCs. We must ask ourselves
which properties of an SGC family are important so that we know which queries
the GGC should support. The most important question is what do members in the
family have in common. They must have something in common, otherwise we
would not treat them as a family.

The central components of an SGC are its carriers and entities. It is thus natural
to define the commonality between members of an SGC family in terms of their
carriers and entities.

6



Carriers

As explained in Section 2, a carrier has both a mathematical nature and a specific
geometry. The border between these two components is somewhat fuzzy and not
always can be identified by symbolic means. For example, two quadratic polyno-
mial curves are similar symbolically, but we may want an ellipse and a parabola to
be considered as having two different natures.

The requirement that carriers have something in common can be interpreted
in different ways. We may demand a one-to-one correspondence between the car-
riers of members in the family, or we may require the existence of a certain set
of essential carriers and allow a member to possess additional carriers that do not
correspond to carriers in other members. The first alternative is simpler to define,
and in any case its study is essential in order to understand the second alternative.
Hence in this paper we adopt the first alternative. The important practical implica-
tion of this decision is that in this paper we do not handle patterns having differing
numbers of occurrences of a carrier.

Corresponding carriers of SGCs in the GGC family must have the same natures.
We do not make any demand on their geometries. If it is desired that members
should have a particular geometric property in common, then this property should
be made part of the definition of a carrier’s nature as in the ellipse and parabola
example above.

Members in the family are required to possess corresponding carriers. How
is this requirement exposed to the user of the family? That is, how is it phrased
in terms of supported queries? This is done using two complimentary queries,
carrier-to-name and name-to-carrier.

The carrier-to-name (C2N) query is given an SGC and a pointer to one of its
carriers, and computes a unique generic name to the carrier; the name is guaranteed
to be identical for the corresponding carrier in every other member. The name-to-
carrier (N2C) query is given an SGC and a generic name, and returns a pointer to
the carrier in the given SGC whose name is the given generic name.

Although this is not obvious at first sight, there are two completely different
alternative semantics to these queries, depending upon the order in which they
are allowed to be executed. If C2N queries can be executed before N2C queries,
carrier names are given by the GGC model (the ‘black box’) without control of
the user of the model. Moreover, in this case it is unreasonable to allow the user
to execute an N2C query having as input a name ‘invented’ by the user and not
returned by a previous C2N query. Allowing this usage could easily lead to naming
inconsistencies and would make a robust and consistent implementation of the C2N

query close to impossible.
The other alternative is to let only the users of the GGC specify generic carrier

7



names and remove this responsibility from the GGC model. In this alternative,
a generic carrier name is given by the user during the execution of the synthesis
operation that introduced the carrier into the GGC. It is the user’s responsibility
to keep track of these generic names and their intended meanings. The supported
queries are still N2C and C2N, but their implementation becomes trivial.

In this paper we take the second alternative and require that generic carrier
names are given by the GGC user. This alternative makes the GGC much easier to
implement, and at the same time is much more suitable to practical applications. A
primary application of the GGC is for supporting geometric operation graph (para-
metric, feature-based) models. In these models, the graph of synthesis operations
is stored as a part of the model, and it is easy to associate a generic carrier name
with the operation that created it. If an operation introduces several carriers having
similar natures simultaneously, naming them can be done arbitrarily. For exam-
ple, instantiation of a parametric box creates six carriers (planes), which can be
arbitrarily numbered.

From now on we will assume that carriers are symbolically named in an easily
identified, consistent manner. We will refer to a carrier’s symbolic name as its
identity.

Entities

Similarly to carriers, we have two alternatives in deciding how entities of different
members of the GGC family are related. We could require that there is a one-to-
one correspondence between the entities, or we can relax this requirement and only
require correspondence between a set of essential entities. Similarly to the carrier
case, in this paper we take the former decision, since this case is simpler and must
be understood anyway before discussing the second, more general alternative.

Unlike carriers, entities can be distinguished according to their attributes. The
most important issue to resolve is whether it is essential that all entities have cor-
responding ones; perhaps this is essential only for the active entities.

Our view is that passive entities may play an important role in a modeled fam-
ily. Indeed, most commercial systems provide ‘auxiliary’ geometric objects essen-
tial during the construction of other objects. The SGC is a ‘flattened’ version of
all carriers participating in the design and specification of an object family, hence
there are real advantages in allowing identification of corresponding inactive en-
tities in different family members. We therefore introduce another attribute, the
essential attribute, to represent the requirement that an entity must have a corre-
sponding one in all family members. In all practical cases, an active entity will
always be essential.

Identification of essential corresponding entities in different members of the

8



GGC family is supported by two complimentary queries, entity-to-name (E2N)
and name-to-entity (N2E). E2N is given an SGC and an entity, and returns a name
guaranteed to be identical to that returned by E2N given another SGC in the family
and the corresponding entity. N2E is given an SGC and a name, and returns the
entity having that name. In principle, in the implementation of N2E it does not
suffice to address only the given name, and membership of the given SGC to the
family should be verified. It is always possible that two entities in two different
GGCs will be given symbolically identical names.

