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Chapter 1

Introduction

1.1 Locality

Locality of reference is one of the best known and widely occurring attributes
of computer workloads. It means that if a certain memory location is refer-
enced, there is high probability that it (or a nearby location) will be referenced
again soon. This is the basis for the success of all caching schemes that main-
tain recently-referenced data in high-speed memory for possible reuse, including
processor caches and paging of virtual memory. The idea has also been used in
other types of storage, from caching data blocks in �le systems to caching web
pages on desktops, proxies, and servers.

Moreover, systems may use their history in other ways as well, in addition
to caching. For example, the Network Weather Service collects data about
network usage in order to make predictions regarding future resource availability.
Adaptive algorithms can be designed that observe the workload and change
the system's behavior accordingly. For example, schedulers and load balancers
may adapt to their workload and tune their settings so as to provide the best
performance.

This work focuses on employing locality for parallel job runtime predic-
tion, and usage of these predictions in scheduling algorithms of supercomputers.
Therefore, the basic question is how much locality exists in the workload of a
computer system. The assumption of this thesis is that this question mostly
refers to how much can one learn on the present and the nearest future from
the recent history. The learnability is measured traditionally in terms of In-
formation Gain. This measures how well a given attribute (in the case of job
scheduling, the submit time of a job) can classify the target attribute (this job's
runtime) [11, Chapter 3]. A well-known problem with this metric is the fact
that it operates over discrete space attributes, and in the case of continuous
attributes it is very sensitive to the granularity of the discretization. This work
presents a little di�erent approach, that provides both the submit time and
runtime discretization granularities and the metric value at once.

4



CHAPTER 1. INTRODUCTION 5

1.2 Scheduling Algorithms for Parallel Machines

One of the tasks of an operating system, in particular a parallel one, is schedul-
ing its applications. However, there are very large di�erences between sequential
applications and parallel ones. In order to obtain the full bene�ts of parallel ex-
ecution of an application, its processes should run together on di�erent CPUs.
Therefore the computation on di�erent CPUs should run synchronously � a
property named co-scheduling. So, many regular tasks for sequential operating
system, (like process preemption, or saving the application state to the disk),
are not simple at all on parallel machines. For instance, preempting a single
process may block a whole application, since this violates co-scheduling. There-
fore, scheduling algorithms of these operating systems usually make only two
decisions for each job � when the job starts and how long the job may run
before it is killed. Once a job starts, it is not preempted till its termination,
user cancellation or abortion.

Unlike a sequential job, a parallel one has at least one more parameter �
the number of CPUs it requires. A job cannot start before it is assigned this
number of CPUs for its ultimate use; no other job takes these CPUs while this
job runs. Due to the Ethernet architecture, the topology of the network usually
has less importance, so the only question is indeed having the correct number
of CPUs, where each two CPUs are equal for scheduling purposes.

The default algorithms used by current job schedulers for parallel supercom-
puters are all rather simple and similar to each other. In essence, schedulers
select jobs for execution in �rst-come �rst-served (FCFS) order, and run each
job to completion. The problem is that this simplistic approach causes signif-
icant fragmentation, as jobs do not pack perfectly and processors are left idle.
Most schedulers therefore use back�lling : if the next queued job cannot run
because su�cient processors are not available, the scheduler nevertheless con-
tinues to scan the queue, and selects jobs requiring less CPUs that may utilize
the available resources.

A potential problem with this is that the �rst queued job may be starved as
subsequent jobs continually jump over it. The solution is making a reservation
for this job, and allowing subsequent jobs to run only if they respect it. This
basic algorithm is named EASY-back�lling, or EASY for short [9].

Back�lling requires the runtime of jobs to be known: both when computing
the reservation (requires knowing when processors of currently running jobs will
become available) and when determining if waiting jobs are eligible for back�ll-
ing (must terminate before the reservation). Therefore, back�lling schedulers
like EASY users to provide a runtime estimate for each submitted job [9], and
the practice was adopted by other schedulers. Jobs that exceed their estimates
are killed, so as not to violate subsequent commitments. The assumption is that
users would be motivated to provide accurate estimates, because (1) jobs would
have a better chance to back�ll if their estimates are tight, but (2) would be
killed if they are too short.

Nevertheless, empirical studies of traces from sites that actually use EASY
show that user estimates are generally inaccurate [12]. A possible reason is that
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users �nd the motivation to overestimate � so that jobs will not be killed �
much stronger than the motivation to provide accurate estimates and help the
scheduler to perform better packing.

1.3 Predictions

A very common problem for OS schedulers, and in particular ones for super-
computers, is predicting job runtimes. Some schedulers use these predictions
as heuristics for performance policies. For instance, as noted above, EASY-
back�lling [9] makes reservations for jobs according to their runtime predictions
(made by users as user estimates). The shortest-job-�rst (SJF) scheduler [8, 4]
tries to start the short jobs before the long ones. Other schedulers can reserve
some computation time for a user by selling him this computation time; these
schedulers are useful for grid computing economic models (for instance, Erne-
mann et al. present a framework where a user can set a deadline for his job's
start [5]). All these tasks require the system to predict the runtime of the jobs
it runs.

Both back�lling-based schedulers and SJF use single-value predictions due
to their simplicity. But predicting a job's runtime cannot usually be done de-
terministically. A job's runtime depends on many factors, that include not only
system internal conditions such as the network load, but also terminations due
to errors and user cancellations. The last factors are external from the system,
and they greatly complicate runtime prediction. Errors usually show incorrect
behavior pretty soon after a job starts, and many faults may be discovered long
before a job would terminate (without the error). Users also know this, and they
tend to test partial output soundness soon after their jobs start. Therefore, in
cases of errors the job is usually terminated or canceled almost immediately. For
instance, 2613 out of 5275 (~50%) canceled jobs in the SDSC-SP2 trace whose
user estimates were set for at least 200 minutes were canceled within 20 min-
utes after their start times (about the input traces, read further in Section 1.5).
Modeling these scenarios is impossible with single-value predictions � a single
value can give either a mean or a quantile of the job's runtime distribution, but
cannot model the whole distribution.

Another problem with single-value predictions is the fact that they should
contain all the information upon which scheduling decisions are made. Di�erent
deviations from the real runtime cause di�erent and possibly incomparable dam-
age. This leads to prediction policies that are scheduler-dependent. An extreme
example is back�lling � it kills jobs whose runtimes are longer than user esti-
mates. Thus, over-predictions are much less damaging than under-predictions.
Therefore the user estimates tend to be biased upwards � the users tend to
give high estimates fearing their jobs to be killed.

Tsafrir et al. present an algorithm that predicts runtimes of jobs as the mean
of 2 jobs of the same user that have already �nished [4]. Gibbons uses a pretty
complex Historical Pro�ler that interpolates data using quadratic regression, but
later uses from all this only the 95% quantile as the single-value prediction of the
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job runtime [8]. The contribution of this work is that it presents a framework
for modeling the distribution of the job runtimes and a scheduling algorithm
that uses these complete distribution models.

1.4 Hidden Markov Models (HMM)

A hidden Markov model (HMM) is a statistical model where the system be-
ing modeled is assumed to be a Markov process; but unlike a regular Markov
model, where the current observed signal depends only on the previous sig-
nal (meaning Pr(Ot|O1...Ot−1) = Pr(Ot|Ot−1)), in a hidden Markov model
the Markov process represents a hidden state sequence q1...qT , and an ob-
servation signal at each time t depends only on the state at time t, meaning
Pr(Ot|O1...Ot−1, Ot+1...OT , q1...qT ) = Pr(Ot|qt) [10]. In fact, an HMM is the
simplest Bayesian network model.

HMMs are used in speech recognition, natural language processing, bio-
informatics and many other applications. In the computer system community,
the main usage of HMMs is modeling user behavior, for instance, locating the
most common sequences of commands (for instance, see [7]). This work presents
a little di�erent approach � instead of modeling each user's behavior indepen-
dently, the HMM is used for characterization of the complete system workload.

1.5 This Work

The goals of this work are as follows:

• De�ning a Locality metric, such that this metric would measure the learn-
ability / predictability of a job's runtime given its submit time.

• De�ning a framework for workload characterization that is employing the
locality.

• De�ning a framework for modeling jobs' runtime distributions.

• Presenting a usage of these distributions by a scheduler.

This work uses the traces from [6]. The list of used traces includes LANL-
CM5, SDSC-Par95/96, CTC-SP2, KTH-SP2, SDSC-SP2 and SDSC-Blue. Only
cleaned versions were used. All the jobs whose runtimes or submit times are
unknown (set to −1), or that use no CPUs, were removed from the modeling.

The plan of next chapters is as follows: Chapter 2 presents the metric for
measuring the locality. Chapter 3 presents the characterization of the workload
using HMMs. Chapter 4 presents the framework for runtime distribution mod-
eling based on job submit times. Chapter 5 presents the scheduler that uses
these predictions. Finally, Chapter 6 concludes the work and discusses future
research directions.



Chapter 2

Locality Metric

Our �rst goal is to locate a learnability metric given a trace of jobs. For a single
job, let S be its submit time, and let R be its runtime. The question is how
much information on R one can ever learn from perfect knowledge of S and their
inter-connection. This metric is well known as the mutual information, and its

formula is
∫ ∫

Pr(S, R) log2
Pr(S,R)

Pr(S) Pr(R)dSdR, where S and R are submit times

and runtimes; and Pr(S, R) is the probability for a job to have the submit time
of S and runtime of R. (see, for instance, [3]). But it appears pretty di�cult to
estimate.

First of all, it is tempting to calculate the continuous mutual information

(by the formula
∫ ∫

Pr(S, R) log2
Pr(S,R)

Pr(S) Pr(R)dSdR). The problem with this ap-

proach is its applicability: there are not enough samples for a continuous density
function estimation.

There are several ways for estimation of mutual information, and all of them
have the same basic scheme: Map the S and R to some discrete space and calcu-
late the mutual information between the mapped spaces. Meaning, choose two
functions g(S) and h(R), and calculate I(g(S);h(R)). The following inequality
always holds: I(S;R) ≥ I(g(S);h(R)) [3]. This way we try to determine an
�achievable� amount of mutual information � the algorithm maps close values
of S and R to same discrete bin, because close values are hardly separable and
cannot be e�ectively used for classi�cation. This method is called the Grenan-
der's Method of Sieves in [13].

In order to use the discrete mutual information it is necessary to use some
discretizing. It is a well known fact that as the S and R binning gets �ner, the
mutual information I(S;R) grows � there is more information on S to use and
more information on R to learn. However, in order to use this approach one has
to estimate Pr(s, r), where s and r denote the submit time and runtime bins.
The regular way to estimate Pr(s, r) is to use the fraction of jobs in the bin from
all the jobs: Pr(s, r) = nsr

n , where nsr and n denote the number of jobs in the
bin and the total number respectively. According to [13], this is a Maximum
Likelihood Estimator (or MLE for short). The problem with making the bins

8
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too small and using this approach for estimating mutual information is the fact
that for very �ne binning the estimation of mutual information is heavily biased
upwards. Indeed, if each submit time and each runtime bin includes at most
a single job, the mutual information estimated as described above would give
log2 n bits, no matter how approximate the values are. Therefore, this estimator
is named �naive�, since it assumes that the values in bins truly represent the
probability.

As a rule of thumb, the best way to improve the probability estimation is
enlarging the sample set; however, in our case this is impossible due to the very
problem de�nition � we try to estimate the probability of the job having some
runtime and arriving at time S. So even if we continue sampling the jobs, they
will not arrive at the correct submit time (unless we change the load on the
system, but then we learn another system).

At this point we have two problems to solve � discretizing the submit times
and runtimes and de�ning a metric that evaluates the learnability of runtimes
from submit times. I will start from solving the second problem, assuming the
submit times and runtimes to be discretized to bins, and then return to the
problem of discretization.

