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Abstract

A recent line of work, starting with Beigman and Vohra [3] and Zadimoghaddam and
Roth [28], has addressed the problem of learning a utility function from revealed preference
data. The goal here is to make use of past data describing the purchases of a utility maximizing
agent when faced with certain prices and budget constraints in order to produce a hypothesis
function that can accurately forecast the future behavior of the agent.

In this work we advance this line of work by providing sample complexity guarantees and
efficient algorithms for a number of important classes. By drawing a connection to recent
advances in multi-class learning, we provide a computationally efficient algorithm with tight
sample complexity guarantees (Θ(d/ǫ) for the case of d goods) for learning linear utility functions
under a linear price model. This solves an open question in Zadimoghaddam and Roth [28].
Our technique yields numerous generalizations including the ability to learn other well-studied
classes of utility functions, to deal with a misspecified model, and with non-linear prices.

Keywords: revealed preference, statistical learning, query learning, efficient algorithms, Linear,
SPLC, CES and Leontief utility functions
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1 Introduction

A common assumption in Economics is that agents are utility maximizers, meaning that the agent,
facing prices, will choose to buy the bundle of goods that she most prefers among all bundles that
she can afford, according to some concave, non-decreasing utility function [20]. In the classical
“revealed preference” analysis [27], the goal is to produce a model of the agent’s utility function
that can explain her behavior based on past data. Work on this topic has a long history in
economics [25, 18, 19, 13, 22, 1, 26, 9, 14, 10], beginning with the seminal work by Samuelson
(1948) [23]. Traditionally, this work has focused on the “rationalization” or “fitting the sample”
problem, in which explanatory utility functions are constructively generated from finitely many
agent price/purchase observations. For example, the seminal work of Afriat [1] showed (via an
algorithmic construction) that any finite sequence of observations is rationalizable if and only if it
is rationalizable by a piecewise linear, monotone, concave utility function. Note, however, that just
because a function agrees with a set of data does not imply that it will necessarily predict future
purchases well.

A recent exciting line of work, starting with Beigman and Vohra [3] introduced a statistical
learning analysis of the problem of learning the utility function from past data with the explicit
formal goal of having predictive or forecasting properties. The goal here is to make use of the
observed data describing the behavior of the agent (i.e., the bundles the agent bought when faced
with certain prices and budget constraints) in order to produce a hypothesis function that can
accurately predict or forecast the future purchases of a utility maximizing agent. [3] show that
without any other assumptions on utility besides monotonicity and concavity, the sample complexity
of learning (in a statistical or probably approximately correct sense) a demand and hence utility
function is infinite. This shows the importance of focusing on important sub-classes since fitting
just any monotone, concave function to the data will not be predictive for future events.

Motivated by this, Zadimoghaddam and Roth [28] considered specific classes of utility functions
including the commonly used class of linear utilities. In this work, we advance this line of work
by providing sample complexity guarantees and efficient algorithms for a number of important
classical classes (including linear, separable piecewise-linear concave (SPLC), CES and Leontief
[20]), significantly expanding the cases where we have strong learnability results. At a technical
level, our work establishes connections between learning from revealed preferences and problems
of multi-class learning, combining recent advances on intrinsic sample complexity of multi-class
learning based on compression schemes [8] with a new algorithmic analysis yielding time- and
sample-efficient procedures. We believe that this technique may apply to a variety of learning
problems in economic and game theoretic contexts.

1.1 Our Results

For the case of linear utility functions, we establish a connection to the so-called structured predic-
tion problem of D-dimensional linear classes in theoretical machine learning (see e.g., [5, 6, 15]).
By using and improving very recent results of [8], we provide a computationally efficient algorithm
with tight sample complexity guarantees for learning linear utility functions under a linear price
model (i.e., additive over goods) for the statistical revealed preference setting. This improves over
the bound in Zadimoghaddam and Roth [28] by a factor of d and resolves their open question con-
cerning the right sample complexity of this problem. In addition to noting that we can actually fit
the types of problems stemming from revealed preference in the structured prediction framework of
Daniely and Shalev-Shwartz [8], we also provide a much more efficient and practical algorithm for
this learning problem. We specifically show that we can reduce their compression based technique
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to a classic SVM problem which can be solved via convex programming1. This latter result could
be of independent interest to Learning Theory.

The connection to the structured prediction problem with D-dimensional linear classes is quite
powerful and it yields numerous generalizations. It immediately implies strong sample complex-
ity guarantees (though not necessary efficient algorithms) for other important revealed preference
settings. For linear utility functions we can deal with non-linear prices (studied for example in
[16]), as well as with a misspecified model — in learning theoretic terms this means the agnostic
setting where the target function is consistent with a linear utility function on a 1 − η fraction
of bundles; furthermore, we can also accommodate non-divisible goods. Other classes of utility
functions including SPLC and CES can be readily analyzed in this framework as well.

We additionally study exact learning via revealed preference queries: here the goal of the learner
is to determine the underlying utility function exactly, but it has more power since it can choose
instances (i.e., prices and budgets) of its own choice and obtain the labels (i.e., the bundles the
buyer buys). We carefully exploit the structure of the optimal solution (which can be determined
based on the KKT conditions) in order to design query efficient algorithms. This could be relevant
for scenarios where sellers/manufacturers with many different products have the ability to explicitly
set desired prices for exploratory purposes (e.g., with the goal to be able to predict how demands
change with change in prices of different goods, so that they can price their goods optimally).

As a point of comparison, for both statistical and the query setting, we also analyze learning
classes of utility functions directly (from utility values instead of from revealed preferences). Table
1.1 summarizes our sample complexity bounds for learning from revealed preferences (RP) and
from utility values (Value) as well as our corresponding bounds on the query complexity (in the
table we omit log-factors). Previously known results are indicated with a ∗.

RP, Statistical RP, Query Value, Statistical Value, Query

Linear Θ(d/ǫ) O(nd) O(d/ǫ)∗ O(d)∗

SPLC (at most κ O(κd/ǫ) (known
O(nκd) ? O(nκd)

segments per good) segment lengths)

CES
O(d/ǫ)

O(1)
O(d/ǫ)

O(d)
(known ρ) (known ρ)

Leontief O(1) O(1) O(d/ǫ) O(d)

Table 1: Markets with d goods, and parameters of (bit-length) size n

2 Preliminaries

Following the framework of [28], we consider a market that consists of a set of agents (buyers),
and a set G of d goods of unit amount each. The prices of the goods are indicated by a price
vector p = (p1, . . . , pd). A buyer comes with a budget of money, say B, and intrinsic preferences
over bundles of goods. For most of the paper we focus on divisible goods. A bundle of goods is
represented by a vector x = (x1, . . . , xd) ∈ [0, 1]d, where the i-th component xi denotes the amount
of the i-th good in the bundle. The price of a bundle is computed as the inner product 〈p,x〉.
Then the preference over bundles of an agent is defined by a non-decreasing, non-negative and
concave utility function U : [0, 1]d → R+. The buyer uses her budget to buy a bundle of goods that
maximizes her utility.

1Such an algorithm has been used in the context of revealed preferences in a more applied work of [16]; but we
prove correctness and tight sample complexity.
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In the revealed preference model, when the buyer is provided with (p, B), we observe the optimal
bundle that she buys. Let this optimal bundle be denoted by BU (p, B), which is an optimal solution
of the following optimization problem:

argmaxx∈[0, 1]d : U(x)

s.t. 〈p,x〉 ≤ B
(1)

We assume that if there are multiple optimal bundles, then the buyer will choose a cheapest
one, i.e., let S = argmaxx∈[0, 1]d U(x) at (p, B), then BU (p, B) ∈ argminx∈S〈x,p〉. Furthermore,
if there are multiple optimal bundles of the same price, ties a broken according to some rule (e.g. ,
the buyer prefers lexicographically earlier bundles).

Demand functions While a utility function U , by definition, maps bundles to values, it also
defines a mapping from pairs (p, B) of price vectors and budgets to an optimal bundles under U .
We denote this function by Û and call it the demand function corresponding to the utility function
U . That is, we have Û : Rd

+×R+ → [0, 1]d, and Û(p, B) = BU (p, B). For a class of utility function

H we denote the corresponding class of demand functions by Ĥ.

2.1 Classes of utility functions

Next we discuss four different types of utility functions that we analyze in this paper, namely linear,
SPLC, CES and Leontief [20], and define their corresponding classes formally. Note that at given
prices p and budget B, BU (p, B) = BαU (p, B), for all α > 0, i.e., positive scaling of utility function
doesn’t affect optimal bundles. Since we are interested in learning U by asking queries to BU we
will make some normalizing assumptions in the following definitions. We start with the simplest
and the most studied class of functions, namely linear utilities.