SGC entities are derived unambiguously from the SGC carriers, hence here we
cannot let the user specify generic names directly. A name given as input to an
N2E query must always be a name previously returned by an E2N query. The re-
sponsibility of generically naming GGC entities solely belongs to the GGC model.
Users can identify corresponding entities of different family members, but they do
not possess direct control over the names used for this process.

3.2 The GGC as a Set Model

So far we discussed queries supporting an identification of corresponding compo-
nents (carriers and entities) in different members in the GGC family. However,
we have not discussed how to associate the members themselves with the family.
Two options for doing that, the classifying and the parametric approaches, are now
detailed.

General Set Models

In order to better understand the two options, recall that there are two major models
for modeling general sets, regardless of the nature of their members: classifying
models and parametric models. In a classifying model, we view the modeled set
as a subset of a (usually large) containing space. Each member of the containing
space can be represented or modeled by itself. The model supports the member-
ship classification query: given a member of the containing space, return ‘Yes’
if it is a member of the modeled set, ‘No’ otherwise. This query implements the
characteristic function of the modeled set.

In a parametric set model, it is assumed that each member can be given a
unique name. Hence, formally, a parametric model is a model for named sets,
which are different from unnamed sets. The set model supports the parametric
access (or named access, or indexing) query: given a name, return the member
having that name. The space of names is usually called the parameter space, and
a name is referred to as a parameter vector. It is assumed that the parameter space
can be specified rather easily, and that detection of invalid names is easy to do.

9



The GGC as a Classifying Set Model

When viewing the GGC as a classifying model, the containing space is the space
of all families of decomposed pointsets, which is evidently extremely large. A
classifying model would then support the ‘pointset membership classification’ (or
the ‘SGC membership classification’) query: given an SGC, determine whether
it belongs to the modeled family (Figure 1, left). This is similar to how a model
supporting the ‘point membership classification (PMC)’ query models a pointset.

parameter
vector
(carrier
geometries)

selective
geometric
complex

selective
geometric
complex

existence of
essential
carriers and
entities

yes
no evaluator

Figure 1: The GGC as a classifying (left) and parametric (right) set model.

Every model supporting the SGC membership classification query models a
family of decomposed pointsets in the classifying sense. However, not every such
model is a GGC. There are different classes of such models, distinguished by the
type of information that they can make use of. The GGC only knows about the
carriers defining its SGCs and treats all of them as having equal status. It is very
different from classifying models possessing knowledge about the creation history
of the modeled family or about a higher level labeling of entities according to
functional features.

Given the N2E query, implementation of the membership classification query is
easy. The names of all essential entities are obtained from the GGC model; a N2E

query is executed on the classified SGC for every such essential entity. After that,
one pass on the given SGC suffices to conclude that it does not possess redundant
essential or active entities. The GGC models a family of SGCs in the classifying
sense very naturally.

The GGC as a Parametric Set Model

To view the GGC as a parametric model, we can view the vector containing the ge-
ometries of the carriers as the name (parameter vector) of a particular SGC member.
The GGC black box would in this case be an evaluator of the entities of an SGC
given the geometries of its carriers, plus a mechanism to select the active entities.

Useful SGCs defined by a set of carriers denote as active only a subset of the
entities in any dimension. It is clear that without an elaborate mechanism to select
a subset of the entities as active entities, such a model is useless. This mechanism

10



should examine the SGC resulting from the given carrier geometries, and label
entities as active. This is not possible without a scheme for naming entities generi-
cally. The mechanism would store a set of generic entity names, search for them in
the resulting SGC, and label them as active. The active entities play here the role
of essential entities in the classifying point of view.

What happens if an essential generic name from the set cannot be found in the
SGC? In some cases perhaps there are additional rules in the selection mechanism
to cope with this case. However, in general such a situation in an indication that
the given parameter vector does not belong to the parameter space. Hence the real
difficulty with this approach is how to determine validity of the parameter vector,
which stands in contrast to the basic assumption of parametric schemes, that the
validity of a parameter vector should be easy to determine. In a sense, what is
needed here is a classifying model for the parameter space, which is almost as
difficult to specify and implement as a classifying model for the modeled SGC
family.

In addition, although direct parameterized access to the GGC family is possi-
ble, it is not very useful. The parameters do not necessarily mean much. What is
needed is a higher-level parametric interface. This is exactly the type of interface
supplied by constraints on the one hand and geometric operation graph models on
the other hand. A deeper study of both would take us too far from the subject of
the current paper.

The conclusion of this discussion is that the parametric model is not a partic-
ularly natural model for a family of SGCs: it is difficult to verify membership in
parameter space, and it is not very useful directly. Note that exhaustive enumera-
tion of all family members is impossible for useful families.