2.1 The Metric

The problem with the naive calculation of the Information Gain is its bias. There
are several techniques to estimate the bias of the naive estimator. For instance,
the Miller-Madow bias estimator for entropy is m̂−1

2N ln 2 , where m̂ is the expected
number of bins with non-zero probability and N is the number of samples [13].
It can be used to estimate the bias on I(S;R) = H(R) − H(R|S). There are
proofs for the bias estimation convergence in this case when n tends to in�nity
and discretization remains the same. However, in this work the number of jobs
doesn't tend to in�nity, and discretization is not given and yet to be determined.
Therefore, I used another technique. Instead of estimating the bias I shu�ed
the samples' runtimes and subtracted the naive information estimation of the
shu�ed version from the one of the original version. The reason for choosing this
metric instead of Information Gain or even Information Ratio is the fact that
both these metrics are heavily dependent on the granularity of discretization
(This will be discussed further, in Section 2.2).

The idea of the algorithm is as follows:

I(S;R) =
∑

s,r:Pr(s,r) 6=0

Pr(s, r) log2

Pr(s, r)
Pr(s) Pr(r)

R′ = Shuffle(R)

I(S;R′) =
∑

s,r′:Pr(s,r′) 6=0

Pr(s, r′) log2

Pr(s, r′)
Pr(s) Pr(r′)
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Algorithm 1 Calculation of the metric

double Info(int[] S, int[] R, int T, int N){

double matrix[T][N];

double sMargin[T];

double rMargin[N];

for each s,r do {

matrix[s][r] = <fraction of jobs s.t.

S[job]=s and R[job]=r>;

sMargin[s] = <fraction of jobs s.t. S[job]=s>;

rMargin[r] = <fraction of jobs s.t. R[job]=r>;

}

return sum over s,r s.t. matrix[s][r]<>0 of

matrix[s][r]*log2(matrix[s][r]/(sMargin[s]*rMargin[r]));

}

double F(int[] S, int[] R, int T, int N) {

double info = Info(S,R,T,N);

for seed = 0..9 do {

R' = shuffle(R, seed);

infoShuffled[seed] = Info(S,R',T,N);

}

return info - average(infoShuffled);

}

f = I(S;R)− I(S;R′)

When the amount of samples tends to in�nity, the expected I(S;R′) estima-
tion converges to 0 due to the weak law of big numbers (since the fraction of jobs
that fall in the submit time bin s and runtime bin r from all the jobs in submit
time bin s converges to Pr(r)). The proposed metric actually tries to estimate
the information that is not �random�. It can be seen as a kind of learnability
test � how much information one can learn from the original trace and cannot
learn from a random trace with the same marginal distribution of submit times
and runtimes. It is similar to another learnability test � the VC-dimension.
A concept class is learnable in the formal model i� its VC-dimension is �nite.
It means, one can learn a concept class if and only if it cannot �explain every-
thing� � there is some sequence that cannot be explained by the concept of the
class. The analogy here is: If any random sequence can return this amount of
�information�, it is simply a bias, and cannot be learned.

Algorithm 1 receives as input the already discretized array of submit times
and runtimes of jobs, together with the numbers of submit time (T ) and runtime
bins (N). It uses 10 seeds (it is more than enough � the coe�cient of variation
of the metric is always less than 1% in real traces!) and takes an average as an
estimate.

Note, however, that negative values for this metric are theoretically possible.
For instance, if the jobs are ((s0, r0), (s0, r1), (s1, r0), (s1, r1)), then the mutual
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information estimation is 0 bits, and the expected I(S;R′) is 1/3 bit. The
latter is calculated in the following manner: Let R′[0] = r; the probability that
R′[1] = r is exactly 1/3: it is choosing 1 out of 3 remaining. In this case
I(S;R′) = 1 bit; otherwise, I(S;R′) = 0 bits; so the expected value is exactly
1/3 bit. So the expected f is -1/3 bit. It means that there is �negative locality�.
Indeed, if one sees r0 in some submit time bin, it is not expected to come again.
Such �negative bias� is also described in [13]. However, such scenarios in real
life traces are highly unexpected, and I have not seen them.

2.2 Discretizing

There are several discretizing algorithms, that have a single parameter that
tunes the granularity. For instance the Simple discretizing algorithm maps the

values as follows: ftx(x) =
⌊

x
tx

⌋
, where x is the value to map and tx is the

parameter that tunes the granularity of x values. Another algorithm that may
be used for this approach is K-Means clustering [11, Chapter 6]. This algo-
rithm must receive the number of cluster as a parameter that indirectly sets the
granularity (more clusters means the clusters are smaller and the granularity is
�ner).

In this work, submit times were always binned with the Simple discretizing
algorithm. This means that the bins were some constant time long. As for run-
times, they were always binned in Logarithmic space. This way the error metric

in runtime prediction was calculated as d(R1, R2) = |log R1 − log R2| =
∣∣∣log R1

R2

∣∣∣.
This means, that if R1 is 10% bigger than R2, the error metric is the same no
matter what the linear distance between the runtimes. For instance, if the pre-
diction is 100 seconds and real runtime is 101 seconds it is less considerable
mistake than if the prediction were 10 seconds and the real runtime were 11
seconds; because our mistake is 1% and the counter-example's mistake is 10%.
Special treatment was required for the jobs with runtime of 0 seconds (in the
used traces, the runtimes are rounded to the closest integer seconds, see [6]; so
for jobs whose real runtime was less than 0.5 second, the runtime is set as 0
seconds). The problem with these jobs is that log 0 is unde�ned; moreover, since
all we know about the real runtime is that it is less than 0.5 second, the rela-
tional error in this case may be very signi�cant internally; for instance, at least
theoretically, the runtimes of 0.25 second and 1 microsecond are represented by
the same value of 0. The jobs with runtime less than 0.5 second exist in any
trace; but they are less than 0.5% of all the jobs for all the tested traces, and
for most of the traces they are less than 0.0003 of all the jobs. In this work, for
measuring the distances, runtime of these jobs was set equal to 1 second; thus
all the jobs whose runtime is less then 1.5 seconds were binned together. Note,
that even when the trace shows 1 second as job's runtime, its real runtime still
can vary from 0.5 second to 1.5 second, meaning a factor of 3. Therefore, those
jobs were binned all to the bin the smallest number as �very short jobs�. Note,
that those jobs are only ~2% of all the jobs in the worst case.
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Algorithm 2 K-Means algorithm

1 int[] KMeans(double[] input, int k) {

2 int[] result;

3 double[] values = create_copy(input);

4 sort(values);

5 double[] distances;

6 distances[i] = d(values[i+1],values[i]);

7 sortDescending(distances);

8 double minimalDistance = distances[k-2];

9 double[] bounds;

10 int currentBin = 0;

11 for each values[i] {

12 if (d(values[i],values[i+1]) >= minimalDistance) {

13 bounds[currentBin] = values[i+1];

14 currentBin++;

15 }

16 }

17 for all i

18 result[i] = bin s.t. bounds[bin-1]<=input[i]<bounds[bin];

19 do {

20 average[bin] = geom_average(input[i], s.t. result[i]=bin);

21 bounds[bin] = geom_average(average[bin],average[bin+1]);

22 for all i

23 result[i] = bin s.t.

24 bounds[bin-1]<=input[i]<bounds[bin];

25 } while result has changed in the iteration

26 return result;

27 }

Runtimes were binned with the Simple and K-Means algorithm. The K-
Means algorithm is implemented the following way (see Algorithm 2): As any
Expectation-Maximization algorithm, it has two phases: Initialization and It-
erations. The Initialization (Lines 3-18) is to locate the maximal empty in-
tervals, and use them to separate the values to bins. For instance, if k = 2,
and the runtimes are [2,10,100,200] in seconds; or in log10 scale [0.3, 1, 2, 2.3];
distances are [0.7,1,0.3]; they are sorted descending ([1,0.7,0.3]) and the the
k − 2 = 0, and minimalDistance is set to distance[0]=1. Thus, initial bin-
ning is {2,10},{100,200}. Iterations (Lines 19-25) include an Expectation phase
� calculating the averages (Line 20); and a Maximization phase � setting the
new bounds, such that each runtime is close to its average, meaning the bounds
must be just in the middle of the way between the bin averages (Line 21). Note
that all the averages are geometric, since the input works over log space; and
distance function d() is log-to-log distance. The iterations stop once the result
stops changing, meaning it runs till convergence.
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The only open question left at this point is the desired granularity. I decided
to use the values that will maximize the value of the metric I have chosen;
meaning, �nd arg maxts,tr f , where ts and tr are the arguments for the binning
algorithms for submit time and runtime, and f is the metric when using that
binning.

For instance, suppose there are only 4 jobs, whose submit times are (0s,
1s, 10000s, 10001s) and whose runtimes are (1000s, 1001s, 100s, 101s). If the
�nest binning is used � each number in an independent bin � then I(S;R) =
log2 4 = 2 bits; the same amount of information one would receive after shu�ing
the runtimes, and the metric f would be 0. However, the �rst two jobs and the
last two jobs are very similar and very close at submit time. When binning
them together, the discrete mutual information formula gives 1 bit; however the
I(S;R′) is expected to be 1/3 bits, just as described above. Therefore, if one
uses f = I(S;R)−I(S;R′) as the metric, he receives better result on the second
choice (2/3 bits instead of 0 bits).

This property belongs to the proposed metric alone. For instance, if one
tries to maximize the Information Gain, he receives the very large values when
the binning is very �ne grained (which is mostly due to the bias). Miller-
Madow bias correction indeed converges to the real bias, but when the number
of samples increases and not when the discretization changes; the same is true
for Jackknifed versions of bias corrections (for formulas see [13]). The metric
proposed in the previous section converges to 0 both on very coarse and on very
�ne granularities, and is meaningful only in the informative binnings � when
there is enough information to learn e�ectively, but not too much.

In this work I tried to locate the tr value as well as ts value. However, for
some purposes one may need only some information on the runtime. In these
cases runtime binning is given by the goal of an algorithm. For instance, for
some algorithms it is important to learn whether the job will run more that
some threshold ρ, like in [14], where all that interests is whether the remaining
time is longer or shorter than the context switch duration. In the previous case,
there are two bins of runtimes, ones that are longer than ρ and others that are
shorter than ρ. In this case, the goal is to locate the best submit time binning
(how long the information is still fresh). So the solution changes as needed �
the maximum is found over di�erent ts values, with �xed runtime binning. It is
obviously less than maxts,tr f since the maximization is over a single binning of
runtime; however, the ts value may di�er from one in the previous setup. For
instance, if the algorithm needs only to learn as little information on the runtime
as described above, the best ts is expected to decrease because for this purpose
the good adaptation can be done faster � few samples are enough to measure
the probability of this single event, but they may be insu�cient to model the
complete distribution.

The proposed metric is non-linear and not convex (at least, there is no proof
for that). Unless the binning is soft (meaning, we bin the values with di�erent
probabilities) it is even not continuous, and surely not di�erentiable � any
speci�c parameter bins job's runtime to a single bin, and changing the binning
(even for a single job!) changes the metric for some ε > 0. For instance, let
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Trace ts tr = N f(s, r)
SDSC Paragon '95 1.5 h 18 0.73 bits
SDSC Paragon '96 6 h 22 0.78 bits

LANL CM5 12 h 100 0.41 bits
SDSC SP2 2 h 28 0.85 bits
SDSC Blue 1 h 55 0.65 bits
CTC SP2 40 min 32 0.72 bits

Table 2.1: The best values of tr and ts for the di�erent traces, when using
K-Means binning for runtimes.