Definition 1 (Linear Hlin) A utility function U is called linear if the utility from a bundle x is
linear in each good. Formally, for some a ∈ Rd

+, we have U(x) = Ua(x) =
∑

j∈G ajxj. It is wlog
to assume that

∑
j aj = 1. We let Hlin denote the class of linear utility functions.

Next, is a generalization of linear functions that captures decreasing marginal utility, called
separable piecewise-linear concave.

Definition 2 (Separable Piecewise-Linear Concave (SPLC) Hsplc) A utility function func-
tion U is called SPLC if, U(x) =

∑
j∈G Uj(xj) where each Uj : R+ → R+ is non-decreasing

piecewise-linear concave function. The number of (pieces) segments in Uj is denoted by |Uj | and
the kth segment of Uj denoted by (j, k). The slope of a segment specifies the rate at which the agent
derives utility per unit of additional good received. Suppose segment (j, k) has domain [a, b] ⊆ R+,
and slope c. Then, we define ajk = c and ljk = b − a; lj|Uj | = ∞). Since Uj is concave, we have
aj(k−1) > ajk, ∀k ≥ 2. We can view an SPLC function, with |Uj | ≤ κ for all j, as defined by

to matrices A,L ∈ Rd×κ
+ and we denote it by UAL. We let Hsplc denote the class of all SPLC

functions.

Linear and SPLC functions are applicable when goods are substitutes, i.e., one good can be
replaced by another to maintain a utility value. The other extreme is when goods are complemen-
tary, i.e., all goods are needed in some proportions to obtain non-zero utility. Next, we describe a
class of functions, used extensively in economic literature, that captures both substituteness and
complementarity in different ranges.

4



Definition 3 (Constant elasticity of substitution (CES) Hces) A utility function U is called
CES if for some −∞ < ρ ≤ 1, and a ∈ Rd

+ we have U(x) = Uaρ(x) = (
∑

j ajx
ρ
j )

1/ρ. Again it is
wlog to assume that

∑
j aj = 1. Let Hces be the set of all CES functions. Further, for some fixed

ρ, we let Hρ
ces denote the subclass of functions with parameter ρ.

Note that if ρ = 1 for some CES function, then the function is linear, that is H1
ces = Hlin.

Further, under CES functions with ρ > 0, the goods behave as substitutes. However, for ρ ≤ 0,
they behave as complements, i.e., if an xj = 0 while aj > 0 the utility derived remains zero,
regardless of how much amounts of other goods are given. As ρ → −∞, we get Leontief function
at the limit where goods are completely complementary, i.e., a set of goods are needed in a specific
proportion to derive any utility.

Definition 4 (Leontief Hleon) A utility function U is called a Leontief function if U(x) = minj∈G
xj/aj ,

where a ≥ 0 and (wlog)
∑

j aj = 1. Let Hleon be the set of all Leontief functions on d goods.

In order to work with finite precision, in all the above definition we assume that the parameters
defining the utility functions are rational numbers of (bit-length) size at most n.

2.2 Learning models: Statistical & Query

We now introduce the formal models under which we analyze the learnability of utility functions. We
start by reviewing the general model from statistical learning theory for multi-class classification.
We then explain the more specific model for learning from revealed preferences as introduced in [28].
Finally, we also consider a non-statistical model of exact learning from queries, which is explained
last in this section.

General model for statistical multi-class learning Let X denote a domain set and let Y
denote a label set. A hypothesis (or label predictor or classifier), is a function h : X → Y, and a
hypothesis class H is a set of hypotheses. We assume that data is generated by some (unknown)
probability distribution P over X . This data is labeled by some (unknown) labeling function
l : X → Y. The quality of a hypothesis h is measured by its error with respect to P and l:

errlP (h) = Pr
x∼P

[l(x) 6= h(x)],

A learning algorithm (or learner) gets as input a sequence S = ((x1, y1), . . . , (xm, ym)) and outputs
a hypothesis.

Definition 5 (Multi-class learnability (realizable case)) We say that an algorithm A learns
some hypothesis class H ⊆ YX , if there exists a function m : (0, 1)×(0, 1) → N such that, for all dis-
tributions P over X , and for all ǫ > 0 and δ > 0, when given a sample S = ((x1, y1), . . . , (xm, ym))
of size at least m = m(ǫ, δ) with the xi generated i.i.d. from P and yi = h(x) for some h ∈ H,
then, with probability at least 1 − δ over the sample, A outputs a hypothesis hA : X → Y with
errhP (hA) ≤ ǫ.

The complexity of a learning task is measured by its sample complexity, that is, informally,
the amount of data with which an optimal learner can achieve low error. We call the (point-wise)
smallest function m : (0, 1) × (0, 1) → N that satisfies the condition of Definition 5 the sample
complexity of the algorithm A for learning H. We denote this function by m[A,H]. We call
the smallest function m : (0, 1) × (0, 1) → N such that there exists a learning algorithm A with
m[A,H] ≤ m the sample complexity of learning H and denote it by m[H].
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Statistical learning from revealed preferences As in [28], we consider a statistical learning
setup where data is generated by a distribution P over pairs of price vectors and budgets (that is,
P is a distribution over Rd

+ × R+). In this model, a learning algorithm A gets as input a sample
S = (((p1, B1),BU (p1, B1)), . . . , ((pm, Bm),BU (pm, Bm))), where the (pi, Bi) are generated i.i.d.

from the distribution P and are labeled by the optimal bundles under some utility function U .
It outputs some function A(S) : Rd

+ × R+ → [0, 1]d that maps pairs of price vectors and budgets
to bundles. A learner is considered successful if it learns to predict a bundle of value that is the
optimal bundles’ value.

Definition 6 (Learning from revealed preferences) An algorithm A is said to learn a class
of utility functions H from revealed preferences, if for all ǫ, δ > 0, there exists a sample size
m = m(ǫ, δ) ∈ N, such that, for any distribution P over Rd

+×R+ (pairs of price vectors and budgets)
and any target utility function U ∈ H, if S = (((p1, B1),BU (p1, B1)), . . . , ((pm, Bm),BU (pm, Bm)))
is a sequence of i.i.d. samples generated by P with U , then, with probability at least 1− δ over the
sample S, the output utility function A(S) satisfies

Pr
(p,B)∼P

[
U(BU (p, B)) 6= U(BA(S)(p, B))

]
≤ ǫ.

Note that the above learning requirement is satisfied if the learner “learns to output the correct
optimal bundles”. That is, to learn a class H of utility functions from revealed preferences, in
the sense of Definition 6, it suffices to learn the corresponding class of demand functions Ĥ in the
standard sense of Definition 5 (with X = Rd

+ ×R+ and Y = [0, 1]d). This is what the algorithm in
[28] and our learning algorithms for this setting actually do. The notion of sample complexity in
this setting can be defined analogously to the definition above.

2.2.1 Model for exact learning from queries

In the query learning model, the goal of the learner is to determine the underlying utility function
exactly. The learner can choose instances and obtain the labels of these instances from some oracle.
A revealed preference query learning algorithm has access to an oracle that, upon given the input
(query) of a price vector and a budget (p, B), outputs the corresponding optimal bundle BU (p, B)
under some utility function U . Slightly abusing notation, we also denote this oracle by BU .

Definition 7 (Learning from revealed preference queries) A learning algorithm learns a class
H from m revealed preference queries, if for any function U ∈ H, if the learning algorithm is given
responses from oracle BU , then after at most m queries the algorithm outputs the function U .

Both in the statistical and the query setting, we analyze a revealed preference learning model as
well as a model of learning classes of utility function “directly” from utility values. Due to limited
space, these latter definition and results have been moved to the Appendix, Sections D and E.

3 Efficiently learning linear multi-class hypothesis classes

We start by showing that certain classes of multi-class predictors, so-called D-dimensional linear
classes (see Definition 8 below), can be learnt efficiently both in terms of their sample complexity
and in terms of computation. For this, we make use of a very recent upper bound on their sample
complexity by Daniely and Shalev-Shwartz [8]. At a high level, their result obtains strong bounds
on the sample complexity of D-dimensional linear classes (roughly D/ǫ) by using an algorithm
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and sample complexity analysis based on a compression scheme — which roughly means that the
hypothesis produced can be uniquely described by a small subset of D of the training examples.
We show that their algorithm is actually equivalent to a multi class SVM formulation, and thereby
obtain a computationally efficient algorithm with optimal sample complexity. In the next sections
we then show how learning classes of utility functions from revealed preferences can be cast in this
framework.