3.3 Representation and Specification using an ‘Example SGC’

Any model must contain a concrete representation; a modeling scheme should also
possess associated synthesis operations to make it easy to specify and modify a
model. The GGC must represent the sets of essential components, which could be
directly stored as sets of generic names. However, this representation would make
it very awkward to communicate with the model, visualize it and edit it.

In most systems, interaction with a family of objects is done through an ‘exam-
ple object’ whose visualization is available to the user at all times. User actions are
performed on the example object and are translated internally to generic actions
[Hoffmann93, Rappoport96].

We can utilize this fact in the representation of the GGC. Assume that we al-
ways have an example SGC contained within the modeled family. The carriers of
this example SGC are labeled with their identities, or generic names, as given by

11



the user during synthesis operations. The entities of the example SGC possess the
‘essential’ attribute as well as the ‘active’ one. The essential entities can potentially
store another attribute, ‘name’, which stores their generic names. In principle, the
generic names can be computed on the fly as they are needed instead of continu-
ously stored as attributes.

The ‘example SGC’ point of view is so useful that we can add the existence of
an example as a query optionally supported by the GGC. It uses concrete carriers
and entities to represent generic ones.

3.4 Summary

Following are two definitions summarizing the discussion in this section. The first
definition is a formal, constructive one, detailing the queries that a GGC model
must support.

Definition: a Generic Geometric Complex is a model for a family of decomposed
pointsets, each modeled by an SGC. There is a bijection between the carriers and
entities of members of the family. The model supports the following queries:

1. entity-to-name (E2N): given an SGC whose carriers possess generic names
having equal status and an entity in it, return a unique generic name for the
entity, guaranteed to be identical to that returned for the corresponding entity
in all members of the given SGC’s family.

2. name-to-entity (N2E): given an SGC in the modeled family and a generic
name previously returned by E2N, return the entity having that name.

3. membership classification: given an SGC, determine whether it belongs to
the modeled family or not.

4. example (optional): return a member of the modeled family.

Together, the first two queries define the invariant naming problem. Note that
the problem potentially possesses a large number of solutions, most of which are
useless in practice. Naming schemes are of different quality, and are a function of
the intended application. It is difficult to capture this function mathematically.

The second definition is not a formal definition of the GGC as a modeling
scheme. Rather, it is an intuitive, descriptional formulation of the modeled family
as the family ‘spanned’ by an example member. Here, designating an entity as
‘essential’ is interpreted as imposing a constraint on the family, thereby narrowing
it.

12



Definition: a Generic Geometric Complex is the family of SGCs obtained by mod-
ifying the geometries of the carriers of a concrete SGC while preserving the exis-
tence of generically named entities designated as essential.

4 Invariant Entity Naming

Invariant naming is the fundamental capability of the generic geometric complex.
Since carrier names (identities) are given by the user, the real computational chal-
lenge facing GGC implementors is entity naming. In this section we analyze the
naming problem, discuss several ingredients of a generic name, and present a gen-
eral naming algorithm.

4.1 Name Ingredients

In general, there is no simple naming scheme guaranteed to produce unique names
in all situations. Hence, in order to distinguish between identical names of dif-
ferent entities, several ingredients must be used in every name. Every additional
ingredient increases the chance that a unique name will be found. However, there
are still SGCs for which unique naming is not possible (see Section 5).

There are several classes of ingredients. An ingredient in an entity name is
independent if it utilizes knowledge only about the entity itself and its carriers.
An entity-dependent ingredient does not utilize names of other entities, but it can
utilize knowledge about their existence. A name-dependent ingredient utilizes
names of other entities. The dependent ingredients are not allowed to depend upon
inessential entities. Ingredients can be considered as attempts to break symmetries
in an SGC configuration.

Syntactically, an ingredient is a pair (S, D) where S is a symbol denoting the
ingredient type and D is the data needed by that type. Words written in a fixed font
are constant symbols, the others are variables. When sets are enumerated, their
members are enclosed in round parentheses. It is easy to define an ordering on
ingredients, obtaining a total ordering on the set of generic names.

Dimension and Attributes

An obvious independent ingredient is the dimension n of the entity, denoted by
(Dim, n). If the application uses special attributes, they can also be used, denoted
by (Att, AttName, V ), where AttName is the name of the attribute and V is its
value.

13



Carrier Identities

The major independent ingredient is carrier identities, denoted by (Id, (Ck1
, . . . , Ckn

))
where (Ck1

, . . . , Ckn
) is an ordered list of the carriers generating the entity (it is

easy to impose a total ordering on the carriers of any SGC because they have sym-
bolic names already). Obviously, the carrier identities ingredient is not sufficient
to uniquely name all entities. The intersection of several carriers may have sev-
eral connectivity components; a single carrier may be decomposed into several
disconnected pieces due to intersections with other carriers or to non-uniform di-
mensionality which necessitates its decomposition. On the other hand, sometimes
this ingredient suffices, e.g. when all carriers are linear.