Trace ts tr N f(s, r)
SDSC Paragon '95 2 h 1.80 23 0.80 bits
SDSC Paragon '96 6 h 1.49 33 0.85 bits

LANL CM5 6 h 1.20 68 0.45 bits
SDSC SP2 3 h 1.25 59 0.94 bits
SDSC Blue 2 h 1.19 77 0.68 bits
CTC SP2 1 h 1.3 43 0.77 bits

Table 2.2: The best values of tr and ts for the di�erent traces, when using
Simple binning for runtimes.

the jobs be as presented earlier in the section, and suppose the submit time
granularity is tuned for 10 seconds, binning submit times of the �rst two jobs
and the last two jobs together; and let T = 10

√
101 ≈ 1.586. For any tr ∈ (T ; 1.6),

simple binning bins runtimes of the �rst two jobs together to bin 9 and last two
jobs together to bin 14, and the metric in this case is 2/3 as shown above.
However, if 1.585 < tr < T , runtime of 101s is binned to bin 10, and the last
two jobs are not binned together. In this case the naive estimator of H(R)
gives −0.5 log 0.5 − 0.25 log 0.25 − 0.25 log 0.25 = 1.5 bits, and H(R|S) gives
0.5 · 0 + 0.5 · 1 = 0.5 bits; I(S;R) is still estimated as 1 bit. Shu�ed information
depends on where the two �rst runtimes are shu�ed. If they fall together on
the �rst or the last two places the I(S;R′) = 1 bit as in the previous case; and
it happens with the probability of 0.5. Otherwise H(R′|S) = 0.5 · 1 + 0.5 · 1 = 1
bits, and I(S;R′) = 0.5 bit. Thus, E(I(S;R′)) = 1·0.5+0.5·0.5 = 0.75 bits, and
f = 0.25 bits. It means, that the metric f is not continuous at ts = 10s, tr = T .

Therefore, the standard methods (Linear Programming, Convex Optimiza-
tion, Gradients) cannot be applicable here. According to [2, p. 9], in that case
the best option is only locating the local maximum. The local maximum was
reached by hand.
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2.3 Measurement Results

Tables 2.1 and 2.2 present the optimal granularity parameters and metric for
di�erent traces; N denotes the number of runtime bins (it is the same as tr in the
case of K-Means, since in this case it is the number of means). The conclusions
are that �ne submit time binning and coarse runtime binning is usually the
most informative. Saying it informally, it is usually better to use fast (≤ 6 h)
non-detailed adaptation than detailed adaptation that is based on long runs.
The reason maybe the fact that the real-life trace is highly unpredictable and
quickly changing, and old info may not be applicable for current learning. Also,
simple binning provides ≈ 8.4% more information on average, thus it is probably
better to use as discretizing algorithm.

There is a little problem using K-Means as the binning algorithm. K-Means
depends on the data, and when using the Grenander's Method of Sieves, the
functions should be chosen independent of data [13]. From now on, all the
runtimes are always binned with the Simple algorithm over the logarithmic
space.

2.4 Source of Locality

A very commonly asked question is what is the source of locality. Indeed, why
are the jobs that come close in time similar to one another? Is it due to the
system environmental conditions or due to the user sessions? Is it appropriate
to study the submit times instead of modeling each user with his regular jobs
and their runtimes? Can the information about the submit time of a job add
anything if we already know this job's submitting user?

In order to answer this question, I measured the metric proposed earlier both
on jobs' attribute �user� and on pair of attributes (�user�,�submit time�). Users
are never binned together � each user is modeled separately. Runtimes (in this
part) were binned with the Simple algorithm. Note, that when modeling both
users and submit times, the number of jobs submitted by a single user is much
lower than the total number of jobs in the system. Therefore, longer learning
periods are required (days and weeks instead of minutes and hours). Also, there
are less than 1000 users in the traces, this provides enough data per a user to
learn runtimes very accurately without fear of bias. This is expressed as a �ner
granularity: a relatively small tr and a relatively large number of runtime bins
(on average ≈ 4.3 times larger than when using users alone).

The results of these measurements are presented in Table 2.3. They show
that, �rst of all, modeling the user can be more promising than modeling the
submit times. However, modeling submit time together with user can give
additional information, on average ≈ 32% more than when modeling the user
alone. This means, that user sessions play a pretty big role in the locality of
sampling, but it is not ultimate. As of practical usage, it means that the recency
should take a part when modeling the runtime distribution of a user's jobs, as
was recently shown empirically in [4].
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Trace tr N f(u, r) ts tr N f((s, u), r) f(s; r|u)
SDSC Paragon '95 1.055 247 0.83 bits 3d 1.5 33 1.21 bits 0.38 bits
SDSC Paragon '96 1.04 332 1.03 bits 1w 1.2 72 1.47 bits 0.44 bits

LANL CM5 1.044 288 0.69 bits 1w 1.3 48 0.97 bits 0.28 bits
SDSC SP2 1.057 238 1.27 bits 2w 1.18 80 1.52 bits 0.25 bits
SDSC Blue 1.027 501 1.11 bits 1m 1.08 174 1.45 bits 0.34 bits
CTC SP2 1.06 192 1.22 bits 2w 1.24 52 1.43 bits 0.21 bits

Table 2.3: User vs User & Submit



Chapter 3

Workload Characterization

Using an HMM

3.1 Introduction and Model De�nition

AHidden Markov Model (HMM) models an observed sequence of signalsO1...OT

using a sequence of hidden states q1...qT . Each state q de�nes the probability for
any possible signal Ot to be seen � Pr(Ot|qt), and also de�nes the probability
for all of the states to follow it �Pr(qt+1|qt). The standard set of operations
over an HMM includes calculation of likelihood of a given signal sequence as-
suming a given HMM, determining the most likely state sequence for a given
signal sequence and HMM (solved by the Viterbi algorithm), and �nding the
optimal parameters for the HMM states to maximize the likelihood of a given
sequence of signals (the latter one is solved by the Baum-Welch algorithm, that
is a special case of the Expectation-Maximization algorithm) [10].

In order to model the job trace (or anything else) using an HMM �rst of
all one must decide what is the signal. One option is ordering the sequence of
jobs by their submit times, and then de�ning the runtime (or runtime bin) of
a single job number t as a signal Ot. This is indeed very simple, however this
way we lose the inter-arrival time dependency. Indeed, if there is a long period
without submissions of jobs, the jobs still come one after another; so this long
inter-arrival time period is not modeled. The dependency between jobs when
the inter-arrival time is large is expected to be less than when the inter-arrival
time is small. Therefore the signal at a submit time bin t is de�ned as a list of
runtimes of jobs that arrive at this submit time bin.

The other question is how a state de�nes the probability for a possible sig-
nal. There are two options. The �rst one de�nes the state as the job runtime
distribution, such that each job's runtime is sampled from this distribution in-
dependently from all the rest of the jobs. The probability of the given signal is
calculated by the following formula: Pr(x1,t..xN,t|qt = i) =

∏N
j=1 B

xj,t

ij , where
xj,t is the number of jobs at submit time bin t and runtime bin j, N is the

17
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number of runtime bins, and Bij is the probability of job runtime bin j in state
i (this is indeed very similar to the state matrix of [10], with the only di�erence
that we use the same matrix multiple times since there are many jobs to model.
Unless speci�ed otherwise, all the variables are from there). The Expectation-

Maximization update should maximize over all parameter sets θ̂ the value of∑
Q

Pr(Q|O, θ) ln Pr(O,Q|θ̂) =

=
∑
Q

Pr(Q|O, θ) ln[Pr(O|Q, θ̂) Pr(Q|θ̂)] =

=
∑
Q

Pr(Q|O, θ) ln Pr(O|Q, θ̂) +
∑
Q

Pr(Q|O, θ) ln Pr(Q|θ̂)

where O is the observation sequence, Q is the state sequence, and θ, θ̂ are the
parameters of the current and next iterations (see [10, p. 265]). But the right
term remains constant when Bij changes (it is subject to state transition and
initial state distribution). Therefore, here we only concentrate on the left term.∑

Q

Pr(Q|O, θ) ln Pr(O|Q, θ̂) =

=
∑
t,i

γt(i) ln(
N∏

j=1

B̂ij
xj,t) =

∑
t,i,j

γt(i)xj,t ln B̂ij ;

∀i,
∑

j

B̂ij = 1

and, after the di�erentiation ∂
∂B̂ij

and using the Lagrange multiplier technique,

we receive ∑
t γt(i)xj,t

B̂ij

= ci =
∑
t,j

γt(i)xj,t ⇒ B̂ij =
∑

t γt(i)xj,t∑
t,k γt(i)xk,t

where γt(i) = Pr(qt = i|O, θ).
One problem with the proposed HMM structure is that it cannot generate

the workloads. Given a list of submit times of jobs, it can sample the runtimes
for the jobs, but it cannot de�ne what the load should be. It can be useful for
predicting the currently running and submitted jobs, but it cannot predict the
future load. Generativity of the HMMs is also required when comparing two
models. Very similar HMM models can be represented by completely di�erent
parameters [10, p. 271]. The solution is calculating the expected KL-divergence
or JS-divergence, meaning the expected di�erence of log-likelihood of signal
sequences generated by the HMM (divided by a length of the generated obser-
vation sequence T , when T tends to in�nity). Of course, when the HMM cannot
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generate load, one solution is giving some load from an outside source, but this
inserts outsider in�uence to the comparison.

An alternative that solves this problem models both runtimes and load �
meaning, state de�nes the runtime distribution and the load distribution. This
model can also generate workloads. Then,

Pr(x1,t..xN,t|qt = i) = Pr(
∑

j

xj,t|qt = i) Pr(x1,t..xN,t|
∑

j

xj,t; qt = i) =

= Pr(
∑

j

xj,t|qt = i)
N∏

j=1

B
xj,t

ij

� the probability of the runtime list in state i is the probability of the load
in this state to be equal the list length multiplied by the probability of this
runtime list at the given load and state (the latter factor is exactly the same as
earlier). The only open question is the load distribution. (From here on, load
at time t is represented by lt =

∑
j xj,t). Assuming the Poisson distribution for

load (meaning Pr(lt|qt = i) = e−λiλ
lt
i

lt!
, where λi is the expected load at state i),

the total distribution is
e−λiλ

lt
i

lt!

∏N
j=1 B

xj,t

ij . The estimation of this value should
maximize

∑
Pr(Q|O, θ) ln Pr(O|Q, λ̂i, B̂ij) =

∑
t,i

γt(i) ln

e−λ̂i
λ̂i

lt

lt!

N∏
j=1

B̂ij
xj,t

 =

= −
∑
t,i

γt(i)λ̂i +
∑
t,i

γt(i)lt ln λ̂i −
∑
t,i

γt(i) ln(lt!) +
∑
t,i,j

γt(i)xj,t ln B̂ij

Therefore, after di�erentiation ∂
∂λ̂i

we locate the stationary point:

−
∑

t

γt(i) +
∑

t γt(i)lt
λ̂i

= 0

λ̂i =
∑

t γt(i)lt∑
t γt(i)

Matrix B changes by the same formula, with exactly same explanation.
If, on the other hand, the load model is Geometric, then Pr(lt|qt = i) =

pi(1−pi)lt , where pi is the termination parameter of the Geometric distribution
at state i). The estimation of this value should maximize

∑
Pr(Q|O, θ) ln Pr(O|Q, λ̂i, B̂ij) =

∑
t,i

γt(i) ln

p̂i(1− p̂i)lt

N∏
j=1

B̂ij
xj,t

 =

=
∑
t,i

γt(i) ln p̂i +
∑
t,i

γt(i)lt ln(1− p̂i) +
∑
t,i,j

γt(i)xj,t ln B̂ij
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Therefore, after di�erentiation ∂
∂p̂i

we locate the stationary point:∑
t γt(i)
p̂i

−
∑

t γt(i)lt
1− p̂i

= 0

p̂i =
∑

t γt(i)∑
t γt(i)(lt + 1)

I didn't present proofs that these stationary points are indeed the maxima.
However, the proofs for this are very simple. For instance, when λ̂i → 0 or λ̂i →
∞, for any submit time bin t having at least one job, Pr(lt|qt = i, λ̂i) → 0; and
therefore the target function tends to −∞. This means that in a compact space
of λ̂i ∈ [0,∞] the continuous function after the domain compacti�cation receives
the global maximum (whose existence is ensured by the topological formulation
of the Weierstrass extreme value theorem) in the interior (0,∞). In this domain,
the function is di�erentiable and therefore the global maximum must appear in
a stationary point (due to the Fermat's stationary point theorem). There is only
a single stationary point, therefore it is the global maximum. The remainder
is the case when ∀t, lt = 0 ∨ γt(i) = 0, since in this case for any submit time t

where γt(i) 6= 0 implies Pr(lt|qt = i, λ̂i → 0) → 1; but in this case
∑

t
γt(i)lt∑

t
γt(i)

= 0,

so it is a part of the common case. Similar proofs work in the cases of B̂ij and
p̂i, thus they are omitted.