Definition 8 A hypothesis classes H ⊆ YX is a D-dimensional linear class, if there exists a
function Ψ : X × Y → RD such that for every h ∈ H, there exists a vector w ∈ RD such that
h(x) ∈ argmaxy∈Y〈w,Ψ(x, y)〉 for all x ∈ X . We then also denote the class by HΨ and its
members by hw.

For now, we assume that (the data generating distribution is so that) the set argmaxy∈Y〈w,Ψ(x, y)〉
contains only one element, that is, there are no ties2. The following version of the multi-class sup-
port vector machine (SVM) has been introduced by Crammer and Singer [7].

Algorithm 1 Multi-class (hard) SVM [7]

Input: Sample (x1, y1), . . . , (xm, ym) ∈ X × Y
Solve: w = argminw∈Rd ‖w‖
such that 〈w,Ψ(xi, yi)−Ψ(xi, y)〉 ≥ 1 ∀i ∈ [m], y 6= yi
Return: vector w

Remark 9 Suppose that given w ∈ Rd and x ∈ X , it is possible to efficiently compute some
y′ ∈ argmaxy 6inargmaxy′′〈w,Ψ(x,y′′)〉〈w,Ψ(x, y)〉. That is, it is possible to compute a label y in the set

of “second best” labels. In that case, it is not hard to see that SVM can be solved efficiently. The
reason is that this gives a separation oracle. SVM minimizes a convex objective subject to, possibly
exponentially many, linear constraints. For a given w, a violated constraint can be efficiently
detected (by one scan over the input sample) by observing that 〈w,Ψ(xi, yi)−Ψ(xi, y

′)〉 < 1.

The following theorem on the sample complexity of the above SVM formulation, is based on
the new analysis of linear classes by [8]. We show that the two algorithms (the SVM and the one
in [8]) are actually the same.

Theorem 10 Let HΨ be some D-dimensional linear class. Then the sample complexity of SVM

for HΨ satisfies m[SVM,HΨ](ǫ, δ) = O
(
D log(1/ǫ)+log(1/δ)

ǫ

)
.

Proof : Let S = (x1, y1), . . . , (xm, ym) be a sample that is realized by HΨ. That is, there
exists a vector w ∈ Rd with 〈w,Ψ(xi, yi)〉 > 〈w,Ψ(xi, y)〉 for all y 6= yi. Consider the set Z =
{Ψ(xi, yi) − Ψ(xi, y) | i ∈ [m], y 6= yi}. The learning algorithm for HΨ of [8] outputs the minimal
norm vector w′ ∈ conv(Z). According to Theorem 5 in [8] this algorithm successfully learns HΨ

and has sample complexity O
(
D log(1/ǫ)+log(1/δ)

ǫ

)
. We will show that the hypothesis returned by

that algorithm is the same hypothesis as the one returned by SVM. Indeed, let w be the vector
that solves the SVM program and let w′ be the vector found by the algorithm of [8]. We will show

that w = ‖w‖
‖w′‖ ·w

′. This is enough since in that case hw = hw′ .

2The work of [8] handled ties using a “don’t know” label; to remove technicalities, we make this distributional
assumption in this version of our work
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We note that w is the same vector that solves the binary SVM problem defined by the sample
{(z, 1)}z∈Z . It well known (see, e.g. , [24], Lemma 15.2) that the hyperplane defined by w has
maximal margin. That is, the unit vector e = w

‖w‖ maximizes the quantity

mar(e′′) := min{〈e′′,z〉 | z ∈ Z}

over all unit vectors e′′ ∈ Sd. The proof of the theorem now follows from the following claim:

Claim 11 Over all unit vectors, e′ = w′

‖w′‖ maximizes the margin.

Proof : Let e′′ 6= e′ be a unit vector. We must show that margin(e′′) < margin(e′). Note that
margin(e′) > 0, since w′ is shown in [8] to realize the sample S (that is 〈w,z〉 > 0 for all z ∈ Z and
thus also for all z ∈ convZ). Therefore, we can assume w.l.o.g. that margin(e′′) > 0. In particular,
since margin(−e′) = −margin(e′) < 0, we have that e′′ 6= −e′.

Since, margin(e′′) > 0, we have that margin(e′′) is the distance between the hyperplane H ′′ =
{x | 〈e′′,x〉 = 0} and conv(Z). Since e′′ /∈ {e′,−e′}, there is a vector in v ∈ H ′′ with 〈e′,v〉 6= 0.
Now, consider the function

t 7→ ‖t · v −w′‖2 = t2 · ‖v‖2 + ‖w′‖2 − 2t〈v,w′〉.

Since the derivative of this function at 0 is not 0, for some value of t we have dist(t · v,w′) <
dist(0,w′). Therefore, margin(e′′) = dist(H ′′, Z) ≤ dist(t · v,w′) < dist(0,w′) = margin(e′). �

�

4 Statistical learning from revealed preferences

In the next section, we show that learning utility functions from revealed preferences can in many
cases be cast as learning a D-dimensional linear class HΨ for a suitable encoding function Ψ and
D. Throughout this section, we assume that the data generating distribution is so that there are
no ties for the optimal bundle with respect to the agents’ utility function (with probability 1). This
is, for example, the case if the data-generating distribution has a density function.

4.1 Linear

Learnability of Hlin from revealed preferences is analyzed in [28]. They obtain a bound of (roughly)
d2/ǫ on the sample complexity. We show that the quadratic dependence on the number of goods
is not needed. The sample complexity of this problem is (roughly) d/ǫ.

We will show that the corresponding class of demand functions Ĥlin is actually a d-dimensional
linear class. Since learnability of a class of utility functions in the revealed preference model
(Definition 6) is implied by learnability of the corresponding class of demand functions (in the
sense of Definition 5), Theorem 10 then implies the upper bound in the following result:

Theorem 12 The class Hlin of linear utility functions is efficiently learnable in the revealed prefer-

ence model with sample complexity O
(
d log(1/ǫ)+log(1/δ)

ǫ

)
. Moreover, the sample complexity is lower

bounded by Ω
(
(d−1)+log(1/δ)

ǫ

)
.
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Proof : Let Ua be a linear utility function. By definition, the optimal bundle given a price
vector p and a budget B is argmaxx∈[0,1]n,〈p,x〉≤B〈a,x〉. Note that, for a linear utility function,
there is always an optimal bundle x where all (except at most one) of the xi are in {0, 1} (this
was also observed in [28]; see also Section 5.1). Essentially, given a price vector p, in an optimal
bundle, the goods are bought greedily in decreasing order of ai/pi (value per price).

Thus, given a pair of price vector and budget (p, B), we call a bundle x admissible, if |{i : xi /∈
{0, 1}}| ≤ 1 and 〈p,x〉 = B. In case 〈p,1d〉 =

∑
i∈G pi ≤ B, we also call the all 1-bundle 1d

admissible (and in this case, it is the only admissible bundle). We now define the function Ψ as
follows:

Ψ((p, B),x) =

{
x if x admissible
0d otherwise

where 0d denotes the all-0 vector in Rd. With this, we have HΨ = Ĥlin.
We defer the proof of the lower bound to the Appendix, Section B. To outline the argument, we

prove that the Natarajan dimension of Ĥlin is at least d−1 (Lemma 28). This implies a lower bound

for learning Ĥlin (see Theorem 27 in the Appendix). It is not hard to see that the construction
also implies a lower bound for learning Hlin in the revealed preference model.

To prove computational efficiency, according to Remark 9, we need to show that for a linear
utility function, we can efficiently compute some

y′ ∈ argmaxy′ /∈argmaxy〈w,Ψ(x,y)〉〈w,Ψ(x, y′)〉;

that is a second best bundle with respect to the mapping Ψ. This will be shown in Theorem 16 of
the next subsection. �

4.1.1 Efficiently computing the second best bundle under linear utilities

It is known and easy to show (for example using KKT conditions for (1), see Section 5.1) that an
optimal bundle for the case of linear utility functions can be computed as follows: Sort the goods
in decreasing order of

aj
pj
, and keep buying in order until the budget runs out. The number of

partially allocated goods in such a bundle is at most one, namely the last one bought in the order.
In this section show how to compute a second best admissible bundle (with respect to the

mapping Ψ) efficiently. Recall that admissible bundles at prices p and budget B are defined (in
the proof of the above theorem) to be the bundles that cost exactly B with at most one partially
allocated good (or the all-1 bundle 1d, in case it is affordable). Note that, in case 〈p,1d〉 ≤ B, any
other bundle is second best with respect Ψ. For the rest of this section, we assume that 〈p,1d〉 > B.