Special Entity Geometry

In some cases, special geometric properties of an entity can be used as another in-
dependent naming ingredient. Such ingredients are denoted by (Geo, X, D) where
Geo denotes a geometric ingredient, X is a symbol specifying its actual geometric
type, and D the data needed by this specific type. Depending upon the application,
such geometric properties could be used as independent name ingredients.

For example, consider two carriers: a 3-D torus C1 and a 3-D line C2 (Fig-
ure 2). The line is positioned on the torus such that it is tangent to it at one point
A and intersects it at a segment BC. The points A, B and C are vertices of the
resulting SGC having the same dimensions and carrier identities. However, vertex
A has a special geometric property — the fact that it is a point of tangency between
the line and the torus. We can thus add the ingredient (Geo, Tangency, (C1, C2))
to the name of vertex A. Note that in this example the tangency point is unique,
thus is sufficient in order to distinguish vertex A from all others. Convexity of an
entity is an obvious property that may be used in a geometric name ingredient.

A

B

C

Figure 2: Vertex A is a point of tangency of a line and a torus (cross section shown),
while vertices B and C are not.

14



Carrier Signs (Separation)

An entity-dependent ingredient that is not local is carrier signs. Let SC =
{C1, . . . , Ck} be the ordered set of signed carriers, carriers inducing a global
sign function on space (e.g. implicit algebraic half-spaces). Let Ci(p) be the
sign of point p with respect to the carrier Ci. Then for every entity E, for all
p, q ∈ E, Signs(p) = Signs(q), where Signs(p) = (C1(p), . . . , Ck(p)). Hence
Signs(E) = (C1(p), . . . , Ck(p)), p ∈ E is well defined. The carrier signs ingre-
dient is denoted by (Sign, (C1, . . . , Ck), (S1, . . . , Sk)) where Si ∈ {+, 0,−}.

Two entities can be distinguished according to carrier signs if there is another
separating carrier, that is, a carrier with respect to which the signs of points in the
two entities are different. Motivated by representation conversion from Brep to
CSG, Shapiro studied the usage of carrier signs to distinguish between cells (3-D
entities) in algebraic geometric complexes [Shapiro93, Shapiro96].

It may seem that carrier identities is a special case of carrier signs, since the
sign is zero for all carriers generating an entity. This statement is mathematically
correct but semantically erroneous. When we consider the intended functionality
of the generic names, the two ingredients are readily seen as extremely different.
Carrier identities are fundamental to an entity; this is the very reason of being of
the entity. Carrier signs strongly depend on the geometry of the separating carriers.
In Figure 3 we see an SGC in which line A separates vertices B and C. However,
only a small portion of line A is active, and this portion does not have any relation
with the separated vertices. Using line A as a separating carrier to distinguish
between generic names for B and C is equivalent to demanding that these vertices
be separated by that line in all members of the family, which is probably not the
modeler’s intention.

B C

A

Figure 3: Line A separates vertices B and C, but it is undesirable to use this fact
in their generic names.

This example shows that using arbitrary carrier sign to distinguish between
arbitrary entities is to be avoided. Nonetheless, it is useful to let the user explicitly
indicate specific carriers that can be used to separate specific entities. The system

15



does not have to expose the user to the intricacies of the naming mechanism in
order to support this functionality. It is reasonable to expect the user to understand
that a family, not a single object, is being designed, and to help the system in
making the family model well defined. In the same manner, user guidance may be
also required in designating an inactive entity as essential.

To summarize this discussion, we feel that although separation is an important
tool in the study of spatial decompositions, it is useful for invariant naming only in
certain situations and perhaps only with explicit user guidance.

Adjacency

The most important name-dependent ingredient is adjacency. Suppose that an
entity E is adjacent to an entity F . Then we can add the ingredient (Adj, F ) to E’s
name. Of course, F must be a generic name. It does not have to be unique, but it
must be generic. We sometimes refer to the process of adding such an ingredient
as propagation of the name of F to the name of E.

Ordered Adjacency

A related name-dependent ingredient is ordered adjacency. Suppose that entity
E is adjacent to entities F = {F1, . . . , Fm} (the Fi’s are generic names, but not
necessarily unique). Suppose further that the set F can be generically ordered
around E. Then (OrdAdj, F ) is an ingredient in a generic name for E.

By ‘generically ordered’ we mean that the order is required to remain invariant
in all members of the modeled SGC family. For example, edges can be sorted
counter-clockwise (CCW) around a manifold vertex when viewed from the outside
of the solid. Note that the term ‘outside’ itself must itself be generic, a requirement
amounting to generic directions of face normals.

