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Abstract

This paper gives a quick description of the ToulBar2 solver following
the UAI’2010 challenge on approximate inference in discrete stochastic
graphical models where ToulBar2 finished respectively 2nd, 1st and 2nd in
the three categories representing optimization problems.

Cost function networks & graphical models

ToulBar2 is an exact combinatorial optimization tool targeted at Cost Func-
tion Networks (CFNs), also known as weighted Constraint Satisfaction prob-
lems [Meseguer et al., 2006]. This mathematical model has been derived from
constraint satisfaction problems by replacing constraints with cost functions.
In a CFN, we are given a set of variables with an associated finite domain and
a set of local cost functions. Each cost function involves some variables and
associates a non negative integer cost to each of the possible combinations of
values they may take. The usual problem considered is to assign all variables
in a way that minimizes the sum of all costs. Given an initial upper bound U ,
all costs above U can be considered as infinite, enabling the expression of usual
constraints (strictly forbidden tuples). The first presentation of such “relaxed”
constraint networks was given by [Rosenfeld et al., 1976] using max/min and
max/* operations. It was later generalized to algebraic frameworks in [Schiex
et al., 1995; Bistarelli et al., 1997]. Such frameworks allow for the concise de-
scription of global cost distributions, defined by the combination (usually the
sum) of local cost functions.

Stochastic graphical models such as graph factors, Markov random field
(MRF), chain graphs or bayesian nets represent (possibly non normalized) prob-
ability distributions by the product of local terms. Among the different infer-
ence problems that are usually considered, one is a discrete optimization prob-
lem called MPE (Maximum Probability Explanation), often denoted as MAP
(Maximum A Posteriori) in MRF. To solve MPE, one must maximizes the joint
probability. Maximizing the product of local functions is equivalent to minimiz-
ing the sum of the opposite of their logarithm. This transformation, followed
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by proper cost shifting, rescaling and discretization to get non negative integer
costs, is used as the first step to translate stochastic graphical models into CFN.

1 The Toulbar2 solver

Toulbar2 is an exact solver for CFN with many bells and whistles. As a default,
it uses a Depth First Branch and Bound algorithm to identify a minimum cost
assignment and prove its optimality. The lower bound used for pruning during
tree search is based on “soft local consistency enforcing” [Cooper and Schiex,
2004]. Soft local consistency allows to transform a CFN into an equivalent
CFN with an associated non naive constant cost function that provides a strong
incremental lower bound. The default level of enforcing used in ToulBar2 is
known as “Existential Directed Arc Consistency” or EDAC [Larrosa et al., 2005].
This processing is only applied to cost function of arity 3 or less.

The tree explored is a binary tree where each node corresponds to either fix-
ing a chosen variable to a chosen value or removing the value from its domain.
For domains with a size above 10, a spliting strategy is used instead, where the
domain of the chosen variable is split in 2 subddomains of similar size. Beyond
this, ToulBar2 integrates on-the-fly variable elimination [Larrosa, 2000] which
eliminates any variable with a low degree (default 3) during search. Each time
a complete assignment is found, a new solution is printed, the upper bound is
updated to the new solution cost and search proceeds until all possible combi-
nations have been tried and optimality proven. In its default mode, ToulBar2
is therefore an exact anytime solver.

To choose a variable and a value at each node, dedicated heuristics are used.
The variable chosen is selected using weighted degree [Boussemart et al., 2004]
and last conflict heuristics [Lecoutre et al., 2009]. The value selected is a value
with minimum cost in the associated unary cost function involving just this
variable. This cost function can also be non naive, following local consistency
enforcing, allowing to direct the search to promising area rapidly.

In order to better adapt to the stochastic graphical model area, different non
default options have been activated for the challenge.

1. Bayesian nets often include large conditional probability tables involving
many variables. The corresponding cost functions have a large arity and
would have been ignored by local consistency enforcing until enough vari-
ables are assigned. This would lead to poor lower bounds and pruning.
The “preproject” (h) option of ToulBar2 preprocesses the CFN by shifting
cost from all cost functions of arity above 3 to binary and ternary cost
functions.

2. to improve the anytime behavior of Toulbar2, an initial search phase com-
bines restarts [Gagliolo and Schmidhuber, 2007] and Limited Discrepency
Search [Harvey and Ginsberg, 1995] (L and l options). The number of
nodes explored during this initial phase is bounded as well as the maxi-
mum number of discrepencies. This initial phase may already prove op-
timality. If not, it is followed by a complete tree search. For the UAI
competition, the maximum number of discrepencies was set to the default
value of 4. The maximum number of node for restarts was set to the
default of 10, 000 in the 20” category and 100, 000 otherwise.
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Beyond this version, two other variants of ToulBar2 have been submitted to
the optimization categories of the challenge.

1. A first variant uses an additional stronger local consistency called “Virtual
Arc Consistency” [Cooper et al., 2010] following EDAC enforcing (option
VA) . This provides stronger lower bounds at the cost of extra time and
may also help directing the value ordering. Globally, this variant was not
better than the default but on the 20” category.

2. A second variant replaces the default Branch and Bound algorithm by
a “graph structure-aware” Branch and Bound algorithm [Sanchez et al.,
2009] exploiting an initially built cluster-tree decomposition. It is other-
wise identical to the default above. This variant was no better.

2 Conclusion

ToulBar2 being an exact anytime solver, it is a nice surprise for us to see that
it is competitive with the best approximate solvers that participated in the
challenge. The table below gives the number of instances in each category and
the number of problems solved to optimality by Toulbar2 strictly before the
deadline has been reached.

Category Nb. of instances Nb. of opt. proofs
20” 160 130
20’ 230 165

1 hour 195 135

Overall, ToulBar2 solved more than 73 % of all instances to optimality before
the time deadline was reached. An optimality proof is not only a valuable
information in itself. When it is produced quickly enough (in the majority of
cases here), and cpu-resources are scarce, it allows to save time that can be used
for solving other problems.

ToulBar2 includes other facilities which cannot be described here, includ-
ing stronger preprocessing algorithms, and the ability to express global cost
functions (involving a large number of variables, with a fixed semantics and
dedicated efficient local consistency algorithms). Beyond stochastic graphical
models, ToulBar2 and CFN have been used to solve real problems in resource
allocation [Cabon et al., 1999], pedigree analysis [Sanchez et al., 2008] and bioin-
formatics [Zytnicki et al., 2008].

People interested in using or contributing to ToulBar2 can go the software
forge hosting the project at https://mulcyber.toulouse.inra.fr/projects/toulbar2.
More information on ToulBar2 and on the CostFunctionLib, a large collection
of benchmarks (real, academic and random) of cost function networks can be
found at http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/ToolBarIntro.
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