At any given (p, B) the optimal bundle is always admissible. We now design an O(d)-time
algorithm to compute the second best admissible bundle, i.e., y ∈ argmaxx admissible ,x 6=x∗〈a,x〉,
where x∗ is the optimal bundle.

At prices p, let a1
p1
≥ a2

p2
≥ · · · ≥ ad

pd
, and let the first k goods be bought at the optimal bundle,

i.e., k = maxj: x∗

j>0 j. Then, clearly ∀j < k, x∗j = 1 and ∀j > k, x∗j = 0 as x∗ is admissible.
Note that, to obtain the second best admissible bundle y from x∗, amounts of only first k goods

can be lowered and amounts of only last k to d goods can be increased. Next we show that the
number of goods whose amounts are lowered and increased at exactly one each. In all the proofs
we crucially use the fact that if

aj
pj

> ak
pk
, then transferring money from good k to good j gives a

better bundle, i.e., aj
m
pj
− ak

m
pk

> 0.

Lemma 13 There exists exactly one j ≥ k, such that yj > x∗j .

9



Proof : To the contrary suppose there are more than one goods with yj > x∗j . Consider the last
such good, let it be l. Clearly l > k, because the first good that can be increased is k. If yl < 1
then there exists j < l with yj = 0, else if yl = 1 then there exists j < l with yj < 1. In either case
transfer money from good l to good j such that the resulting bundle is admissible. Since,

aj
pj

> al
pl

it

is a better bundle different from x∗. The latter holds because there is another good whose amount
still remains increased. A contradiction to y being second best. �

Lemma 14 There exists exactly one j ≤ k, such that yj < x∗j .

Proof : To the contrary suppose there are more than one goods with yj < x∗j . Let l be the
good with yl > x∗l ; there is exactly one such good due to Lemma 13. Let i be the first good with
yi < x∗i and let p be the good that is partially allocated in y. If p is undefined or p ∈ {i, l}, then
transfer money from l to i. to get a better bundle. Otherwise, p < l so transfer money from l to
p. In either case we can do the transfer so that resulting bundle is admissible and is better than y

but different from x∗. A contradiction. �

Lemmas 13 and 14 gives an O(d2) algorithm to compute the second best admissible bundle,
where we can check all possible way of transferring money from a good in {1, . . . , k} to a good in
{k, . . . , d}. Next lemma will help us reduce the running time to O(d).

Lemma 15 If x∗k < 1, and for j > k we have yj > x∗j , then yk < x∗k. Further, if x∗k = 1 and
yj > x∗j then j = k + 1.

Proof : To the contrary suppose, yk = x∗k < 1 and for a unique i < k, yi < x∗i (Lemma 14).
Clearly, yi = 0 and yj = 1 because 0 < yk < 1. Thus, transferring money from j to k until either
yj = 0 or yk = 1 gives a better bundle different from x∗, a contradiction.

For the second part, note that there are no partially bought good in x∗ and yk+1 = 0. To the
contrary suppose j > k+ 1, then transferring money from good j to good k+ 1 until either yj = 0
or yk+1 = 1 gives a better bundle other than x∗, a contradiction. �

The algorithm to compute second best bundle has two cases. First is when x∗k < 1, then from
Lemma 15 it is clear that if an amount of good in {k + 1, . . . , d} is increased then the money
has to come from good k. This leaves exactly d− 1 bundles to be checked, namely when money is
transferred from good k to one of {k+1, . . . , d}, and when it is transferred from one of {1, . . . , k−1}
good k.

The second case is when x∗k = 1, then we only need to check k bundles namely, when money is
transferred from one of {1, . . . , k} to good k + 1. Thus, the next theorem follows.

Theorem 16 Given prices p and budget B, the second best bundle with respect to the mapping Ψ
for a utility function U ∈ Hlin at (p, B) can be computed in O(d) time.

4.2 Other classes of utility functions

By designing appropriate mappings Ψ as above, we also obtain bounds on the sample complexity
of learning other classes of utility functions from revealed preferences. In particular, we can employ
the same technique for the class of SPLC functions with known segment lengths and the class of
CES functions with known parameter ρ. See Table 1.1 for an overview on the results and Section
C in the appendix for the technical details.
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4.3 Extensions

Modeling learning tasks as learning a D-dimensional linear class is quite a general technique. We
now discuss how it allows for a variety of interesting extensions to the results presented here.

Agnostic setting In this work, we mostly assume that the data was generated by an agent
that has a utility function that is a member of some specific class (for example, the class of linear
utilities). However, this may not always be a realistic assumption. For example, an agent may
sometimes behave irrationally and deviate from his actual preferences. In learning theory, such
situations are modeled in the agnostic learning model. Here, we do not make any assumption
about membership of the agents’ utility function in some fixed class. The goal then is, to output a
function from some class, say the class of linear utility functions, that predicts the agents’ behavior
with error that is at most ǫ worse than the best linear function would.

Formally, the requirement on the output classifier h in Definition 5 then becomes errlP (h) ≤
η + ǫ (instead of errlP (h) ≤ ǫ), where η is the error of the best classifier in the class. Since our
sample complexity bounds are based on a compression scheme, and compression schemes also imply
learnability in the agnostic learning model (see Section A.2 in the appendix), we get that the classes
of utility functions with D-dimensional linear classes as demand functions that we have analyzed
are also learnable in the agnostic model. That is, we can replace the assumption that the data was
generated exactly according to a linear (or SPLC or CES) function with an assumption that the
agent behaves according to such a function at least a 1− η fraction of the time.

Non-linear prices and indivisible goods So far, we looked at a market where pricing is
always linear and goods are divisible (see Section 2). We note that the sample complexity results
for Hlin,Hsplc, and Hces that we presented here actually apply in a broader context. Prices per
unit could vary with the amount of a good in a bundle (e.g. [16]). For example, there may be
discounts for larger volumes. Also, goods may not be arbitrarily divisible (e.g. [11]). Instead of
one unit amount of each good in the market, there may then be a number of non-divisible items of
each good on offer. Note that we can still define the functions Ψ to obtain a D-dimensional linear
demand function class and the classes of utility functions discussed above are learnable with the
same sample complexity (though not necessarily efficiently).

Learning preference orderings Consider the situation where we would like to not only learn the
preferred choice (over a number d of options) of an agent, but the complete ordering of preferences
given some prices over the options.

We can model this seemingly more complex task as a learning problem as follows: Let X = Rd
+

be our instance space of price vectors. Denote by Y = Sd the group of permutations on d elements.
Let a vector w ∈ Rd represent the unknown valuation of the agent, that is wi indicates how much
the agent values option i. Consider the functions hw : Rd

+ → Sd such that hw(p) is the permutation
corresponding to the ordering over the values wi/pi (i.e. π(1) is the index with the largest value
per money wi/pi and so on).

Finally, consider the hypothesis class Hπ = {hw : w ∈ Rd
+}. We show below hat Hπ is

a d-dimensional linear class. Therefore, this class can also be learned with sample complexity

O
(
d log(1/ǫ)+log(1/δ)

ǫ

)
. With the same construction as for linear demand functions (see Lemma 28

in the appendix), we can also show that the Natarajan dimension of Hπ is lower bounded by d− 1,
which implies that this bound on the sample complexity is essentially optimal.
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To see that Hπ is d-dimensional linear, consider the map Ψ : X ×Sd → Rd defined by Ψ(p, π) =∑
1≤i<j≤d πij · ((1/pj)ej − (1/pi)ei), where, πij is 1 if π(i) < π(j) and else −1; e1, . . . , ed is the

standard basis of Rd

5 Learning via Revealed Preference Queries

In this section we design algorithms to learn classes Hlin, Hsplc, Hleon or Hces using poly(n, d)
revealed preference queries. (Recall that we have assumed all defining parameters of a function to
be rationals of size (bit length) at most n.)

5.1 Characterization of optimal bundles

In this section we characterize optimal bundles for linear, SPLC, CES and Leontief utility func-
tions. In other words, given (p, B) we characterize BU (p, B) when U is in Hlin, Hsplc, Hces, or
Hleon. Since function U is concave, formulation (1) is a convex formulation, and therefore Karush-
Kuhn-Tucker (KKT) conditions characterize its optimal solution [4, 2]. For a general formulation
min{f(x) | gi(x) ≤ 0, ∀i ≤ n}, the KKT conditions are as follows, where µi is the dual variable
for constraint gi(x) ≤ 0.