Ordered Use

Ordered use is a name-dependent ingredient very similar to ordered adjacency.
Suppose that an entity F1 is contained in a set F of entities that can be generically
ordered around an entity E. Then (OrdUse, E, F ) is an ingredient in a generic
name for F1. The difference from ordered adjacency is that there the ingredient
was used as part of a generic name for the ‘center’ entity, the one around which
others are ordered, while here the ingredient is of a name for an entity in the ordered
set.

A restricted form of both ordered adjacency and ordered usage was called ‘local
orientation’ in [Capoyleas96], where it was always used for manifold vertices and

16



radial edges. Ordered adjacency and use in our sense are more general than local
orientation. As a simple example, we can use them for non-manifold vertices that
can be viewed as manifold vertices when removing all adjacent edges but those in
the set F .

Local Ordering

Local ordering is either entity-dependent or name-dependent. Local ordering is
most useful when ordering vertices along a curve. The curve can be a carrier or an
intersection curve between carriers; in any case it is defined generically. A name-
dependent ingredient of a name for a vertex V may be (LocalOrd, Rel, C, V1, n),
meaning that vertex V lies n vertices away relative to vertex V1 along an open
curve C. A generic direction for the curve must be used.

An entity-dependent ingredient for V may be (LocalOrd, Num, C, n), meaning
that vertex V is vertex number n along curve C (the starting end is not specified,
hence this ingredient could be applied to several vertices). Here the ingredient
depends upon the existence of other vertices but not on their names.

Local ordering can also be sometimes used on surfaces. For example, take a
parametric surface carrier; SGC edges are curves in the parameter space. If the
curves can be classified in a well-defined manner, we could use this fact as an in-
gredient. Some of the ‘feature orientation’ ingredients in [Capoyleas96] are of this
type. For example, curves in a parameter space having rectangular topology (e.g.
surfaces of partial revolution) can be classified either as loops inside the param-
eter space or as splitting it along one of the rectangle directions. The ingredient
(LocalOrd, HorzSplit, S, n) of an edge E denotes that it is the n-th horizontal
splitting curve in the parameter space of surface S. This ingredient assumes that
the horizontal direction is defined generically (e.g. by the nature of the carrier).

Local Naming

Local ordering can be regarded as a special case of local naming, which is a recur-
sive invocation of the whole generic naming problem locally on a carrier. For ex-
ample, two non-intersecting closed loops in a 2-D parameter space, corresponding
to two edges, can perhaps be separated by an auxiliary line carrier in the parameter
space.

Connectivity Component Configuration

It may be required to preserve relative configurations of GGC connectivity compo-
nents across the GGC family. The most obvious example is that a certain compo-
nent must be contained in another. In general, any knot-type relationship between

17



two or more components can be used in order to break symmetry. Apart from con-
tainment, such relationships are difficult to verify. A thorough discussion about
this subject is outside the scope of this paper.

Arbitrary Naming

An extremely important ingredient is arbitrary naming, which tells the GGC to
arbitrarily select and name one of a set of entities having the same name. After this
selection and naming, the new arbitrary name (Arb) can be used as an ingredient
in names of other entities. For example, the GGC of Figure 5 cannot be uniquely
named, but once a single entity is arbitrarily named then all other entities can be
uniquely named.

To conclude the discussion on ingredients, note that cells (3-D entities) can
generally be named only using dependent ingredients; there are no independent
ones that can distinguish between cells. An exception is the outermost cell, which
is always unique in Euclidean space.

4.2 General Naming Algorithms

There are two general variants of naming algorithms: algorithms computing a com-
plete naming by giving generic names to all entities, and algorithms answering the
E2N query by computing a name for a single entity, computing other names only if
needed. In the following we give general algorithms to solve each variant if this is
possible.

The algorithms we give are general in that they do not require a fixed name
structure. Different applications may desire to prioritize usage of name ingredi-
ents differently. A desired order of name ingredients is given as a parameter to
the general naming algorithm. A particular ingredient A may appear more than
once in this ordering, because it is possible that ingredient A can be re-applied af-
ter applying another ingredient B, even if A was already applied before B. The
primary example for this possibility is given by the adjacency ingredients: in prin-
ciple, they can be re-applied after each additional ingredient has been applied. The
general algorithm can be viewed as a template giving rise to a large number of
concrete algorithms.

The ‘Refinement by Ingredients’ Complete Naming Algorithm

Input: (1) an SGC whose entities possess an ‘essential’ attribute, (2) a priority
ordering on ingredients.
Output: an invariant naming for the entities if one exists; otherwise, an indication
to this fact.

