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Abstract
This short paper describes the daoopt entries to the MPE track of the
UATI 2010 Inference competition, where they finished in third place for the
three time limits of 20 seconds, 20 minutes, and 1 hour.’

1 Summary

daoopt is an exact solver for discrete combinatorial optimization problems, like
the task of finding a most probable explanation (MPE) over Bayesian or Markov
networks. At its core it is an implementation of a Branch and Bound scheme over
the AND/OR search space defined by the given graphical model. It uses a Mini-
Bucket heuristic for pruning the search space, as well as Limited Discrepancy
Search for finding an initial solution quickly. The solver is written in C++.

2 Main Components

The following are the main components that have been implemented as part of
daoopt:

e AND/OR Branch and Bound: AND/OR search is a general search paradigm

for graphical model problems. Special AND nodes are introduced into the
search space to capture independence of subproblems, while context-based
caching can recognize and merge some unifiable subproblems [1]. It has
been shown that the complexity of algorithms that explore this AND/OR
context-minimal search graph is time and space exponential in the induced
width / treewidth of the problem’s underlying graph structure.
In the context of optimization problems over graphical models, the concept
of AND/OR Branch and Bound (AOBB) has been developed and imple-
mented by Marinescu and Dechter [5]. For daoopt we reimplemented the
algorithm from scratch, with a focus on efficiency.
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e Mini Bucket heuristics: For the pruning step of the branch and bound
scheme, daoopt implements a Mini-Bucket heuristic. It is based on Mini-
Bucket elimination, which is an approximate variant of a variable elimi-
nation scheme and computes approximations to reasoning problems over
graphical models [2].

It was shown that the intermediate functions generated by the Mini-Bucket
algorithm can be used to derive an admissible heuristic function that (for a
maximization problem) always overestimates the optimal cost solution to
a subproblem in the search space. Its value for pruning was demonstrated
in depth-first and best-first search [4, 5].

The Mini Bucket algorithm MBE(7) has a control parameter called the
i-bound, which controls the time and space complexity of the algorithm.
Larger values of i typically lead to better approximations and thus stronger
heuristics.

o Limited Discrepancy Search: To find and output an initial solution quickly,
we implemented a version of Limited Discrepancy Search [3]. LDS in
principle explores the same AND/OR context-minimal search graph as
AOBB. However, it allows only up to a limited number of “discrepancies”
along any search path, where a discrepancy is any branching decision that
deviates from what is optimal according to the Mini-Bucket heuristic.
Clearly, depending on this limit only a part of the search space is explored,
rendering LDS an approximate algorithm.

We also considered a stochastic local search scheme for initialization, but
generally found LDS to be more reliable with respect to the quality of
the solutions. Furthermore, for a fixed discrepancy limit the running time
of LDS scales with the hardness of the problem, while employing local
search adds the additional complexity of determining a good time limit
on a per-problem basis.

3 Details

Our implementation uses a minfill heuristic (with random tie breaking) to find
a variable ordering for the search process; we select the ordering with lowest
induced width over 100 iterations. The i-bound for the Mini-Bucket heuristic
is chosen as large as possible, subject to memory constraints: the execution
of Mini-Buckets is simulated for decreasing values of 7 until the total space
requirement for the intermediate tables is below the given memory limit. The
discrepancy limit for LDS was set to 2.

3.1 Initial Solution

Not outputting any solution within the alloted time was penalized heavily in
this competition. Hence, in order to produce at least one solution quickly, we
added a preprocessing routine as follows: we compile a Mini-Bucket heuristic



with significantly lower i-bound, allowing quick computation, and then run LDS
with discrepancy limit 1. That way we can typically obtain a first solution
(which, even though often far from optimal, is a lot better than nothing) within
the first 20 seconds. Only then do we compute the full Mini-Bucket heuristic,
run LDS with limit 2, and eventually start the complete AOBB solver.

3.2 Anytime Properties

Branch and Bound is in principle an anytime scheme as it outputs improving
solutions as the search progresses. However, subproblem decomposition based
on the AND/OR framework together with the depth-first nature of the search
can compromise this property. Hence, during the month of the evaluation, we
implemented an experimental scheme that tries to overcome this potential is-
sue by “rotating” the depth-first expansion over the parts of the search space
corresponding to independent subproblems, yielding our entry daoopt.anytime.
However, the results indicate that the overhead from this additional logic out-
weighs potential gains in anytime performance; a more in-depth investigation is
still pending.

4 Comparison & Conclusion

As an exact Branch and Bound solver, daoopt is related to ToulBar2 that came
2nd, 1Ist, and 2nd for the three time limits of the MPE track. Omne of the
central differences between the two solvers is the heuristic used for pruning in
Branch and Bound: daoopt uses Mini-Buckets, while ToulBar2 uses soft local
consistency enforcing. We believe the latter is better suited for many of the
problems with large-variable domains in the competition, which probably gave
ToulBar2 the edge over daoopt. Another factor may be that ToulBar2 with local
consistency can work with dynamic variable orderings while the pre-compiled
Mini-Bucket heuristic requires a static variable ordering.

Overall, however, we were pleasantly surprised to see that these exact algo-
rithms outperformed all but one of the of the dedicated approximate solvers.
We believe this speaks for the power and versatility of these general schemes.
Finally, it is worth noting that these exact solvers can often provide proofs of
optimality, which was not considered in this evaluation.

References

[1] Rina Dechter and Robert Mateescu. AND/OR search spaces for graphical
models. Artif. Intell., 171(2-3):73-106, 2007.

[2] Rina Dechter and Irina Rish. Mini-buckets: A general scheme for bounded
inference. Journal of the ACM, 50(2):107-153, 2003.

[3] William D. Harvey and Matthew L. Ginsberg. Limited discrepancy search.
In IJCAI pages 607-615, 1995.



[4] Kalev Kask and Rina Dechter. A general scheme for automatic generation of
search heuristics from specification dependencies. Artif. Intell., 129(1-2):91-
131, 2001.

[6] Radu Marinescu and Rina Dechter. AND/OR branch-and-bound search
for combinatorial optimization in graphical models. Artif. Intell., 173(16-
17):1457-1491, 2009.