L(x,µ) = f(x) +
∑

i≤n µigi(x); ∀i ≤ n : dL
dxi

= 0

∀i ≤ n : µigi(x) = 0, gi(x) ≤ 0, µi ≥ 0

In (1), let µ, µj and µ′
j be dual variables for constraints 〈p,x〉 ≤ B, xj ≤ 1 and −xj ≤ 0

respectively. Then its optimal solution x∗ = BU (p, B) satisfies the KKT conditions: dL/dxj|x∗ =
−dU/dxj|x∗ + µpj + µj − µ′

j = 0, µ′
jx

∗
j = 0, and µj(x

∗
j − 1) = 0. Simplifying these gives us:

∀j 6= k, x∗j > 0, x∗k = 0 ⇒
dU/dxj |x∗

pj
≥

dU/dxk |x∗
pk

∀j 6= k, x∗j = 1, 0 ≤ x∗k < 1 ⇒
dU/dxj |x∗

pj
≥

dU/dxk |x∗
pk

∀j 6= k, 0 < x∗j , x
∗
k < 1 ⇒

dU/dxj |x∗

pj
=

dU/dxk |x∗
pk

(2)

Linear functions: Given prices p, an agent derives aj/pj utility per unit money spent on good
j (bang-per-buck). Thus, she prefers the goods where this ratio is maximum. Characterization of
optimal bundle exactly reflects this,

∀j 6= k, x∗j > 0, x∗k = 0 ⇒
aj
pj
≥ ak

pk

∀j 6= k, x∗j = 1, 0 ≤ x∗k < 1 ⇒
aj
pj
≥ ak

pk

∀j 6= k, 0 < x∗j , x
∗
k < 1 ⇒

aj
pj

= ak
pk

(3)

SPLC functions: At prices p, the utility per unit money (bang-per-buck) on segment (j, k) is
ajk/pj. Clearly, the agent prefers segments with higher bang-per-buck and therefore, if allowed, will
buy segments in order of decreasing bang-per-buck. Let x∗j in optimal bundle be be ending at tth

segment. Then clearly segments 1 to t− 1 are completely allocated, and segments t+ 1 to |Uj| are
not allocated at all. Accordingly define ∀k < t, x∗jk = ljk, x

∗
jt = x∗j −

∑
k<t ljk, and ∀k > t, x∗jk = 0,

then similar to the conditions for linear function, these satisfy,

∀(j, k) 6= (j′, k′), x∗jk > 0, x∗j′k′ = 0 ⇒
ajk
pj
≥

aj′k′

pj′

∀(j, k) 6= (j′k′), x∗jk = ljk, 0 ≤ x∗j′k′ < ljk ⇒
ajk
pj
≥

aj′k′
pj′

∀(j, k) 6= (j′k′), 0 ≤ x∗jk, x
∗
j′k′ < ljk ⇒

ajk
pj

=
aj′k′
pj′

(4)
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CES utility functions: Since dU
dxj

=
ajU(x)1−ρ

x1−ρ
j

and −∞ < ρ < 1, we have limxj→0
dU
dxj

= ∞.

Therefore, conditions (2) gives the following. ∀j, x∗j > 0,

∀j 6= k, x∗k < x∗j = 1 ⇒
aj
pj
≥ ak

pk

(
1
x∗

k

)1−ρ
⇒

aj
pj

> ak
pk

∀j 6= k, 0 < x∗k ≤ x∗j < 1 ⇒
aj
ak

=
pj
pk

(
x∗

j

x∗

k

)1−ρ
⇒

aj
pj
≥ ak

pk

(5)

Leontief utility functions: An optimal bundle at Leontief is essentially driven by ajs and not
so much by prices. Note that to achieve unit amount of utility the buyer has to buy at least aj
amount of each good j, and therefore has to spend

∑
j ajpj money. Thus from money B she can

obtain at most B∑
j ajpj

units of utility. Further, since she will always buy the cheapest optimal

bundle, we get,

∀j, x∗j = βaj, where β = min

{
B∑
j ajpj

,
1

maxj aj

}
(6)

The next theorem follows using the KKT conditions of (2) for each class of utility functions.

Theorem 17 Given prices p and budget B, conditions (3), (4), (5) and (6) together with feasibility
constraints of (1) exactly characterizes x∗ = BU (p, B) for U ∈ Hlin, U ∈ Hsplc, U ∈ Hces and
U ∈ Hleon respectively.

5.2 Linear functions

Recall that, if U ∈ Hlin then U(x) =
∑

j ajxj, where
∑

aj = 1. First we need to figure out which
ajs are non-zero.

Lemma 18 For pj = 1, ∀j and B = n, if x = BU (p, B), then xj = 0⇒ aj = 0.

Proof : Since B =
∑

j pj, the agent has enough money to buy all the good completely, and the
lemma follows as the agent buys cheapest optimal bundle. �

Lemma 18 implies that one query is enough to find the set {j | aj > 0}. Therefore, wlog we
now assume that ∀j ∈ G, aj > 0.

Note that, it suffices to learn the ratios
aj
a1
, ∀j 6= 1 exactly in order to learn U , as

∑
j aj = 1.

Since the bit length of the numerator and the denominator of each aj is at most n, we have that
1/22n ≤ aj/a1 ≤ 22n. Using this fact, next we show how to calculate each of these ratios using O(n)
revealed preference queries, and in turn the entire function using O(dn) queries.

Recall the optimality conditions (3) for linear functions. Algorithm 2 determines aj/a1 when
called with H = 22n, q = 1 and xej = 0.3 The basic idea is to always set budget B so low that the
agent can by only the most preferred good, and then do binary search by varying pj appropriately.
Correctness of the algorithm follows using (3) and the fact that bit length of aj/a1 is at most 2n.

Theorem 19 The class Hlin is learnable from O(nd) revealed preference queries.

3These three inputs are irrelevant for learning linear functions, however they will be used to learn SPLC functions
in Appendix 5.3.
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Algorithm 2 Learning Linear Functions: Compute aj/a1
Input: Good j, upper bound H, quantity q of goods, extra amount xej .

Initialize: L← 0; p1 ← 1; pk ← 210n, ∀k ∈ G \ {j, 1}; i← 0; flag← nil
while i <= 4n do

i← i+ 1; pj ←
H+L
2 ; B ← xej ∗ pj +

min{p1,pj}
q ; x← BU (p, B)

if xj > 0 & x1 > 0 then Return pj;
if xj > 0 then L← pj; flag← 1; else H ← pj; flag← 0;

end while
if flag = 1 then Round up pj to nearest rational with denominator at most 2n

else Round down pj to nearest rational with denominator at most 2n

Return pj.

5.3 Separable piecewise-linear concave (SPLC) functions

In this section we design a learning mechanism for a function of class Hsplc, which requires us to
learn slops as well as lengths of each of the segment (j, k). As discussed in Section 2.1 that for any
α > 0, BU (p, B) = BαU (p, B), ∀(p, B), it is impossible to distinguish between functions U and αU ,
and that is why we made normalizing assumptions while defining Hlin, Hces and Hleon. Similarly
for U ∈ Hsplc we wlog assume that a11 = 1 now on.

As the size of each ajk and ljk is at most n, we have 1
2n ≤ ajk ≤ 2n, ∀(j, k) and 1

2n ≤ ljk ≤
2n, ∀j, ∀k < |Uj |; recall that length of the last segment for each good is infinity, i.e., lj|Uj| = ∞.
Therefore, slop of first segments aj1 of good j, can be learned by calling Algorithm 2 with H = 2n,
q = 1

2n+1 and Be = 0; extra budget Be will be used to learn slops of second segment onward. This
will make sure that no segment can be bought fully during the algorithm, and therefore when a
good is bought we know that the allocation is on its first segment.

Next we show how to learn length lj1 of this segment. Suppose we fix prices p1 and pj such
that agent is prefers segment (j, 1) before (1, 1) before (j, 2), i.e.,

a1j
pj

> a11
p1

>
aj2
pj

, then Algorithm 3

outputs lj1 when provided with p1, pj and xej = 0. The basic idea is to do binary search by varying
the budget appropriately.

Algorithm 3 Learning Linear Functions: Compute ljk
Input: Good j, prices pj and p1, extra amount xej .