18



0. Store all entities in a single equivalence class whose name is the empty name.

1. Select the next ingredient.

2. Update all non-unique entity names using this ingredient (simultaneously).

3. Iteratively refine all equivalence classes, until no further refinement is possible.

4. If all equivalence classes contain a single member, return ‘success’.

5. If an additional ingredient can be applied resulting in a change in the equiva-
lence class structure, go to step 1.

6. Return ‘failure’.

At every point during the execution of the algorithm we have a decomposition
of the entity set into equivalence classes, such that all entities in an equivalence
class have the same generic name. Initially, there is a single equivalence class,
because all entities are unnamed.

The main loop of the algorithm (steps 1-5) introduces a name ingredient. It is
not necessarily a new ingredient, because, as noted above, ingredient may be used
several times. The ingredient is applied to all existing names possible (step 2).
In step 3, it is attempted to refine an equivalence class into several classes distin-
guished by the introduction of the ingredient. Refinement is performed iteratively,
because a refinement of one equivalence class may make it possible to refine an-
other1 . For example, one refinement can make an entity name unique, and now
this entity can be used in order to uniquely name an adjacent entity (assuming we
can use the adjacency ingredient). The main loop is performed until all entities are
uniquely named (step 4) or until no ingredient can be further applied. This happens
when no ingredient application can cause any modification to the equivalence class
structure.

The algorithm finally halts, because the number of ingredients and entities is
finite, and no ingredient can require checking an infinite number of given config-
urations. Even if an ingredient tries to break symmetry considering all possible
entity subsets, the number of those is still finite.

When implementing the algorithm, decisions should be made regarding the
data structures used for the representation of equivalence classes and their pointer
connectivity with the SGC entities. In addition, name compression could be used
to accelerate name comparisons. This is particularly necessary for adjacency ingre-
dients. Name compression can be achieved by deleting common ingredients and
leaving only the ones by which equivalence classes differ [Capoyleas96].

1In some applications it may be desired not to perform iterative refinement in order to control the
effect of an ingredient.

19



Naming a Single Entity (E2N)

To name a single entity, we have at least two options. The simpler one is to run the
complete naming algorithm above, and stop when the equivalence class containing
the desired entity contains a single member. This approach has the advantage that
if a unique name exists for the entity then it will be found. However, perhaps some
computations were wasted on naming other entities unnecessarily.

A different alternative is to try to name the entity using some independent in-
gredient, and check if the resulting name is unique. If it is, then we can return it
as the answer. If it isn’t, we run the algorithm recursively on the adjacent entities,
updating all names after each invocation. The main drawback of this algorithm is
that the computed name cannot use names that were already computed by previous
E2N queries because this would cause names to be sensitive to the order of exe-
cution of the query. In addition, the computational savings are probably not that
large because checking whether a name is unique or not involves application of
the ingredient to all entities. The algorithm of [Capoyleas96] is a variant of this
algorithm; it is applicable there because in their system the order of E2N queries is
fixed.

Ingredient Priorities

The major decision to be made when designing a naming scheme is the order in
which naming ingredients are applied. It is natural to decide that carrier identities
will always have the first priority. In some cases, e.g. for linear polyhedra, this
ingredient alone is enough to solve the invariant naming problem completely.

Prioritizing other ingredients is application dependent. In general, independent
ingredients are more attractive than dependent ones and entity-dependent ingredi-
ents are more attractive than name-dependent ones, since it is preferable that names
depend upon each other as little as possible.

An Example

In Figure 4 we give an example for the general naming algorithm. There are four
carriers: cylinders C1, C2, plane P , and point V (an isolated point is a valid car-
rier). Looking at the object from a top view, we name the faces FA − FD, the
edges EA − EF and the vertices V A − V D. After using the dimension and
carrier identities ingredients, we have the following equivalence classes: V1 =
(V A, V B, V C, V D), E1 = (EA, EC), E2 = (EB, ED), E3 = (EE, EF ), F1 =
(FA), F2 = (FB, FD), F3 = (FC). Applying the ordered adjacency ingredient,
we can refine V1 to obtain V1 = (V A, V C), V2 = (V B, V D). If we use Ei

20



as a substitute for the full generic name of its members, the generic name of V1 is
((Id, (C1, C2, P )), (OrdAdj, (E1, E2, E3))) and of V2 is ((Id, (C1, C2, P )), (OrdAdj, (E2, E1, E3))).

C

C
P

1

2

FA

FB FC FD

EA

EB

EC

ED

EE EF

VA VB

VCVD

V

Figure 4: A generic naming example.

It is not difficult to see that no further application of any ingredient (apart,
of course, from the arbitrary naming one) can refine the equivalence class struc-
ture. Vertices V A and V C are completely symmetric, and so are (V B, V D),
(EA, EC), (EB, ED), (EE, EF ), and (FB, FD). If, on the other hand, a single
entity could be given a unique name then all entities could be uniquely named. For
example, we could endow edge EB with the ingredient (Geo, InterTangent, (C1, V )),
meaning that this edge intersects the plane incident at point V and tangent to cylin-
der C1. Once edge EB is uniquely named, its name can be propagated to uniquely
name all other entities.