An assumption that the load is Poisson-distributed may be very question-
able. Section 3.5 discusses real load distributions of di�erent states, and they
are pretty far from being Poisson. However, as a model, it can work as de�ned.
The parameter estimation subroutine (Baum-Welch) only tries to locate the
best Poisson model that can describe the seen observation sequence.

The metric used to evaluate a model is its ability to explain and predict an
unseen test. For this the trace is divided in two, and HMM parameter estimation
using the Baum-Welch algorithm runs only on the �rst half of the jobs. The test
is the log-likelihood of the second half. In fact this is a well known and widely
used training and validation sets approach [11, Chapter 3]. Note that negation
of the log-likelihood is a surprise measure � meaning, formally, that amount of
information in the message is exactly − log Pr(M) [3]. If the HMM models only
runtime distributions and contains a single state q, then ∀t, γt(q) = 1, Bqj =∑

t
xj,t∑

t,k
xk,t

= p1(j) ; and the log-likelihood is exactly nv ·
∑

j pv(j) log pt(j), where

nv is the number of jobs in the validation half of the trace, and pt(j), pv(j) are
the fractions of all the jobs with runtime bin j in the training and validation
halves, respectively. When divided by the number of jobs in the validation set,
it is the negation of the entropy of pv when it is modeled with pt � it is exactly
a negation of H(pv) + DKL(pv||pt). If the HMM contains more than one state,
log-likelihood improvement divided by the number of jobs can be thought of as
an average information per job obtained by using the HMM as a model on the
validation set: GHMM = 1

nv
log2 Pr(Rv) + H(pv) + DKL(pv||pt) � the gain of

the HMM is de�ned as the Log-Likelihood of the validation set divided by the
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size of the validation set plus the entropy of runtimes in the validation set plus
the KL-divergence between the runtime distribution of the validation set (as a
real distribution) and of the training set (as a model distribution).

A problem with the given technique is the fact that sometimes the training
set (and therefore also the model) includes no job at some runtime bin at all,
and the validation set does include such jobs. The meaning is that the surprise
measure for these jobs is − log 0 = ∞! This means that the log2 Pr(Rv) = −∞
and DKL(pv||pt) = ∞; and the gain is set as unde�ned. There is a simple way
to solve it by adding a safety distribution to the model; meaning, for a safety
parameter ε > 0, de�ne the new probability p′ as

p′ =
{

p(1− ε) : p 6= 0
ε

N0
: p = 0

where p is the old probability of a runtime bin, and N0 is the number of empty
runtime bins in the model. Similar safety formulas are possible also when mod-
eling an in�nite series of runtime bins; only then the safety should be completed
from a geometric distribution. The safety parameter ε should depend on the size
of the training set, for instance ε = 1

nt
. Note, however, that this safety method

doesn't depend on the HMM modeling � it can be applied with any model. The
information gain due to the HMM doesn't not change due to this safety method.
Indeed, if p 6= 0, then log p′ = log p + log(1− ε), and this last term is indepen-
dent of the model � it is the same when using an HMM and when not using an
HMM; so it is eliminated. Otherwise, if p = 0, then log p′ = log ε− log N0, and
again this is constant in both models and eliminated. Therefore, in this work
the jobs in runtime bins that are not populated in the training set are removed
from the validation set.

A similar technique is presented in [11, Chapter 6] as m-estimation of prob-
ability. The idea there is to add some m samples to all the bins uniformly, so
that the distribution is updated as p′ = ntp+m

nt+mN . I decided to use a little di�er-
ent technique to ensure that the ratio of probabilities of two bins with non-zero
probability will remain constant; so it remains constant when removing the jobs
that are not modeled.

Another problem arises when we try to compare HMMs with and with-
out load modeling. Log-likelihoods re�ect probabilities for di�erent events and
cannot be compared directly. The log-likelihood of a trace given an HMM
that models both runtime distributions and load is expected to be less since
it includes the load modeling and does not accept it as is. In order to com-
pare these options for HMMs, I used the following method: Let R be the
runtime sequence of jobs and L to be the Load sequence. When the HMM
doesn't model the load, it measures the probability of the runtime distribu-
tion given load of the trace � Pr(R|L,HMM). Therefore, the correct way

to measure it with load modeling is Pr(R|L,HMM) = Pr(R,L|HMM)
Pr(L|HMM) , where

the dividend is the regular likelihood of the HMM that models both runtime
distribution and load; and the divisor is modeling the load sequence only,
meaning that states model the load only � Pr(Ot|qt = i) = Pr(lt|qt = i).
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Algorithm 3 Static IV algorithm

1 void initStatic() {

2 for each state i do {

3 int startXi = i*M/N;

4 int endXi = (i+1)*M/N;

5 for each runtime bin j do {

6 B[i][j] = 1.0/(endXi-startXi+N);

7 if (startXi<=j && j<endXi)

8 B[i][j] *= 2;

9 }

10 }

11 }

log Pr(R|L,HMM) = log Pr(R,L|HMM)− log Pr(L|HMM).

3.2 Initial Values

Baum-Welch is a special case of the Expectation-Maximization algorithm, and
as such de�nes how the existing parameters from the previous iteration should
change; but two issues are left unde�ned � its initialization (what are the
initial parameters) and termination (when the iterations should stop). This
section deals with Baum-Welch initialization; the next one discusses di�erent
termination criteria.

As written in [10, p. 273], uniform initial values for the state transition
matrix and initial state distribution is �adequate for giving the useful reestimates
in almost all the cases�. The problem is the initial values of the state matrix B.
There are two ways that were used in this work to set the state matrix initial
values: statically and based on k-means. Algorithm 3 presents the Static initial
values (Static-IV) de�nition. It is independent of data in the trace. The basic
idea is as follows: For each state i, it selects a set of runtime bins Xi (lines 3-4;
M and N represent the number of states and runtime bins respectively [10, p.
260]), and sets their per-bin probability to be twice higher that the probability
of the rest of the runtime bins: Xi ⊂ {1..N},∀x ∈ Xi, y /∈ Xi, Bix = 2Biy.
Since each row in this matrix must represent the distribution of the runtimes
bin, it implies Bix = 2

|Xi|+N , Biy = 1
|Xi|+N . The obvious advantage of this static

approach is the fact that there is no explicit over-�tting and its applicability to
the on-line algorithms.

There are cases when the initial values are very bad; especially when using
static initial values. For instance, if there is a submit time bin with two jobs
that belong to di�erent runtime bins, and there is no state that can give both
bins with good probability. In this case, for each state the probability of being
in that state equals to 0. It is a pretty dead-end case. To solve it I added
the ability to adjust the state matrix to �t the submit time bin. It is done
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as follows: Each state changes to support the submit time bin a little better
by setting the probabilities a little closer to this submit time bin. Namely,
∀i, j;Bij = (1 − λ(t))Bij + λ(t)p(j|t), where λ(t) denotes the fraction of jobs
in submit time bin t and p(j|t) is the fraction of jobs of runtime bin j among
all the jobs of submit time t. The motivation is as follows � let the old state
matrix model the rest of the jobs, and adapt it for the part of the jobs that it
cannot explain. Although it is not a part of regular HMM implementation, I
saw this only on start of initial values. After the initial values are OK, the rest
runs very smoothly. It may be seen as the initial adaptation of the initial values
to the trace.

An alternative option is to use the k-means algorithm [10, p. 273], see
Algorithm 4. The idea of the algorithm is as follows � Cluster the submit
time bins of the given trace with the k-means algorithm using Kullback-Leibler
divergence as the metric (Lines 20-26), by iteratively dividing each cluster by
two and running k-means each time till convergence. The division of the cluster
is done as follows (Lines 8-17) � For each state calculate the expectation of
runtime bin number (Line 9), and separate the submit time bins such that the
submit time bins with the higher averages than the expected in this state are
in a separate cluster. This way the submit time bins populated with jobs with
high runtimes are separated from submit time bins with low runtimes. It is
surely not enough, and in order to ensure the intra-cluster similarity (not only
in terms of averaging, but in terms of runtime binning) Lines 20-26 run the
regular k-means algorithm till convergence.

The k-means method separates the submit time bins better. It alone cannot
be used for the predictions, since the state durations and state transition prob-
abilities are not modeled by clustering unless the HMM is used. However, this
clustering does most of the work, and the HMM can later easily learn the state
transition matrix pretty fast. Therefore, the Baum-Welch algorithm converges
much faster. The drawbacks of this approach is the high over-�tting due to the
dependency on data, and inapplicability at on-line predictions, before there are
enough samples to learn from.

3.3 Baum-Welch Termination

In this work, two main approaches were taken regarding termination � �xed
number of rounds and convergence-based termination criteria. The advantage
of running Baum-Welch for a �xed number of rounds is its runtime cost pre-
dictability. Its greatest disadvantage is the fact that the results may not reach
convergence; therefore it may heavily depend on the initial values and the num-
ber of rounds.

As of convergence-based termination, there were two approaches as well. The
�rst one is running Baum-Welch till complete convergence of all the parameters
- till the parameters stop changing. Since the parameters are interdependent
and their cross dependence is very complex, the EASY way is assuming all
the parameters important, and running till convergence in L∞ metric space �
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Algorithm 4 k-means IV algorithm

1 void initKMeans(Trace obs) {

2 int currentM = 1;

3 int states[obs.T];

4 for each submit time bin t do

5 states[t] = 0;

6 relax(obs,states,currentM);

7 while currentM != M do {

8 for each state i=[0,currentM) do {

9 double mean = sum over j of B[i][j]*j;

10 for each t s.t. states[t]=i do {

11 double average =

12 (sum j=[0,N) of

13 obs.matrix[t][j]*j)

14 / obs.load[t];

15 if (average > mean)

16 states[t] += currentM;

17 }

18 currentM *= 2;

19 relax(obs,states,currentM);

20 do {

21 states[t] = argmin i over 0..currentM of

22 sum j=[0,N) of

23 p[t][j]*log2(p[t][j]/B[i][j]),

24 where p[t][j]=obs.matrix[t][j]/obs.load[t];

25 relax(obs,states,currentM);

26 } till convergence of states[t]

27 }

28 }

29

30 void relax(Trace obs, int[] states, int currentM) {

31 for each i=[0,currentM), j=[0,N) {

32 B[i][j] = <fraction of jobs with runtime bin j

33 from all the jobs in submit time bins t

34 s.t. states[t]=i>

35 }

36 }
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meaning, the distance between the previous and current parameters is de�ned as
the maximal over all parameters distance between the current step and the next
one � L∞(θ, θ̂) = maxi{|θi − θ̂i|}; where θi, θ̂i are the parameters in current
and next steps. This approach gives pretty stable results. However, it requires
many iterations, and, more important, it is proven to su�er from over-�tting.

The alternative approach is setting the threshold as a function of the sample
set, meaning ε√

nt
, where ε is a constant and nt is the number of jobs in the

training set. The idea is as follows: Assuming the model is correct, each sample
can give some information for the parameter. This amount of information is
named the Fisher information. All the samples can give nt times more informa-
tion. By Rao-Cramer inequality, the variance of the unbiased estimator (ones
that we have are indeed unbiased) has lower bound of reciprocal of this infor-
mation. The deviation is proportional to the square root of the variance and
therefore is inversely proportional to the square root of the number of samples.
This approach may prevent the over-�tting.