Initialize: H ← 2n+1; L← 0; pk ← 210n, ∀k ∈ G \ {j, 1}; i← 0; flag← nil;
B ← (H + xej) ∗ pj; x← BU(p, B); if x1 = 0 then Return ∞;
while i <= 2n + 1 do

i← i+ 1; T ← H+L
2 ; B ← (T + xej) ∗ pj; x← BU (p, B);

if x1 = 0 then L← T ; flag← 1; else H ← T ; flag← 0;
end while
if flag = 1 then Round up T to nearest rational with denominator at most 2n;
else Round down T to nearest rational with denominator at most 2n;
Return T ;

The next question is what should be p1 and pj so that
a1j
pj

> a11
p1

>
aj2
pj

is ensured. Setting

pj = aj1 and p1 = a11 + ǫ > 1 ensures a11
p1

<
a1j
pj

. Further, ǫ = 1
22n+1 ensures a11

p1
>

aj2
pj

using the

next claim.

Claim 20 If ǫ = 1
22n+1 , p1 = a11 + ǫ, and pj = ajk then

aj(k+1)

pj
< a11

p1
.

14



Proof : As ajk > aj(k+1) ≥
1
2n with bit length of both being at most n, we have ajk−aj(k+1) ≥

1
2n .

ajk − aj(k+1) ≥
1
2n ⇔ 1−

aj(k+1)

ajk
≥ 1

22n
⇔

aj(k+1)

ajk
≤ 1− 1

22n

⇔
aj(k+1)

pj
< 1

1+ǫ ⇔
aj(k+1)

pj
< a11

p1

�

Induction. Once we learn slops and lengths of up to kth segment of good j, can learn aj(k+1) by

calling Algorithm 2 with H = ajk, q = 1
2n+1 and xej =

∑
t≤k ljt. And then learn lj(k+1) by calling

Algorithm 3 with pj = aj(k+1), p1 = 1 + ǫ, and xej = ljk (it works using Claim 20). We stop when
Algorithm 3 returns ∞.

For each good j 6= 1, think of a hypothetical 0th segment with aj0 = 2n+1 and lj0 = 0, and apply
the above inductive procedure to learn ajk and ljk for all 1 ≤ k ≤ |Uj |. To learn the parameters
for good 1, we can swap its identity with some other good, and repeat the above procedure. The
number of calls to oracle BU in Algorithms 2 and 3 are of O(n), and if there are at most κ segments
in each Uj, then total sample complexity for learning such an SPLC function is O(ndκ).

Theorem 21 The class Hsplc is learnable from O(ndκ) revealed preference queries.

5.4 CES and Leontief functions

In this section we show that surprisingly constantly many queries are enough to learn a CES or a
Leontief function. The reason behind this is that the optimal bundles of these functions are well
behaved, e.g., a buyer buys all the goods of non-zero amount, and in a fixed proportion in case of
Leontief functions.

CES. Let U ∈ Hces be a function defined as Uaρ(x) = (
∑

j ajx
ρ
j )

1/ρ, where
∑

j aj = 1 and ρ < 1.
Since an optimal bundle for such a Uaρ contains non-zero amount of good j only if aj > 0, wlog
we assume that aj > 0, ∀j. We show that two queries, with prices p > 0 and budget B < minj pj
are enough to learn Hces from revealed preference queries.

Let p1j = 1, ∀j, p2j = j, ∀j, B = 0.5, x1 = BU (p
1, B) and x2 = BU (p

2, B). Since there is not

enough budget to buy any good completely in either query, we have 0 < xij < 1, i = 1, 2,∀j, using

(5). Like for linear functions, it is enough to learn ratios
aj
a1
, ∀j 6= 1. Using Equation (5), Section

5.1, we get the following.

i = 1, 2,∀j 6= 1,
aj
a1

=
pij
pi1

(
xi
j

xi
1

)1−ρ

⇒

(
x1
j

x1
1

)1−ρ

= j

(
x2
j

x2
1

)1−ρ

⇒ (1− ρ) log
x1
j

x1
1
= log j + log

x2
j

x2
1

Since x1 and x2 are known, we can evaluate the above to get ρ and aj/a1.

Leontief. Consider a Leontief function Ua ∈ Hleon such that Ua(x) = minj xj/aj, where
∑

j aj =
1. Wlog, we assume that aj > 0, ∀j; if aj = 0 then xj = 0 in an optimal bundle at any given prices
and budget. We show that one query, with prices p > 0 and budget B < minj pj, is enough to
determine Ua and thus one query suffices to learn the class Hleon from revealed preference queries.

Suppose, x = BU (p, B) where pj = 1, ∀j and B = 0.5. Then using (6), we get β = B/
∑

j aj =
B = 0.5 and aj = xj/β = 2xj .

Theorem 22 The classes Hces and Hleon are learnable from O(1) revealed preference queries.
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Appendix

A Multi-class learning background

Here we review previously established results on multiclass learnability, that are relevant to the
results in our paper.

A.1 The new bound for linear classes

In our work, we employ the following recent upper bound by [8] on the sample complexity of
D-dimension linear hypothesis classes (Definition 8).

Theorem 23 ([8], Theorem 5, part 1) For every Ψ : X × Y → RD, the (PAC) sample com-
plexity of learning HΨ is

m[HΨ](ǫ, δ) = O

(
D log(1/ǫ) + log(1/δ)

ǫ

)
.

The upper bound in the above Theorem is achieved by a compression scheme based algorithm.
That is, the authors show that there always exists a compression scheme for linear classes, which
yields learnability for both the realizable and the agnostic case as we outline next.

A.2 Compression scheme based learning

Definition 24 (Compression scheme) Let H ⊆ YX be a hypothesis class. A compression
scheme of size d for the class H consists of two functions C :

⋃
n∈N(X × Y)

n → (X × Y)d and
D : (X × Y)d →H satisfying the following condition:

• Let S = ((x1, y1), . . . , (xn, yn)) with yi = h(xi) for some h ∈ H and all i. Then C(S) is a
subsequence of S and for the function hD = D(C(S)) ∈ H we have hD(xi) = yi for all xi in
S.

If a class admits a compression scheme, then it is learnable both in the realizable and in the
agnostic case with the following sample complexity bounds (also see [24], Chapter 30):

Theorem 25 (Based on [17]) Assume that class H ⊆ YX has a compression scheme (C,D) of
size d. Then it is learnable in the realizable case (by the algorithm D ◦ C) with sample complexity
satisfying

m[H](ǫ, δ) = O

(
d log(1/ǫ) + 1/δ

ǫ

)
.

Moreover, the class is also learnable in the the agnostic case with sample complexity satisfying

m[H](ǫ, δ) = O

(
d log(d/ǫ) + 1/δ

ǫ2

)
.

18



A.3 Lower bounds

The following measure of complexity of a hypothesis class yields a lower bound for multi-class
learnability:

Definition 26 (N-shattering; Natarajan dimension) A set {x1, . . . , xn} is N -shattered by a
class of functions H ⊆ YX if there exists two functions f1, f2 ∈ Y

X with f1(xi) 6= f2(xi) for all
i ∈ [n], such that, for any binary vector v ∈ {0, 1}n of indices, there exists an hv ∈ H with

hv(xi)

{
= f1(xi) if vi = 1
= f2(xi) if vi = 0

We call the size of a largest N -shattered set the Natarajan-dimension of the class H.

Theorem 27 ([21]) The sample complexity of learning a multi-class hypothesis class H satisfies

m[H](ǫ, δ) = Ω

(
dN (H) + ln(1/δ)

ǫ

)

B The lower bound in Theorem 12

We show a lower bound on the Natarajan dimension of Ĥlin:

Lemma 28 The Natarajan dimension of the class Ĥlin is at least d− 1.

Proof : We show that there is a set of pairs of price vectors and budgets of size d − 1 that is
N -shattered by Ĥlin. Consider the set {(p1, 1) . . . (pd−1, 1)} with all budgets set to 1 and with the
price vectors defined by:

pji =





1 if i = 1
1 if i = j
10 otherwise

We consider the following functions f0 and and f1 that map the pairs (pj, 1) to bundles. We set
f0(p

j , 1) = (1, 0, . . . , 0) for all j; that is, f0 maps all pairs to the bundle where only the first good
is bought. Now we define f1 by setting the i-th coordinate of the bundle f1(p

j , 1) to

(f1(p
j, 1))i =

{
1 if i = j
0 otherwise

That is, f1 maps (pj , 1) to the bundle where only the j-th good is bought.
Now, given a vector v ∈ {0, 1}d−1, the demand function that is defined by the utility vector w

with

wi =





1 if i = 1
2 if vi−1 = 1
1 if vi−1 = 0

yields Ûw(pi, 1) = fvj(p
i, 1) for all i, j. Thus, the set {(p1, 1) . . . (pd−1, 1)} is N -shattered. �

According to Theorem 12 above, this lower bound on the Natarajan dimension yields the lower
bound for learning Ĥlin stated in the Theorem. It is not difficult to see that the shattering con-
struction in the above lemma also yields the same lower bound for learning Hlin in the revealed
preference model. For this, observe that the two functions f0 and f1 in the construction not only
yield different optimal bundles on the (pj , 1), but these optimal bundles also have different utility
values.
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C Statistical learning from revealed preferences

C.1 SPLC functions

Recall that an SPLC utility function UAL can be defined by two d × κ matrices. Entry aij of
A stands for the slope of the j-th segment of Ui (the piecewise linear function for the marginal
utility over good i). Entry lij of L is the length of that same segment. If the maximum number of
segments and their lengths are known a priori, we can employ the same technique as for learning

linear utility functions from revealed preferences. That is, let HLsplc denote the subclass of all SPLC
functions where number and lengths of the segments are fixed (defined by matrix L).