5 A Characterization of Invariant Naming in 2-D

In 2-D, we can completely characterize the invariant naming problem for the case in
which all carriers are either signed (implicit curves) or parametric, and parameter
direction is allowed to participate in name ingredients. In virtually all practical
applications carriers are implicit or parametric. However, making names dependent
upon the direction of curve parametrization somewhat impairs the generality of the
characterization.

The theorem below states a necessary and sufficient condition for unique nam-
ing in the case described. It shows that there are situations in which unique naming
is impossible, and gives a constructive algorithm to name all entities uniquely given
a unique name for a single entity. In practice, containment between connectivity
components should be taken into account when naming 2-D GGCs.

Theorem: A connectivity component of a 2-D generic geometric complex having
carriers that are either signed or parametric can be uniquely named if and only if
it contains a single entity that can be uniquely named.

Proof: Only if: Figure 5 shows a 2-D generic geometric complex that does not

21



contain any named entity. The vertices can be divided into two equivalence classes,
containing vertices (V 1, V 3) and (V 2, V 4). It is easy to verify that none of the
entities can be named according to any of the ingredients.

If: suppose we have an entity that possesses a name. We will show that the
name can always be propagated to adjacent entities.

Case 1: the named entity is an edge E. If it has no adjacent vertices, we are
finished. If it has a single adjacent vertex, we can name it as ‘the single vertex
adjacent to E’. The remaining case is when it has two adjacent vertices. If E’s
carrier is signed, then the positive face F adjacent to E is uniquely defined. Hence
the edges and vertices of F can be ordered counter clockwise (CCW), and this or-
dering can be used in order to distinguish between the two vertices. If E’s carrier is
parametric, then the parameter direction is used to distinguish between the vertices.

Case 2: the named entity is a vertex V . If it has no adjacent edges, we are
finished. If it has a single adjacent edge whose carrier is C, C being any carrier,
then the edge is named as ‘the single edge adjacent to V and having carrier C’.
The remaining case is when V has two adjacent edges E1 and E2 having the same
carrier C (there cannot be more than two such edges, because carriers do not pos-
sess self intersections and are dimensionally uniform). If C is parametric, we can
distinguish between the two edges according to the parameter direction. If C is
signed, denote the positive face of E1(E2) as F1(F2). If F1 and F2 is the same
face, order its adjacent edges and vertices CCW and use this order to distinguish
between the two edges. Otherwise, order each of F1 and F2 CCW. On exactly one
of these faces the studied edge precedes V . Use this fact to distinguish this edge
from the other one. �

v1

v2

v3
v4

Figure 5: In this generic geometric complex no entity can be uniquely named.

6 Discussion

In this paper we presented the generic geometric complex and discussed in depth
the queries it supports and ingredients of generic names. We believe that this is

22



the first general discussion on families of decomposed pointsets. We have not dis-
cussed in depth the context in which the GGC is used by applications, and the way
specific applications would customize the general naming algorithm and deal with
situations in which generic naming is not possible using the ordinary ingredients.

A particularly interesting application is for parametric geometric operation
graph (GOG) modeling schemes. The dependency of the resulting parametric
model on the creation sequence is often stated as a crucial drawback of the whole
parametric paradigm, making it difficult for the designer to modify previous design
decisions. The GGC could serve as a ‘flat’ structure on top of which different fea-
ture hierarchies are built in an order-independent way. In addition, in many GOG
applications it is prohibitive to store an example object after each synthesis op-
eration, hence concrete representations for generic names should be investigated,
including the compression issue.

Another important topic for future work are concrete algorithms enabling treat-
ment of GGCs as parametric set models. The main computational difficulty here
is how to ensure that generic names are still valid during the manipulation of the
parameter vector.

In some (perhaps even most) applications, constraints between carriers and
entities (e.g. two lines must be parallel) are present in the modeled SGC family.
In our view, the GGC as described in this paper provides a basic framework for
modeling an SGC family; the family can be further refined by adding constraints.
That is, a set of constraints defined over the carriers and entities of a GGC select
a subset of the modeled family. This subset is naturally modeled in the classifying
sense, because it is easy to verify that the constraints are obeyed in a given SGC.
Note that the constraints should be defined generically, using either generic names
or an example SGC. In this view, the requirement for a generic name for an entity
is seen as a constraint upon the entity and perhaps on others.

Acknowledgement. I thank Vadim Shapiro for interesting discussions on the subject
of this paper.

References

[Bouma95] Bouma, W., Fudos, I., Hoffmann, C.M., Cai, J., Paige, R., Geometric con-
straint solver. Computer-Aided Design, 27(6):487-501, 1995.

[Capoyleas96] Capoyleas, V., Chen, X., Hoffmann, C.M., Generic naming in generative,
constraint-based design. Computer-Aided Design, 28(1):17-26, 1996.