Also, since there are many parameters to learn, and the number of param-
eters changes with di�erent binning and number of states, the L∞ metric is
inappropriate. Therefore the metric was changed, and sometimes I used the L1

metric of the sum of distances � L1(θ, θ̂) =
∑

i |θi − θ̂i|. The reason for this
metric is the fact that the parameters the Baum-Welch tries to learn are the
distributions, the distance metric between two distributions is Jensen-Shannon
divergence and L1 (or, more exactly, 0.5L1) is its good approximation.

3.4 Results

To sum up the previous sections, here are the parameters for the HMM.

• Trace name

• ts � submit time bin length.

• tr � runtime bin size (in logarithmic space)

• M � # of states.

• Load Modeling.

• Algorithm for initial values of state matrix

• Baum-Welch termination criterion � one of {Fixed, L1, L∞}.

• ε � Parameter of termination criterion � number of rounds in case of
�xed round number or distance threshold in case of convergence.
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3.4.1 Runtime Bins and Number of States

Each state in the HMM represents a separate cluster of submit time bins. The
state at a submit time bin includes the complete knowledge of the probabilities
of current and next jobs distribution. Therefore it may be seen as a sort of infor-
mation bottleneck � all the information must pass through the state number.
Information we plan to model is de�ned by runtime bins of jobs. Therefore,
a sensible question rises � How does enlarging the state set improve the per-
formance of the HMM as a model of runtime distribution depending on the
runtime binning? In other words, if we require more information on runtime,
how enlarging the bottleneck helps us?

At this point I want to make clear that the runtime complexity of each
iteration of Baum Welch is O(TNM2). This means that adding states is very
expensive in terms on runtime complexity, which is extremely important in
cases when the results are required on-line. Furthermore, the total amount of
parameters is M2 +MN +M = O(M(M +N)). This poses serious questions on
the e�ciency of learning due to model complexity grows in quadratic proportion
with enlarging the state set.

Figure 3.1 presents the improvement of the HMM performance with more
states for di�erent runtime binnings as a function of learning time. Note that
the runtime complexity of Baum-Welch increases with the number of states,
and the line representing the 32-state HMM shows the real runtime cost in
terms of 16-state HMM round for comparison of the real cost of the received
information. The results show that while there is in fact not much gain in case of
tr = 1.8, there can be more gain when tr = 1.4, meaning the �ne grain runtime
binning leaves more information, and it can later be learnt by the Baum-Welch
algorithm. This is not always true, of course; the necessary condition is enough
information to remain in �ne grain binning. This question can be answered with
our previous tool, the locality metric. For instance, the optimal runtime binning
for SDSC Paragon 95 is tr = 1.8, see Table 2.2. Therefore the improvement when
the binning is �ner, is less attractive. On the other hand, for CTC SP2 optimal
tr = 1.3. So, using �ne runtime binning in this case can improve the learnability.
These are basically bad news � the learnability metric is very dependent on the
runtime binning. The optimal runtime binning is not easily discovered on-line.
It means that the optimal HMM-based model is not easily de�ned.

3.4.2 Sensitivity to Submit Time Binning

The results (see Figure 3.2) show that the submit time binning that were found
in Chapter 2 are too large. The explanation I �nd for this is the fact that Local-
ity sees each submit time bin independently from each other; while the HMM
builds the model of dependency, and �ner submit times give better resolution for
modeling the connection between jobs. Finer submit time binning gives better
Log-Likelihood, but requires more steps to run. For SDSC Paragon 95, when
submit time bins are ~5 minutes long (by the way, it means ~0.5 job per bin
on average!) the information received by the HMM grows logarithmically slow
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Figure 3.1: State number (M) dependence on runtime binning (tr). ts=15 min,
no load modeling, Static-IV. Time is in terms of a 16-state HMM round; each
round of a 32-state HMM is 4 times larger.
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Figure 3.2: Submit time sensitivity. tr = 1.8, M = 16, Static-IV. Headers
contain the mean inter-arrival time.
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Figure 3.3: Comparison between di�erent initial values. tr = 1.8, M = 16

(with base close to 10^5!) and ends up after 100 rounds with 0.57 bits. On the
other hand, 15 minute long submit time bin improves much faster but reaches
only ~0.54 bit � slightly less than previously. Conclusion � 15 minutes long
submit time bins look appropriate both in terms of fast convergence and good
performance.

It is possible to make the set the submit time binning �rst coarse and
then �ner. This might give the fast convergence initially and good perfor-
mance at the end. This requires to reset the state transition matrix with
change of submit time binning ts parameter. The proposed way to do so is
as follows: Suppose t′s = 0.5ts, meaning each new submit time bin is twice
shorter than the old one, so the old submit time bins are divided by 2. It also
means that new state transition probabilities should be set as if states of the
new submit time bins equaled ones of the corresponding old submit time bin:
∀i 6= j, A′

ij = 0.5Aij ;A′
ii = 0.5Aii + 0.5. This automatically doubles the ex-

pected state duration di
′
= 1

1−A′
ii

= 1
0.5−0.5Aii

= 2
1−Aii

= 2di , and it is correct

� twice more new submit time bins are now expected in a single state interval.
This idea was not tested in this work; but it may be a promising future work
direction.

3.4.3 Dependency on Initial Values

As written above, using k-means for separation of di�erent initial values helps
at the beginning � the submit time bins are already separated by k-means, so
the HMM has less work to do � just �nd out the state transition metric (see
Figure 3.3). It can help especially when submit time binning is �ne. However,
eventually the performance metric of both HMM models converges.
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Figure 3.4: Load Modeling Dependency. tr = 1.8, ts =15 minutes, M = 16,
Static-IV.

The problem appears when there is a submit time bin in the validation set
that has no representation in the k-means-created clusters. Indeed, suppose
that there are 2 states, and the complete set of runtime bins in the training
set can be separated with two disjoint subsets � Rt1, Rt2, and at each submit
time bin there are jobs in runtime bins of only one of these disjoint subsets,
meaning any submit time bin t and any runtime bins j1 ∈ Rt1, j2 ∈ Rt2 satisfy
xtj1xtj2 = 0. k-means clustering may eventually converge such that the submit
time bins are clustered as follows: qt = q0 ⇔

∑
j∈Rt1

xtj 6= 0. This clustering
satis�es the convergence � KL-divergence between any submit time bin and
the other cluster is in�nity, so it will never pass to the other cluster. It means
that every state i and any runtime bins j1 ∈ Rt1, j2 ∈ Rt2 satisfy Bij1Bij2 = 0.
The HMM parameter estimation procedure Baum Welch doesn't change this
forever - if, for any i, j, Bij = 0, then for any submit time bin t such that
xtj 6= 0 ⇒ γt(i) = 0 and therefore this submit time bin doesn't contribute

anything in the B̂ij . It means that the model forbids submit time bins that
include jobs from runtime bins of those disjoint sets. This may lead to very bad
over-�tting. Static-IV, at least initially, don't forbid any mixture of runtime
bins. Of course, if the complete training set contains no job with some runtime
bin, the model will eliminate it from all the states and forbid it; but this problem
can be solved with greater ease with the safety techniques described earlier in
the chapter that discusses the Model performance metric.

3.4.4 Load Modeling

As written above, the advantage of modeling the load is obtaining a genera-
tive model. On the other hand, when modeling load with the runtime distri-
bution, the HMM performance may deteriorate compared to an HMM mod-
eling runtimes alone (see Figure 3.4). Note, that it doesn't mean there is
no correspondence between load and runtime. The explanation for this is
as follows � suppose at some time slice t, Pr(x1,t..xN,t|

∑
j xj,t, qt = 1) >
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Pr(x1,t..xN,t|
∑

j xj,t, qt = 2), but Pr(
∑

j xj,t|qt = 1) � Pr(
∑

j xj,t|qt = 2).
The HMM decides what state to choose by multiplication of these two factors
� Pr(Ot|qt = 1) < Pr(Ot|qt = 2) � therefore it is clustered with state 2,
although the runtimes are explained better by state 1.

Another disadvantage of modeling load is requirement to choose the correct
load distribution family. As appears on Figure 3.4, the Geometric distribution
as a model for load works signi�cantly better than the Poisson distribution.

The question of whether the load should be modeled does not have a simple
answer. It makes possible designing scheduling algorithms that take into ac-
count the future load of the system. However, these algorithms su�er from low
utilization due to reservations for unsubmitted jobs. Currently, most schedul-
ing algorithms don't consider the future load in their decisions. Instead, at any
time, the algorithm considers only jobs that are present in the system.

3.5 Properties of HMM States

One of the goals of this work was characterizing the workload. It is indeed
interesting what do these HMM states represent. When one models any sample
set, �rst of all he must decide on a distribution family. After this decision is
made, even arbitrarily, he can calculate the best �tting parameter for the model;
this can also be used (and even e�ectively!) for the real sample modeling. But
characterization of the workload may give insights for future improvements.

For instance, it is well known that the state transition matrix approach
implies a Geometric state duration distribution, with parameter p = 1−Aii (in
[10, p. 269] it is named �exponential�; but it has a discrete support of natural
numbers � submit time bins). Is the real state duration distribution indeed
Geometric?

Another question � what is the real load distribution? Earlier, I modeled
it with the Poisson distribution. Is it indeed Poisson-distributed? As we earlier
saw, a choice of the load model distribution may a�ect the results when using
an HMM that models load.

The approach I took here for comparing the distribution versus the real data
was applying the KL-divergence between the �real data distribution� and the
maximally likely model distribution that can explain it. For instance, for the
Geometric distribution it is when its termination probability parameter p is the
reciprocal of the sample average.

There is still a problem to solve: Sometimes the number of samples is ex-
tremely low (< 20), so the KL-divergence is pretty big, although the CDF of the
distribution looks exactly like the model distribution. The expected cause is the
formula of DKL(p||q) = −

∑
pi lg qi−HMLE(p). The problem with it is the fact

that the Maximal Likelihood Estimator of entropy is always biased downwards,
resulting in a large KL-divergence estimation. In order to estimate the bias I
used the Miller-Madow bias correction, where the bias is estimated as m−1

2N ln 2
bits, where m is an estimate of the expected number of non-empty bins, and N
is the sample size [13, p. 1197]. Two approaches were taken for estimating the
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expected number of non-empty bins � one is by simply counting non-empty
bins (referred later as Simple bias correction); and the second by calculating
the expected number of non-empty bins in the modeled distribution. For the
Geometric distribution the latter estimation may be calculated by the formula

m =
∞∑

n=0

(
1− (1− pqn)N

)
=

∞∑
n=0

(
1−

N∑
k=0

(
N
k

)
(−pqn)k

)
=

= −
N∑

k=1

(
N
k

)
(−p)k

∞∑
n=0

qnk = −
N∑

k=1

(
N
k

)
(−p)k 1

1− qk

3.5.1 State Duration Distribution

There are 2 possible approaches for determining the �real state duration� �
via the HMM-given Viterbi maximal-likely sequence, and by K-Means (without
HMM at all). The �rst approach is not independent of the HMM (it still uses the
HMM, so there is a fear of whether our results are not an artifact of the HMM);
while the latter one's intervals are usually pretty short, and are probably instable
(any change in the small slice causes the interval to be interrupted, while the
HMM smooths away these �uctuations). Example: Suppose that some submit
time bin is closer to state 1, but both its neighbors are close to state 2 and it itself
is pretty close to state 2 (but closer to state 1). In this case, HMM Viterbi that
looks for the most likely sequence can cluster the submit time bin with state 2;
while K-Means does not learn the interconnections between neighboring submit
time bins. Therefore in this work I preferred using HMM Viterbi for state
modeling. In fact, Geometric distribution is the maximal entropy distribution
over the natural numbers with a given mean; therefore it can be thought of as
a default distribution (due to the principle of maximum entropy of Jaynes).

Table 3.1 presents the KL-divergence of the state interval distributions as
given by the Viterbi run over the trace per state and its maximally likely Geo-
metric distribution model. The di�erent columns represent the di�erent estima-
tions of the KL-divergence: the Maximal Likelihood Estimation, the estimation
with Simple Miller-Madow bias correction and with bias correction that uses the
non-empty bin number estimation assuming Geometric distribution. It shows
that KL-divergence estimation after bias correction is usually pretty little for
most of the states. The exceptions are the states that model the empty time
slices (like state 11 and 8). The bias correction is important, as noted earlier;
but both estimators for the expected number of appearing values give very close
results; therefore from here on only the Simple estimator is used.