As for linear utility functions, we can identify admissible candidates for optimal bundles. Note
that, an agent will greedily buy segments according to an order of aij/pi and in an optimal bundle
all, but at most one, segments are bought fully (see also Section 5.1). Thus, here we call a bundle
x admissible for some (p, B) if |{j : xj 6=

∑
g≤h ljg for some h ∈ [d]}| ≤ 1 and 〈p,x〉 = B. As in

the linear case, if 〈p,1d〉 =
∑

i∈G pi ≤ B, we also call the all 1-bundle 1d admissible (and in this
case, it is the only admissible bundle).

Then the corresponding class of demand functions
̂
HLsplc is a κd-dimensional linear class as

witnessed by the mapping

Ψ((p, B),x) =

{
xκd if admissible
0κd otherwise ,

where xκd is the “split” of x into κd dimensions according to the matrix L as follows:

xκdi =





lhj if
∑

g≤j lhg ≤ xh and h = ⌈i/d⌉ and i = j mod d

xj −
∑

g≤j−1 lhg if
∑

g≤j−1 lhg ≤ xh <
∑

g≤j lhg and h = ⌈i/d⌉ and i = j mod d

0 if xh <
∑

g≤j−1 lhg and h = ⌈i/d⌉ and i = j mod d

Therefore, we immediately get the sample complexity result:

Theorem 29 The classes HLsplc of linear utility functions with known segments are learnable effi-
ciently in the revealed preference model with sample complexity

O

(
κd log(1/ǫ) + log(1/δ)

ǫ

)
.

In order to argue for the computational efficiency in the above theorem, according to Remark 9,
we need to show how to compute the second best admissible bundle in polynomial-time. As in the
linear case, if 1d is an admissible bundle (that is, if 〈p,1d〉 ≤ B), then any other bundle is second
best (with respect to the mapping Ψ).

Otherwise, for given (p, B), we design an O(d)-time algorithm to compute the second best
admissible bundle, i.e., y ∈ argmaxx admissible ,x6=x∗ a · x, where x∗ is the optimal bundle.

Similar to an optimal bundle for a function of Hlin, an optimal bundle for Ua ∈ H
L
splc can be

computed by sorting segments (j, k) in decreasing order of
ajk
pj

and buying them in order (Section

5.1); ajk > aj(k+1) ensures that segments of a good are bought from first to last. Thus, the second
best admissible optimal bundle can also be computed in similar way as done in Section 4.1.1 for
Hlin.

Corresponding to the optimal bundle x∗, let x∗jk denote the allocation on segment (j, k). Let kj
be the last segment bought of good j. Then, clearly there exists exactly one good, say t, such that
x∗tkt < ltkt . Let y be the second best admissible bundle. Like in Lemma 13 it follows that yl > x∗l
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for exactly one good l. Further, the extra allocation has to be on segment (l, (kl + 1) if l 6= t else
(t, kt). Next like Lemma 14 yi < x∗i for exactly one good i, and decrease in allocation is on segment
(i, ki). Finally, similar to Lemma 15, if l 6= t and x∗tkt < ltkt then yt < x∗t , and if x∗tkt = ltkt then l
has to be the good whose was the first to be not allocated.

Thus, the algorithm to compute second best bundle will have check only O(d) bundles, namely
if x∗tkt < ltkt then either money is transferred from one of segments (i, ki) to one of segments (t, kt)
or from (t, kt) to one of (l, (kl + 1)), ∀l 6= t, and otherwise from (i, ki) to the best unallocated
segment in x∗.

C.2 CES known ρ

We show that the classes of demand functions Ĥρ
ces are also d-dimensional linear classes, for any

ρ ∈ R+, ρ ≤ 1 (the case ρ = 1 yields linear utility functions whose demand functions were shown
to be d-dimensional linear above).

Recall that a CES function is defined by a parameter ρ ∈ R+, ρ ≤ 1, ρ 6= 0 and a vector a ∈ Rd
+.

Note that for some price vector p and budget B, we have

argmax
x∈[0,1]n,〈p,x〉≤B

(
∑

j

ajx
ρ
j )

1/ρ = argmax
x∈[0,1]n,〈p,x〉≤B

∑

j

ajx
ρ
j

Thus, we can employ the following mapping:

Ψ((p, B),x) =

{
xρ if p · x ≤ B
0d if p · x > B,

(7)

where xρ = (xρ1, . . . , x
ρ
d). This yields:

Theorem 30 The classes Hρ
ces of linear utility functions with known parameter ρ are learnable in

the revealed preference model with sample complexity

O

(
d log(1/ǫ) + log(1/δ)

ǫ

)
.

C.3 Leontief

Learning the class of Leontief functions from revealed preferences in a statistical setting is trivial,
since observing one optimal bundle reveals all the relevant information (see Section 5.1).

D Statistical learning of utility functions

As a point of comparison, we also analyze the learnability of classes of utility functions in the
standard statistical multi-class learning model (Definition 5). That is, here the input to the learner
is a sample S = ((x1, U(x1)), . . . , (xn, U(xn))) of pairs of bundles and values generated by a
distribution P over bundles and labeled by a utility function U from a class H. The learner
outputs a function from bundles to values A(S) : [0, 1]d → R+.

D.1 Linear

Linear functions are learnable in the multi-class learning framework. The following result has been
implicit in earlier works. For completeness, we provide a proof here.
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Theorem 31 The class of linear functions H = {x 7→ 〈x,w〉 : w ∈ Rd} on Rd is learnable with

sample complexity O
(
d log(d/ǫ)+log(1/δ)

ǫ

)
.

Proof : [Sketch] Note that for any two linear functions w and w′, the set of points on which
w and w′ have the same value forms a linear subspace. Thus, the the set H∆H of subsets of
X where two linear functions w and w′ disagree is exactly the collection of all complements of
linear subspaces. The set of all linear subspaces of a vector space of dimension d has VC-dimension
d. Since a collection of subsets has the same VC-dimension as the collection of corresponding
complements of subsets, H∆H has VC-dimension d for the class H of linear functions.

An i.i.d. sample of size O
(
d log(d/ǫ)+log(1/δ)

ǫ

)
is an ǫ-net for H∆H with probability at least 1− δ

[12]. This guarantees that (with probability at least 1 − δ) every function that is consistent with
the sample has error at most ǫ. Note that, to find a function w that is consistent with a sample,
it suffices to find a maximal linearly independent set of vectors xi in the sample. The value on a
new example can then be inferred by solving a linear system. �

D.2 SPLC and CES

It is straightforward to see that learning the class HLsplc of SPLC utility functions where the number
and lengths of the segments are known reduces to learning κd-dimensional linear functions, where κ
is the maximum number of segments per good. For this, given a sample S, create a new sample Sκd

by mapping every example (x, U(x)) ∈ S to an example (xκd, U(x)) for Sκd, where xκd ∈ [0, 1]κd

is defined coordinate-wise as follows:

xκdi =





lhj if
∑

g≤j lhg ≤ xh and h = ⌈i/d⌉ and i = j mod d

xj −
∑

g≤j−1 lhg if
∑

g≤j−1 lhg ≤ xh <
∑

g≤j lhg and h = ⌈i/d⌉ and i = j mod d

0 if xh <
∑

g≤j−1 lhg and h = ⌈i/d⌉ and i = j mod d

Now, we can just learn a linear function w ∈ Rd on Sκd and predict according to this function
(employing the same mapping on a test example).

Similarly, we can reduce learning Hρ
ces of learning CES functions with fixed parameter ρ to

learning linear utility functions. For this, given a sample S, create a new sample Sρ by mapping
every example (x, U(x)) ∈ S to an example (z, (U(x))ρ) for Sρ, where z ∈ [0, 1]d is defined
coordinate-wise by setting zi = (xi)

ρ.