[Chen95] Chen, X., Hoffmann, C.M., On editability of feature-based design. Computer-
Aided Design, 27(12):905-914, 1995.

23



[Emmerik90] Emmerik, M.J.G.M. van, Interactive design of parameterized 3D models
by direct manipulation. Ph.D. Thesis, Delft University Press, 1990.

[Hel-Or94] Hel-Or, Y., Rappoport, A., Werman, M., Relaxed parametric design with
probabilistic constraints. Computer-Aided Design, 26(6):426-434, 1994. Also in:
proceedings, 2nd Symposium on Solid Modeling and Applications (Solid Modeling
’93), ACM Press, 1993, pp. 261-270.

[Hoffmann93] Hoffmann, C.M., Juan, R., Erep, an editable, high-level representation
for geometric design and analysis. In: P. Wilson, M. Wozny, and M. Pratt, (Eds),
Geometric and Product Modeling, pp. 129-164, North Holland, 1993.

[Kripac97] Kripac, J., A mechanism for persistently naming topological entities in history-
based parametric solid models. Computer-Aided Design, 29(2):113–122, 1997.
Also: proceedings, 3rd Symposium on Solid Modeling and Applications (Solid Mod-
eling ’95), pp. 21–30, ACM Press, 1995.

[Lequette96] Lequette, R., Considerations on topological naming. Presented at the IFIP
Workshop on Geometric Modeling in CAD, May 1996, Airlie, VA.

[Mäntylä88] Mäntylä, M., An Introduction to Solid Modeling, Computer Science Press,
Maryland, 1988.

[Pratt96] Pratt, M.J., Provision of an explicit constraints schema in the STEP standard.
Theory and Practice of Geometric Modeling (Blaubeuren II), Tübingen, Germany,
October 1996. Proceedings to be published by Springer-Verlag.

[Rappoport93] Rappoport, A., A scheme for single instance representation in hierarchical
assembly graphs. IFIP Conference on Geometric Modeling in Computer Graphics,
Genova, Italy, June 1993. Published in: Falcidieno, B., Kunii T.L. (Eds), Geomet-
ric Modeling in Computer Graphics, pp. 213-224, Springer, 1993 (updated version
available).

[Rappoport95] Rappoport, A., Geometric modeling: a new fundamental framework and
its practical implications. Proceedings, 3rd Symposium on Solid Modeling and Ap-
plications (Solid Modeling ’95), May 1995, Salt Lake City, pp. 31-42.

[Rappoport96] Rappoport, A., Breps as displayable-selectable models in interactive de-
sign of families of geometric objects. Theory and Practice of Geometric Modeling
(Blaubeuren II), Tübingen, Germany, October 1996. Proceedings to be published
by Springer-Verlag.

[Requicha80] Requicha, A.G., Representations for rigid solids: Theory, methods and
systems. ACM Computing Surveys, 12:437-464, 1980.

[Rossignac86] Rossignac, J.R., Constraints in constructive solid geometry. ACM Sympo-
sium on Interactive 3D Graphics, pp. 93-110, ACM Press, 1986.

[Rossignac88] Rossignac, J.R., O’Connor, M.A., SGC: a dimension-independent model
for pointsets with internal structures and incomplete boundaries. In: Wozny, M.,

24



Turner, J., Preiss, K. (eds), Geometric Modeling for Product Engineering, North-
Holland, 1988. Proceedings of the 1988 IFIP/NSF Workshop on Geometric Model-
ing, Rensselaerville, NY, September 1988.

[Rossignac89] Rossignac, J.R., Borrel, P., Nackman, L.R., Interactive design with se-
quences of parameterized transformations. Intelligent CAD Systems 2: Implemen-
tational Issues, P. ten Hagen, T. Tomiyama (Eds), Springer-Verlag, 1989.

[Shah96] Shah, J., Mäntylä, M., Parametric and Feature-Based CAD/CAM: Concepts,
Techniques, and Applications. Wiley, New-York, 1996.

[Shapiro93] Shapiro, V., Vossler, D., Separation for boundary to CSG conversion. ACM
Transactions On Graphics, 12(1):35-55, 1993.

[Shapiro95] Shapiro, V., Vossler, D.L., What is a parametric family of solids? Proceed-
ings, Third Symposium on Solid Modeling and Applications (Solid Modeling ’95),
pp. 43-54, ACM Press, 1995.

[Shapiro96] Shapiro, V., Maintenance of geometric representations through space decom-
position. To be published in Intl. J. Computational Geometry and Applications.

[Solano94] Solano, L., Brunet, P., Constructive constraint-based model for parametric
CAD systems. Computer-Aided Design, 26(8):614-621, 1994. Also appears in:
Falcidieno, B., Kunii T.L. (Eds), Geometric Modeling in Computer Graphics, pp.
61-84, Springer, 1993.

25