The conclusion is that the state durations are indeed usually distributed
geometrically. But what does it mean? Suppose I know qt = i � the state at
submit time bin t. What is the probability of being in the same state at submit
time bin T , meaning what is the Pr(qt = qT )? There are two possibilities �
either this is the same state interval, or the state interval is broken, meaning
two di�erent intervals. But the dependence between the states in consequent
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State KL MLE KL corrected, simple KL corrected, geom. Notes

0 0.03 bits 0.00 bits 0.01 bits
1 0.07 bits 0.01 bits 0.01 bits
2 0.07 bits 0.02 bits 0.03 bits
3 0.03 bits 0.00 bits 0.01 bits
4 0.02 bits 0.00 bits 0.00 bits
5 0.12 bits -0.08 bits -0.05 bits
6 0.09 bits 0.04 bits 0.04 bits
7 0.09 bits 0.06 bits 0.06 bits
8 0.56 bits 0.30 bits 0.28 bits 23% empty
9 1.24 bits 0.76 bits 0.77 bits heavy tailed
10 0.19 bits 0.07 bits 0.08 bits
11 0.23 bits 0.14 bits 0.12 bits 36% empty
12 0.07 bits 0.03 bits 0.02 bits
13 0.02 bits 0.02 bits 0.01 bits
14 0.03 bits 0.01 bits 0.01 bits
15 0.02 bits -0.00 bits -0.00 bits

Table 3.1: KL-divergence between State interval duration and its maximal likely
Geometric model. SDSC Paragon 95, ts =1.5 hours, tr = 1.8, M = 16, Static-
IV, L∞ convergence, ε = 10−5.

submit times is as follows Pr(qT |qt, qt+1...qT−1) = Pr(qT |qT−1). If for any two
di�erent states Pr(qT = i|qT−1 = j) = Pr(qT = i), then, if we are interested in
the state inter-dependence, we should focus in the fact that we are in the same
interval. The probability that we stay in the same interval is proportional to
some αT−t. It is exactly the survival function � the probability that the state
duration interval is at least T − t; and since the distribution is geometric, it is
exponentially decreasing in time.

There are many adaptive algorithms that exponentially decrease the signif-
icance of the observed signal as the time passes. For instance, the Exponential
Moving Average (EMA) is an on-line technique that holds a current average as
a state variable, and each time unit inputs the signal and updates the average
by the formula µ̂ = (1− α)X + αµ, where µ, µ̂ are the average before and after
the signal respectively, X is the new input signal and α ∈ (0, 1) is a parameter.
It means, that after the in�nite (or very long) signal series of ...Xt....X1X0 the
state variable µ = (1 − α)

∑
t Xtα

t; therefore the weighting factor decreases
exponentially.

This leads to ideas of what should be done when the number of samples is
very small and the HMM ergodic model cannot be learnt e�ectively due to the
very large number of the parameters, like in the case when learning from jobs
of a single user. In these cases, the assumption may be that the only interesting
value is α � the rate at which the information becomes old. After this, each
user's jobs can be modeled with respect to their recency; thus combining user
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information with locality as proposed in the end of section 2.4. This part was
not done in this work, and it is left for the future.

3.5.1.1 Load Distribution

There were several distributions that were proposed for load models. The basic
Poisson appeared pretty weak � it is too concentrated around the average load,
with no signi�cant support for tails. There were proposals for heavy-tailed
models, that appeared to work pretty well in some cases � Zeta, Log-Normal,
Pareto and Shifted Pareto (the latter distribution is not widely known, but it
is used in Internet Tra�c modeling, see [1]). The CDF of Shifted Pareto is
F (x) = 1 − (1 + x

k )−a (compare to regular Pareto F (x) = 1 − (x
k )−a). If both

parameters converge to in�nity, then for each x the CDF converges to 1− e−cx,
where c = lim a

k . It means that there are cases when Shifted Pareto converges
to an Exponential distribution. The convergence in this case is a point-wise
convergence only, since for any �nite a, k Shifted Pareto remains heavy tailed.

When the chosen distribution model is continuous, the discretization is used
by calculating the probability of the �oor function � p(n) = Pr(bxc = n) =
F (n + 1) − F (n), where F (x) is the CDF of the function. As for the Zeta
distribution, a shift of 1 was used since the Zeta distribution does not support
0 (and there are empty submit time bins).

Finding the maximal likelihood for most of the described above distribu-
tions is pretty simple. It is well known that the maximal likelihood estimator
for Poisson's λ parameter is the average of samples; for Geometric distribution's
�success probability� p is the sample average's reciprocal; the log-normal distri-
bution parameter estimators (for continuous case) are also well known. As for

the Zeta distribution, its s parameter is estimated as follows: f(x) = (x+1)−s

ζ(s) for

a single observation, log-likelihood is l(x) = −s
∑

lg(xi + 1)− n lg ζ(s); deriva-
tive is ∂

∂s = −
∑

lg(xi + 1) − nζ′(s)
ζ(s) . It means that in stationary point of s,

ζ′(ŝ)
ζ(ŝ) = −

∑
lg(xi+1)

n ; and this was solved manually with Matlab. The problem

comes with Shifted Pareto. Derivative calculation leads to very complex formula
even in continuous case � f(x) = a

k (1+ x
k )−a−1 for a single observation, mean-

ing the log-likelihood is l(x) = n lg a−n lg k−(a+1)
∑

lg(1+ xi

k ); the derivatives
are ∂

∂a = n
a −

∑
lg(1 + xi

k ) ⇒ â = n∑
lg(1+

xi
k̂

)
; ∂

∂k = −n
k + (a + 1)

∑ xi

(k+xi)k
.

Substitution of the formula that was received from a's derivative to the second
makes it intractable. Therefore, location of the optimal points was done with
use of iterative location of optimal value, with use of Spreadsheet, manually.

Figure 3.5 shows the LLCD's of di�erent states of di�erent traces. The set-
tings are shown in the following table, and they heavily di�er from one another.
However, as presented down here, both HMMs have states with heavy-tailed
load distribution and ones with geometric load distribution.

Trace M tr ts Init. values Termination

SDSC Par95, full 16 1.8 1.5 hours Static-IV L∞ < 10−5

SDSC Blue, �rst half 16 1.19 15 minutes Static-IV 100 rounds
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Figure 3.5: Modeling the load distribution with Shifted Pareto.
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Also, the �gure presents the best explaining geometric model and optimal
Shifted Pareto model (in cases where they di�er). The conclusion is that the
Shifted Pareto is pretty good model for any case! It covers both geometric
and heavy tailed distributions. As noted above, the convergence is point-wise,
and is learned with �nite sample size; therefore one should be careful with
extrapolation of this distribution to the tail; but it is possible to switch the
distribution when the optimal parameters of Shifted Pareto tend to in�nity.

3.6 Conclusions

It is possible to model the runtime distribution of jobs with an HMM. It learns
how long the information is still fresh by determining the state duration prob-
ability, it learns the cross-state connections, and is pretty simple to use.

The best practice to run HMM is setting short submit time bins. The correct
state duration is learnt by the Baum-Welch itself. There are traces when using
many runtime bins and states improves the metrics; but usually 16 states are
enough.

Modeling the load is important in cases when we want to predict the future
jobs or characterize the load; but when all that we are interested in is runtimes
then the load should not be modeled � it complicates the model, and may
degrade the results. The model selection is critical.

Static initial values reduce the introduced over-�tting and they usually give
(eventually) better performance in terms of the surprise measure and log-likelihood.
However, they require more rounds to reach convergence.

However, at this point some things remain open. First of all, HMM models
the sequences of the job runtimes. Meaning, the information gain is measured as
the increasing of Log-Likelihood of the runtime sequence divided by number of
jobs. If the model is good, the sequence becomes more probable. But the number
of sequences grows exponentially with number of jobs. Analyzing each such
sequence independently is extremely expensive in terms of runtime complexity.
The scheduler may compare pairs of jobs, or sort the jobs somehow; but it
cannot analyze the probabilities of all the possible sequences.

Another issue is the fact that the HMM's Baum Welch, like any learning
algorithm, requires some training set. The schedulers, on the other hand, are
usually on-line. At the beginning of a trace the training set is very small.
Therefore, the initial learning may su�er from over-�tting.

These two topics are the main issues of the following chapter.



Chapter 4

Single Job Runtime

Distribution Modeling

As mentioned at the end of the previous chapter, giving probabilities to ob-
servation sequences is not of great interest. Instead, modeling a single job's
runtime may be much more useful for the scheduler. There are two main dif-
ferences between the previous chapter and this one: First, here we try to learn
the HMM on-line, having less information and limited time to run the learning
process (meaning, limited number of Baum-Welch rounds). Second, we try to
assess how much can one learn on a single job instead of the complete sequence.

In order to make the process on-line, one must decide when the information
(in our case, runtime) is available and when it is modeled. In this chapter, the
trace is used as is; meaning, all we try to do is predict the runtime, but we don't
re-schedule the jobs. Therefore, the real job runtime is known when the job is
�nished. In the next chapter, the scheduler is planned to use the job runtime
model to decide when to start it; therefore the runtime distribution is modeled
once, at the job's submission, and while the job is in the system its runtime is
not re-modeled (with a single exception described later on).

Suppose we predict a distribution p(r1)..p(rN ) for some job's runtime; then
the surprise measure of the job is − log2 p(rj), where rj is the runtime bin of
the job. The average information gain between two distribution models � one
is created by the HMM that is run over all the jobs that started before the job's
submission, and the other is the distribution of runtimes of all the previous jobs
(meaning, all the jobs that have �nished till this job submission) � is used as
a metric for success of the modeling the distribution of a single job with the
HMM.

Another question before one models anything on-line is when to start the
learning process and when to stop it. Two options were used. One is running
the Baum-Welch some number of rounds each week. Another, more promising,
is running Baum-Welch till L1 metric convergence, meaning till the squared root
of the number of terminated runtime jobs multiplied by the L1 metric is less
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than the threshold; and restarting the Baum-Welch once the number of runtime
jobs grows bigger and the termination condition for the last L1 metric value is
not satis�ed.

Short jobs usually tend to end before the jobs with longer runtime, due to
their shorter runtime. The result of this is the fact that the short jobs contribute
their data and therefore a�ect the modeling faster, before the long ones. For
example, suppose that two jobs are submitted at submit time bin t−1, one long
and another one short; and both start immediately. At submit time bin t the
short job already �nishes and the long one still runs. Adding the short job alone
to the information base means inserting the information that the neighboring
submit time bin was a submit time bin populated with the short jobs; while
ignoring the currently running long job. Thus, currently running jobs must also
contribute to the modeling. We know that these jobs run longer than what
they have run so far; so this job doesn't belong to some short runtime bins. Its
contribution to the probability is the multiplication by Pr(r ≥ rnow|qt) � the
probability that job runtime is at least the current runtime. This probability
is modeled as the sum of probabilities of the runtime bins where this job can
belong. For simplicity, no interpolation was used.

The component that creates the model of a job's runtime is named a Pre-
dictor. The essence of the Predictor's interface includes three methods:

• submitJob() method indicates a job's submission. It returns the distri-
bution model of the runtime of the job.

• startJob() method indicates a job's start. This is required only for sup-
porting the previously described feature of including long jobs in consid-
eration.

• terminateJob() method indicates a job's termination. Only at this point
the exact information on the job's runtime is available. It is inserted into
the HMM's runtime sequence.

Some notes on the Predictor implementation: First of all, Baum-Welch and
distribution modeling procedures run on di�erent sets of data. Baum-Welch runs
on terminated jobs only. Meaning, the Observation sequence period ends before
the �rst non-terminated submission. This ensures that the learning is done
on exact data only. On the other hand, the distribution modeling procedure
runs on all the jobs that are already started. There are several reasons for
this decision. First is the fact that Baum-Welch tries to locate the optimal
model parameters to explain the complete Observation sequence and therefore
removing non-exact information from one end should not a�ect it much; while
the goal of the distribution modeling is to understand what happens right now,
and not some global model.