D.3 Leontief

We now show that the class of Leontief functions is learnable. Recall that, a Leontief utility function
is defined by a vector a = (a1, . . . , ad) by Ua(x) = minj∈G

xj/aj .
Note that, given an example (x, y) = (x, Ua(x)), we have

Ua(x) ≤
xj
aj

for all j ∈ [d] with equality for at least one index j. Equivalently, we have

aj ≤
xj

Ua(x)

for all j ∈ [d] with equality for at least one index j. That is, each example provides us with upper
bounds on all the (unknown) parameters aj of the utility function. This suggests the following
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Algorithm 4 Learning Leontief

Input: Sample S = ((x1, y1), . . . , (xm, ym))
bj ← min{bj , x

1
j/y

1}
for all i ∈ [m] do

for all j ∈ [d] do
bj ← min{bj , x

i
j/y

i}
end for

end for
Return: vector b = (b1, . . . , bd)

learning procedure: Going over all training examples, we maintain estimates bi of the ai, by using
the above inequalities (see Algorithm 4).

On a new example, we predict with the Leontief utility function defined by b.
In order to prove that the above algorithm is a successful learner, we use the following claim,

that characterizes the cases where an estimate b of a target Leontief function a errs on an example
x.

Claim 32 Let a and b be two vectors (defining Leontief utility functions) with bi ≥ ai for all
i ∈ [d]. Then, Ub(x) 6= Ua(x) implies

xk
Ua(x)

< bk

for the index k that defines Ub(x) (that is, the k that minimizes xk/bk).

Proof : Let x be some bundle with Ub(x) 6= Ua(x), that is minj∈G
xj/bj 6= minj∈G

xj/aj. Let
k be the index that minimizes the left hand side (that defines Ub(x)) and let i be the index that
minimizes the left hand side (that defines Ua(x)). Then the above inequality implies that either
i 6= k or i = k and ai = ak 6= bk.

If i = k and ai 6= bk, then we get

xk
Ua(x)

=
xk

xk/ak
= ak < bk,

by the assumption that bi ≥ ai for all i ∈ [d]. If i 6= k, we have

xk
bk

<
xi
bi
≤

xi
ai

= Ua(x),

and thus
xk

Ua(x)
< bk.

�

Theorem 33 The class of Leontief utility functions is learnable with sample complexity O
(
d log(d/δ)

ǫ

)
.

Proof : We show that Algorithm 4 is a successful learner for the class of Leontief utility functions.
Let a be the vector that defines the target Leontief function. For each j ∈ [d], we define consider
an interval [aj , Bj ], where Bj is defined by

Bj := min{B ∈ R : Pr
x∼P

[(xj/Ua(x)) ∈ [aj , B]] ≥ ǫ/d}.
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Note that we may have Bj = aj , in which case the interval contains only one point. Claim 32
implies that any Leontief utility function defined by a vector b with bj ∈ [aj , Bj] for all j has error
at most ǫ since for any bj ≤ Bj we have

Pr
x∼P

[(xj/Ua(x)) < bj ] ≤ ǫ/d

by definition of Bj. Thus, it suffices to show that the vector b that is returned by Algorithm 4
satisfies this requirement (with high probability).

Consider a sample S = ((x1, y1), . . . , (xm, ym)), with instances generated i.i.d. by the distribu-
tion P over bundles and labeled by Leontief function a (that is yi = Ua(x

i)). The output vector
b satisfies bj ∈ [aj , Bj] for all j if, for every index j, there exists an example xi in the sample with
xij/y

i = xij/Ua(x) ≤ Bj , that is if the sample S hits all the intervals [aj , Bj ]. By definition of Bj,
the probability that an i.i.d. sample from P of size m does not hit all the intervals is bounded by

n(1− ǫ/n)m ≤ e
ǫm
d .

If m ≥ d ln(d/δ)
ǫ , this probability is bounded by δ. Thus, we have shown that with probability at

least 1− δ over the training sample S algorithm 4 outputs a Leontief function of error at most ǫ. �

E Learning Utility Functions via Value Queries

In this section we show how to learn each of utility functions Hlin, Hsplc, Hces and Hleon efficiently
from value queries. In the value query learning setting, a learning algorithm has access to an oracle
that, upon given the input of a bundle x , outputs the corresponding value U(x) of some utility
function U . Slightly abusing notation, we also denote this oracle by U .

Definition 34 (Learning from value queries) A learning algorithm learns a class H from m
value queries, if for any function U ∈ H, if the learning algorithm is given responses from oracle
U , then after at most m queries the algorithm outputs the function U .

The complexity of a query learning algorithm is measured in terms of the number of queries
it needs to learn a class H. It is considered efficient if this number is polynomial in the size of
the target function. Since we assume that all defining parameters in the classes of Section 2.1 are
numbers of bit-length at most n, we will show that poly(n, d) queries suffice to learn these classes.

Linear function. For a function Ua ∈ Hlin, where Ua(x) =
∑

j ajxj , d queries are enough to

determine it. Define ∀k ≤ d, xkj = 0, ∀j 6= k and xkk = 1. Then clearly, ak = U(xk).

SPLC function. Given a function U ∈ Hsplc it can be decomposed as U(x) =
∑

j Uj(xj), where
each Uj is a piecewise-linear concave function. As described in Section 2.1, each Uj constitutes of
a set of pieces with slopes and lengths. We will learn each such Uj separately. Let ajk be the slope
of segment k, and ljk be its length. Let r be the number of segment in function Uj , then except for
ljr (which is ∞) let n be the maximum bit length of any ajk or ljk, then 1/2n ≤ ajk, ljk ≤ 2n. Note
that r is unknown.

Given lengths and slopes of segments 1, . . . k− 1 determining the slope of segment k is easy: let
L =

∑
s<k ljs and ask for xj = L+ ǫ, where ǫ < 1/2n. Then Uj(xj) =

∑
s<k ajsljs+ ajkǫ (as ǫ < ljk)

gives the value of ajk. Let uL =
∑

s<k ajsljs.
Next is to learn the length ljk of kth segment. Note that, k is the last segment of function Uj if

and only if Uj(L+2n+1) = uL+ajk2
n+1. This is because if it is not the last segment then ljk ≤ 2n.

Thus, one query is enough to check this. Suppose k is not the last segment, then we will compute
ljk through a binary search, as follows:
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S1 Let ll = 0 and lh = 2n+1. Set i = 0.

S2 Set l = ll+lh
2 and xj = L+ l.

S3 If Uj(xj) < ul + ujkl then set lh = l, else set ll = l.

S4 Set i = i+ 1. If i > 2n then output l and exit. Else go to S2.

In the above procedure we maintain the invariant that ll ≤ l ≤ lh. In step S3 of an iteration, the
inequality holds only if ljk < l, and therefore the lh is reset to l. The correctness of the procedure
follows from the fact that bit length of ljk is at most n.

We learn each Uj separately starting from first to the last segment. This requires n queries to
learn each ljk, and one query to learn ajk, thus total of O(n|Uj |) queries. Function U ∈ Hsplc can
be learned by making O(nκd) queries to its value oracle, where κ = maxj |Uj |.

CES function with known ρ. Let U ∈ Hρ
ces such that U(x) = (

∑
j ajx

ρ
j )

1/ρ, where ρ is given.

Learning such a function is equivalent to learning a linear function. Thus for xk as defined in case
of Linear functions, we get ak = U(xk)1/ρ.

Leontief function. Let U ∈ Hleon such that U(x) = minj xj/aj , where every bit length of every
aj is at most n. In other words, if aj > 0 then 1

2n ≤ aj ≤ 2n. Therefore, given that aj , ak > 0, we
have 1

22n
≤ ak

aj
≥ 22n, ∀j, k.

Since 0
0 is considered as∞, for xj = 0 and ∀k 6= j, xk = 1, U(x) > 0 if and only if aj = 0. Thus

we can figure out all the non-zero ajs using d queries, and therefore wlog assume that aj > 0, ∀j.
Consider a bundle xk, where xkj = 1, ∀j 6= k, and xkk < 1/22n.

∀j 6= k,
ak
aj
≥

1

22n
⇒

1

aj
≥

1

22nak
⇒

xkj
aj

>
xkk
ak

The above conditions imply that U(x) = minj
xk
j

aj
=

xk
k

ak
⇒ ak =

xk
k

U(xk)
. Thus, 2d queries are enough

to learn U .

Theorem 35 We can learn

• Hlin from O(d)

• Hslpc from O(nκd) (where κ = maxj |Uj |)

• Hρ
ces from O(d)

• Hleon from O(d)

value queries.
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