Another reason why this non-exact information is not used by Baum-Welch
is the simplicity � Baum-Welch is a special case of Expectation-Maximization;
and it is not clear how to reset the model parameters to maximize the log-
likelihood as required. Even if there is only a single job with submit time t0 and
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the runtime that belongs to either of the two last bins, the formula becomes very
complex: Log-likelihood is

∑
t,i,j γt(i)xj,t ln B̂ij +

∑
i γt0(i) ln( ˆBi,N + ˆBi,N−1),

when the left term is as previously, considering terminated jobs only, and the
right one inserts the probability of the running job. This means, for j = N −
1, N , meaning for the last two bins, the Lagrange multiplier technique requires∑

t
γt(i)xj,t

B̂ij
+ γt0 (i)

ˆBi,N+ ˆBi,N−1
= ci � the divisor of the second term contains multiple

model parameters, and this complicates calculations even for this degenerate
case. For the general case, this is hardly ever tractable.

In order to support this feature, the Predictor holds at each time an ordered
set of the submit times of the jobs that are currently in the system (more
correctly, it is a multi-set, since two jobs may arrive at the same time). The
Baum-Welch last submit time bin doesn't include any job in the system �
meaning, the end point is the minimal submit time bin of a job in the system.

Another issue is the fact that the Predictor may under some circumstances
decide not to return the distribution model on a job's submission. This may
happen due to two reasons: either there are not enough samples to learn from
� the Predictor doesn't start running Baum-Welch before all the jobs from the
initial period �nish (in this work, this period is one week long), or the current
model cannot explain something in the observation, and the model must change.
The last reason is since the data is not known from the start, and the initial
values may represent the training set pretty well; but they may su�er from
over-�tting.

The Predictor works in isolation from all the irrelevant items � all the
information it uses is submit, start, and termination times. Jobs' user and user
estimates attributes are not used. The Predictor-based scheduler may use the
user estimates as described later on, but the Predictor itself doesn't use it.

Consider the following scenario: The system runs for about a year, and some
new job arrives. The forward algorithm that is used to calculate the distribution
of the runtimes of the jobs in the current submit time bin (see [10]) in a regular
way would calculate all the αt(i) = Pr(qt = i, O1..Ot|θ). However, unless the
model changes, the recalculations for all the old submit time bins give the same
values. Therefore, saving the previous calculation results of αt(i) for all t that
don't contain running jobs may reduce the total runtime cost signi�cantly, since
they don't change (unless Baum-Welch changes the model parameters, but this
happens very rarely. However, it is important to remember to treat this special
case correctly).

Figure 4.1 presents the average information gain per week, and the global
average gain (as described earlier). The average gain is less than the performance
of the HMM when using the sequence gain. There are several reasons for this.
One is the fact that the information is not available always, and this explains
why the results are not very good for the �rst weeks; but this is not the only
reason for this deterioration in results. The most important factor in my opinion
is the fact that when predicting the runtime of the currently submitted job the
neighboring jobs (the jobs that were submitted recently before it) are still in the
system and their runtime is unknown. The nature of the HMM indicates that
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Figure 4.1: Average information gain during each week and globally (dashed
line). M = 16, tr = 1.8, ts = 15min, ε = 200
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neighboring jobs are similar in runtime; but it is unclear what are they similar
to. Therefore, the runtime of a job is modeled from some partial information on
the recent jobs, and better information on the earlier jobs (whose contribution
is usually less dominant).



Chapter 5

Distribution Models Usage in

Scheduler.

Previous chapters presented the framework for modeling the jobs' runtime distri-
bution. This chapter discusses the ways how this information can be practically
used by a scheduler. The scheme of proposed work is as follows

1. Choose an algorithm that knowing (or guessing) the runtime of a job can
improve the chosen metric.

2. Convert the algorithm to use the probability distributions instead of single
values.

In the traces of [6], for jobs that are canceled before they start, the runtime is 0
seconds and the number of used CPU's is also 0. Those jobs were removed from
the model. If a job requires more CPUs than the machine has, the requirement
is aligned to the machine size.

In order to avoid the in�uence of the runtime di�erences between the traces
I used waiting time for the performance metric. The system is a multi-user
system, therefore fairness is also an issue. Therefore, the L1-type metrics that
take the average or sum of all the jobs' metric values are not enough � a job
that su�ers from bad service is not compensated by the fact that in average the
jobs wait little in the queue. In order to present the complete picture of what
is going on for all the jobs the full CDFs of the waiting times are presented.

5.1 Algorithms that Use Predictions

There are many di�erent algorithms that use predictions or user estimates of job
runtimes, including EASY-back�lling and shortest-job-�rst (SJF). The problem
with using runtime predictions other than user estimates with back�lling is the
fact that the jobs may be under-predicted. Killing the jobs in this situation
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is highly undesirable, since the users have neither tools to avoid it nor indica-
tion that this is going to happen. Therefore, the only reasonable way to solve
under-prediction is postponing the reservation for the �rst job in the queue [4].
But there is no promise this postponing will ever stop, unless we forbid future
back�lling � the back�lled jobs may in their turn be under-predicted. The
same question arises when the predictions are initially set too large, like when
using doubling (or tripling, quadrupling and so on) [4]. If the system were a
single-user system, then this strategy would probably be good � it pushes for-
ward the jobs with less requirements (on average), so the average waiting time
is expected to decrease. However, since we are dealing with multi-user systems,
such an approach is insu�cient � it may appear extremely unfair.

In this work, however, I used EASY-back�lling as the base algorithm. Ac-
cording to [4], when the predictions are correct, the overall performance of
EASY-back�lling usually improves.

5.2 Using Distribution Models in the Scheduling
Algorithm

EASY-back�lling holds a queue of waiting jobs (ones that have been submitted
but have not yet started) ordered by their submission times. The steps of
the EASY-back�lling scheduling procedure, which is executed each time a job
arrives or terminates, are as follows:

1. As long as there are enough idle CPUs to start the �rst job in the wait
queue, remove this job from the queue and start it.

2. Given the �rst job in the queue that cannot start because of insu�cient
idle CPUs, �nd when the required number will become free and make the
reservation for this job.

3. Continue scanning the queue, and start (�back�ll�) jobs if they don't vio-
late this reservation.

However, the idea of the algorithm can be expressed more concisely. In fact, Step
2 is for performance improvement only. Steps 2 and 3 can be united as follows:
�Continue scanning the queue, and start jobs if this doesn't postpone the start
time of the �rst job in the queue� (assuming runtimes of jobs to equal their
user estimates). In EASY-back�lling, job runtime predictions (user estimates)
are used to decide whether starting a job will postpone the �rst queued job.
Therefore, the algorithm remains the same with the only change of back�lling
condition.

In base EASY-back�lling each job is assigned a single value of its predicted
runtime, and this prediction is used as the exact runtime in a very deterministic
way. But if we don't have a single-value prediction, but rather a distribution, it
is not possible to make such a decision in a deterministic way. Instead, there are
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many cases with di�erent probabilities that may contradict each other. There-
fore the algorithm receives a single parameter that is the con�dence probability
τ . The back�lling should happen if and only if the probability that the base
algorithm that works with single values would not perform back�lling is less
than τ ; meaning, the probability that the back�lling postpones the start of the
�rst job in the queue is less than τ .

For simplicity, it is assumed that the job runtimes are independent; meaning,
for each two jobs with runtimes R1, R2, Pr(R1, R2) = Pr(R1) Pr(R2) (although
the HMM works assuming it is wrong; as usual, here and everywhere, Pr(R1)
denotes the probability of random variable R1 to have its value). In particular,
this means that the event of the availability of CPUs at di�erent times due to
terminations of the currently running jobs and the distribution of the back�lled
job's runtime are independent.

Suppose the current time is t0; the termination time of the back�lled job
is te (if it is back�lled); c(t) is the number of CPUs that are released by the
currently running jobs before and including time t; and c0 and c are the number
of CPUs that must be released to start the �rst job in the queue and both jobs
respectively. The algorithm should back�ll i�

Pr(∃t ∈ (t0,te) : c0 ≤ c(t) < c) < τ

� the probability that there exists some time t before termination of the back-
�lled job when the number of released CPU's is enough to start the �rst job
in the queue but not enough to run both jobs, so the back�lling postpones the
start of the �rst job in the queue. Integrating over all the possible termination
times of the back�lled job we receive∫

Pr(te,∃t ∈ (t0,te) : c0 ≤ c(t) < c)dte < τ.

Since by assumption of job runtimes independence te and c(t) are independent,
this probability is∫

Pr(te) Pr(∃t ∈ (t0,te) : c0 ≤ c(t) < c)dte < τ.

The left factor in the integrand is modeled by the Predictor � it is exactly the
current time plus the runtime. The probabilities are modeled discretely, only at
the ends of the runtime bins. The right factor is much harder to calculate.

First of all, in order to calculate the right factor, we must calculate the
probability Pr(c(t) ≥ c) for any given time t and any given requirement c. The
probability of CPU availability given termination probabilities at time t of the
currently running jobs is calculated using Dynamic Programming, where the
probability that jobs 1..n released at least c CPUs (represented as Mt[n, c])
equals

Mt[n− 1, c] + (Mt[n− 1, c− cn]−Mt[n− 1, c]) · Pt[n]

� the left term denotes the case when the processors are idle without termina-
tion of job number n and the right term is the probability that the jobs 1..n− 1
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freed at least c−cn but not c, and the last job terminates (cn is number of CPU
used by job number n, and Pt[n] is the probability that job number n termi-
nates not later than t). The initialization of the Dynamic Programing sets the
obvious values: ∀c ≤ 0,Mt[∗, c] = 1 � the number of released CPUs is always
a non-negative number; ∀c > 0,Mt[0, c] = 0 � zero jobs release zero CPUs, no
more. In the algorithm implementation, these values may be calculated on-the-
�y; for instance, if c < cn (the number of required CPUs is smaller than the
number of CPUs used by job number n), then Mt[n − 1, c − cn] doesn't exist
in the real matrix, because the index is negative: c− cn < 0; but can easily be
substituted by 1, and Mt[n, c] = Mt[n − 1, c] + (1 − Mt[n − 1, c]) · Pt[n]. (By
the way, this means that Mt[n, c] = 1 − (1 − Mt[n − 1, c])(1 − Pt[n]) � this
is the probability of disjuction of two independent events: either jobs 1..n − 1
release c CPUs, or job n terminates. Indeed, in this case the required CPUs
cannot be cumulated from di�erent jobs). If n is the number of running jobs,
then Pr(c(t) ≥ c) = Mt[n][c].

This requires calculating the probabilities of running job terminations be-
fore or at the time t (denoted earlier as Pt[]). For this goal a new concept of
a probability event is introduced, and each such event represents the possible
termination of a job. Because our data has been discretized, the job runtime
probabilities are estimated only at the ends of the runtime bins. The upper and
lower bounds of job runtimes are the user estimate (since the job is killed after
it; this is used even before the job starts) and the current runtime of the job
(currentTime-job.startTime). Log-Uniform intra-bin interpolation is used.
Algorithm 5 presents the recalculation procedure for the runtime bin probabil-
ities. Line 3 receives the job distribution model as proposed by the Predictor
(reminder, N is the number of the runtime bins, and j = 1..N is the index of
a runtime bin). Lines 9-12 ensure that the new runtime bin boundaries sat-
isfy the old bin boundaries and global boundaries. If the runtime bin doesn't
intersect the global boundaries then newBinStart==newBinEnd and therefore
new_p[j]=0. Lines 13-15 recalculate the probability measure remainders after
Log-uniform interpolation.

After all the probability events are inserted to a list and sorted by the time,
one can easily calculate the vector of termination probabilities at time t.

Let A(t) be the event that t is the real start time of Q[0] (the �rst job in the
queue) without back�lling, and the back�lling of the job breaks the reservation.
This means that

A(t) = (t ∈ (t0,te)) ∧ (∀s < t, c(s) < c0) ∧ (c0 ≤ c(t) < c)

� t is before the end time of back�lled job and t is the �rst time when the �rst
job in the queue can start but only if this job isn't back�lled. Therefore, the
back�lling should happen i�

Pr(∃t ∈ (t0,te) : A(t)) < τ ⇔
∫ te

t0

Pr(A(t))dt < τ

� the events are disjoint, therefore the total probability is the integral of prob-
abilities. The problem is to calculate Pr(A(t)).
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Algorithm 5 Runtime bin probability recalculation

1 double[] recalculate(Job job)

2 // old model

3 double old_p[N] = job.model;

4 // new distribution model

5 double new_p[N];

6 double upperBound = job.userEstimate;

7 double lowerBound = currentTime-job.startTime;

8 for each runtime bin j do {

9 double newBinStart =

10 max{bin[j].start, min{lowerBound, bin[j].end}};

11 double newBinEnd =

12 min{bin[j].end, max{upperBound, bin[j].start}};

13 new_p[j] = old_p[j]*

14 (log(newBinEnd )-log(newBinStart )) /

15 (log(bin[j].end)-log(bin[j].start));

16 }

17 normalize(new_p);

18 return new_p;

19 }

Suppose t ∈ (t0,te). Let us change the de�nition of t to be discrete time (in
any units). Due to the monotonicity of c(t), Pr(A(t)) = Pr(c(t− 1) < c0 ∧ c0 ≤
c(t) < c). If c(t) ≥ c or c(t − 1) ≥ c, then c(t) ≥ c0, since c > c0 and c(t) is
monotonous (see Venn diagram in Figure 5.1). Therefore,

Pr(A(t)) = Pr(c(t) ≥ c0)− Pr(c(t− 1) ≥ c0 ∨ c(t) ≥ c) =

= Mt[n][c0]− Pr(c(t− 1) ≥ c0 ∨ c(t) ≥ c).

But in the right term, both events in the disjunction don't imply each other, so

Pr(c(t− 1) ≥ c0 ∨ c(t) ≥ c) =

= Pr(c(t− 1) ≥ c0) + Pr(c(t) ≥ c)− Pr(c(t− 1) ≥ c0 ∧ c(t) ≥ c) =

= Mt−1[n][c0] + Mt[n][c]− Pr(c(t− 1) ≥ c0 ∧ c(t) ≥ c)

The last term is pretty hard to calculate. However, it has a lower bound
of Mt−1[n][c] � the probability that before the last event there were enough
CPUs to run both jobs (which implies c(t− 1) ≥ c0 and c(t) ≥ c). Using all the
above considerations leads to the bound

Pr(A(t)) ≥ (Mt[n][c0]−Mt[n][c])− (Mt−1[n][c0]−Mt−1[n][c])

The sum of these lower bounds is the telescoping series; and since the �rst
item equals 0 (because initially the number of CPUs is less than c0), the total
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Figure 5.1: Explanation of the Pr(A(t)) formula. The big ellipse represents
the event that there are enough CPU to run Q[0] at time t � c(t) ≥ c0. The
left circle represents the event of enough CPU at time t − 1 � c(t − 1) ≥ c0.
The right circle represents the event of having at time t enough CPU to run
both jobs � c(t) ≥ c. Both last two events imply the �rst event; but their
interdependence is not simple. The goal is to measure the �lled area outside
the circles. The problematic area is the intersection of the left and right circles.
The solution is to calculate the smaller area of c(t − 1) ≥ c, represented as a
black ellipse in the intersection.

sum is Mte−1[n][c0] − Mte−1[n][c]. But although each of Mt[n][c0],Mt[n][c] is
monotonically growing as a function of t, their di�erence is not monotonous;
while all Pr(A(t)) ≥ 0, and their sum is monotonous. This means, we have a
tighter bound of ∑

t∈(t0,te)

Pr(A(t)) ≥ max
t∈(t0,te)

{Mt[n][c0]−Mt[n][c]}

To summarize, EASY-back�lling with distribution models works as follows:
The scheduler back�lls i�

∑
te

Pr(te) maxt∈(t0,te){Mt[n][c0] − Mt[n][c]} < τ �
the probability that such time exists is less than the threshold.

Algorithm 6 presents the simpli�ed pseudo-code of the EASY+HMM back-
�lling scheduler. Some notes on implementation. The result variable is monotonously
growing, so once it is bigger than the threshold the total result is false for sure,
so no further calculations are run. The pMax variable is also monotonously grow-
ing. This means that if the remaining runtime bin probability multiplied with
the current pMax together with the current result are bigger than the thresh-
old, it is also enough to stop calculating and return false. These improvements
are very important, since the scheduler runs on-line.

If the Predictor returns no runtime prediction (as you might remember, it
is one of the options), then the single probability event is inserted, which is
the user estimate with probability of 1. If this is the case for all the running
jobs, then the algorithm works exactly like EASY without an HMM: All the
Probability Events come from the running jobs' terminations by user estimates,
and therefore the algorithm works in a very deterministic way.

5.3 Results

In this work, the threshold used was τ = 0.05. HMM parameters were set
as follows: M = 16, ts = 15min, tr = 1.8, no load modeling, Static-IV, L1
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Algorithm 6 The test of EASY-back�lling that uses distribution-based predic-
tions.

bool shouldBackfill(Job job) {

List events =

<the list of probability events,

sorted by time>

int n = <# of running jobs>

double P[n];

// max(t){M[n][c]-M[n][c0]}

double pMax = 0;

double result = 0;

int c0 = <# of CPUs that must be idle to run Q[0]>

int c = <the same, to run both jobs>

for each j=runtime bin do {

for each e in events before bin[j].end do {

P[e.job] += e.probability;

<calculate M using Dynamic Programming, given P>

pMax = max{pMax, M[n][c0]-M[n][c]};

}

result += job.model[j]*pMax;

}

return result < THRESHOLD;

}

Trace name EASY EASY+HMM

CTC SP2 21.3 min 18.1 min -15.2%
SDSC SP2 364 min 373 min +2.6%
SDSC Blue 131 min 105 min -19.5%
KTH SP2 114 min 113 min -0.6%
Total -8.7%

Table 5.1: Arithmetic mean of waiting times.

Trace name EASY EASY+HMM

CTC SP2 28.2 sec 25.3 sec -10.1%
SDSC SP2 639 sec 635 sec -0.7%
SDSC Blue 203 sec 135 sec -33.6%
KTH SP2 181 sec 147 sec -18.9%
Total -16.7%

Table 5.2: Geometric mean of waiting times.
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Figure 5.2: EASY+HMM vs. EASY, CDF of waiting time. The arrows show
the jobs that enjoy from addition of the HMM.
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convergence criterion, ε = 200. Figure 5.2 compares the EASY scheduler with
the probability-based scheduler. The X-axis is the waiting times of the jobs in
logarithmic scale, and the Y-axis its CDF. The CDF doesn't start from 0, since
there are jobs that don't wait in the queue at all. The arrows represent the jobs
whose waiting time improved due to the HMM � this is the interval where the
dashed line (EASY+HMM) is left of the solid line (EASY).

The conclusions of this chart is that usually most of the jobs are better o�
using the HMM. Note that the x-axis is logarithmic, with a very small scale
� it changes 2.5 · 106 times. Therefore, when the line moves left even for a
little, this may represent an improvement factor of 2. Also, it looks that if the
job started waiting, it usually waits for at least 10 seconds. Another �nding �
there is place in the chart where the line is almost straight. This means that the
waiting time distribution at some intervals is close to a log-uniform distribution.

Tables 5.1 and 5.2 show the improvements of metrics � arithmetic and geo-
metric means of wait times (note that the calculation formula for the geometric
mean is exp(

∫
f(W ) ln max{W,Wmin}dW ), where W is the job's waiting time,

f(W ) is its PDF and Wmin is the commonly used threshold of 10 seconds, see
for instance [4, bounded slowdown formula]. Therefore, the improvement in the
geometric mean metric value is exactly the area between the lines of the chart
that are right to W = Wmin).



Chapter 6

Conclusions

Locality First of all, neighboring jobs are similar in their runtimes. The main
cause for this is indeed the temporal locality of user sessions. But even if one
knows the user of the job, knowing its submit time is still important. It seems
that at di�erent times the same users submit di�erent jobs to the system.

However, it looks that in order to learn runtime information from the jobs,
one should use imprecise but quick adaptation. This adaptation must derive
from a small number of jobs, and this restricts the level of detail. Of course,
when the required level of detail rises the required learning time should increase
as well; but this gives less accurate predictions, since the system and its jobs
change very quickly.

When measuring the locality, it is important to leave the data �as is�, without
clustering with K-Means (or any other learning algorithms). Simple binning is
more preferable, both due to simplicity and since it doesn't learn (and therefore
doesn't �hide�) information.

HMM Hidden Markov models can learn a major part of the information on
the jobs' runtimes. A variety of models was suggested and tested. The con-
clusion is that although there are some common guidelines, every application
should use the model that is appropriate to its needs. For instance, if all the
application should know is the runtimes of the jobs, then it is more desirable to
remove the load from the model.

HMM's Baum-Welch procedure locates the optimal state interval length.
Therefore, submit time bins usually should be short for better resolution (usu-
ally, not longer than 30 minutes). The runtime bins should be set together
with the number of the HMM states. HMM states must be able to tell enough
information.

Usage of static initial values include no initial over-�tting. Note, however,
that setting some initial values may be very far from the real world; therefore
it is usually wise to update them when recognizing that they are very far.

The states of HMMs were thoroughly characterized. Choosing the correct
model is a crucial issue. An incorrect load model, for instance, may degrade the
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results sharply. This work found that a Geometric distribution of state duration
intervals and submit time loads is usually appropriate.

A possible use of the HMM may be creating the workload by pattern re-
construction. This way, given a trace, one may use the HMM to extend it
with Pattern Generation techniques. This may be a future research direction of
HMM usage.

Another future research direction is di�erent static initial values. For in-
stance, instead of focusing on di�erent runtime bins, they may focus on dif-
ferent means of runtime bin number. In this case, the initial distribution of
state i might be the maximal-entropy distribution with a speci�ed mean µi.
The maximal-entropy distribution for a given mean satis�es Bij = cip

j
i for val-

ues of pi, ci that satisfy
∑

cip
j
i = 1 and

∑
jcip

j
i = µi. This is the �default�

distribution for a state with a given mean of runtime bin number, due to the
maximal-entropy principal. Thus, the states will expect the jobs with some
means, and not concentrate on speci�c bins.

Scheduler Before using the HMM within the scheduler (or any other on-line
algorithm), one must remember that the HMM model cannot apply as is to
everything in the same manner. One challenge when using HMMs is the fact
that the HMM gives the probabilities for observation sequences (in our case,
runtime sequence) and not for a single observation (a single job's runtime). This
causes deterioration in results when modeling a single job's runtime. Also, some
schedulers should distinguish between the jobs that are usually neighboring in
time. For instance, the shortest-job-�rst algorithm should run the job that is
the shortest of the currently waiting ones. But if two jobs are both submitted
in the same submit time bin, then their distribution models are very close to
one another (in fact, they should equal; the di�erence is an artifact of the
modeling times). Therefore, for some algorithms the HMM model should be
used very carefully. This indicates a possible future work direction, where the
model includes not only the submit time, but also other job parameters, like
the submitting user. Note, however, that there are much fewer jobs per a user,
and thus the model must be simpler.

The work demonstrates usage of the HMM with the EASY-Back�lling al-
gorithm. The overall algorithm performance improves almost for all the traces
for the majority of jobs. Another future research direction maybe using the
HMM with other algorithms. For instance, shortest-job-back�ll-�rst [4] may be
converted to use the distribution model. Another important issue is selecting
the metric for resource availability time predictability.
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