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1 Introduction

1.1 Parallel computing

A parallel system is a system which utilizes multiple computing units concur-
rently to solve a computational problem with each computing unit working on
a part of the problem. In order to solve these problems the computing units
are engaged in doing calculations locally and in exchanging data with other
computing units. In the past, parallel systems used to be built using a propri-
etary hardware. This hardware was responsible for the communication between
the computing units and for the computation itself. The communication was
based on a shared memory model or on a distributed memory model. In the
shared memory model computing units share a common address space. In the
distributed memory model computing units operate in a disjoint address spaces
and exchange messages to interact with one another. Today, however there is
a tendency to build many parallel systems with standard building blocks. This
is done by using a regular PC as the computing unit and using a LAN (local
area network) for the communication. This model is also referred to as NOW
(network of workstations). The strength of a parallel system is measured as
a combination of the strength of the computing units and the strength of the

network.

1.2 Interconnecting network

It is trivial that the overall performance of a parallel system will be poor if the
computing units are not strong enough. It is also agreed that the performance of
the interconnecting network has a very large impact on the overall performance.
In many parallel computations vast amounts of data are exchanged between dif-

ferent nodes of the system. Therefore , network performance is a key issue in



the overall performance of parallel systems. The standard building blocks for
computing units (usually Pentium CPU’s) are quite satisfactory and exponen-
taly improving according to Moore’s law. However, in the network area the
situation is different. The standard building blocks for networks do not supply
the desired performance in terms of bandwidth. For example, a regular 10/100
Ethernet network can slow down a system that works on large N-body prob-
lems. One of the solutions to this low network performance problem is to use
optical networks. Optical network have large bandwidth, orders of magnitude
greater than the bandwidth of copper wire or coax [6]. Another problem solved
by optical networks is the wire diameter. In a system holding thousands of links
the wire density becomes more critical. Optical networks use optic fibers which
have a much smaller wire diameter in comparison to regular copper coax cables

as in Ethernet.

1.3 Optical networks and optical switches

The biggest advantage of optical media is the capability of supplying very large
bandwidths between two points. Unfortunately , fully connected networks are
too expensive and not feasible, so some sort of switching must be carried out.
Switches for optical networks are not as developed as switches for electronic
networks. In electronic networks we can use regular switches and routers in
some hierarchy to achieve efficient switching. In optical networks there is no
standard switch/router available. Instead there are two main options. One is

to use electronic switching and the other is to use optic switching.

In electronic routing the laser signal is transfered into electronic form, switched,
and then transfered back into a laser signal. In this way the full potential band-
width of fiber links is largely unused. Large portions of bandwidth are wasted

due to the "electronic speed bottleneck" imposed by the relatively slow elec-



tronic switches and modulation technique [9]. Another option is to use optical
switches, which do not require optoelectronic conversion of the data and sub-
sequent regeneration. Many of the shortcomings of electronic or optoelectronic
networks can be avoided by using all-optical networks, in which data is main-
tained in optical form throughout the transmission. This work is based on such

an optical switch.

In both options of switching the network can be based on circuit switching
or packet switching. When using optical switches, circuit switching is more
popular. In packet switching the switch’s hardware should parse the header of
an incoming packet in order to compute the destination of the next hop. Parsing
a header of a packet in optical form imposes technical difficulties in the current

technology [5].

1.4 WDM ( Wavelength Division Multiplexing )

Most optical networks take advantage of the WDM approach. WDM consists
of simultaneous transmissions on multiple wavelengths on the same fiber. Each
signal travels within its unique color band. One fiber can hold up to 40-80
different wavelengths (as published for example by leading companies Lucent
and Nortel networks). Each node holds at least one optical receiver unit and
one optical transmitter unit. Either the receiver or the transmitter must be
tunable. Usually the receiver unit is tunable. Let’s assume from now on that
this is the case. An additional control network is required to control the tuning
of receiver units in each node. The control network is usually an electronic one

since it requires only low bandwidth [4].
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1.5 Current optical network topologies

This overview will concentrate on the WDM technology since this technology
is conceptually similar to our technology. Another technology worth mention-
ing is SONET which uses TDM(time division multiplexing) and is pretty much
a standard in optical networking [2]. There are several companies who are
working on optical switches like Lucent and Nortel networks. Lucent’s Aurora
switch is an example of a switch capable of optical layer restoration, dynamic
wavelength management and network gateway functions. (http://www.lucent-
optical.com/solutions/products/aurora_optical switch). There are several stan-

dard topologies for using WDM over optical networks:

1. passive star coupler: Each node is assigned a single distinct transmis-
sion wavelength, and each node has a tunable receiver. When one node
wishes to transmit to another node in the network, the destination node
tunes its receiver to the transmission wavelength of the sender, using the
control network. The sender transmits at its assigned wavelength, and
the passive star coupler broadcasts the signal to all of the nodes in the
network. Only the receiver listens for this wavelength and collects the
message. Broadcast and select networks of this model are problematic for
two reasons. First, such networks waste optical power, since the power of
each transmitted signal is divided evenly between all of the nodes in the
network. Second, each node requires a distinct transmission wavelength,
so the number of nodes is limited to the number of available wavelength

channels. Broadcast and select networks are not scalable for this reason.

2. wavelength routed network: a signal at a particular wavelength is
routed directly to a specific destination, instead of being broadcast to the

entire network. This both eliminates unnecessary divisions of the signal
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power and also allows a single wavelength to be used simultaneously in
multiple, non-overlapping parts of the network. This method can be used
with fixed routing without optical switches or with optical switches and a
reconfiguration method of the optical transmitters. Such networks require
the use of one or more controllers in order to configure the routers, so
wavelength routed networks are more complex than their broadcast and

select counterparts.

3. Hybrid: use wavelength routed network to connect small LANs which

are built of passive starts.

1.6 Owur work

Our work is based on an optical switch which is developed in the Applied Physics
department of the Hebrew University. This switch is a generic switch based
on the concept of Electro-Holography(EH). The optical switching is done in a
unique way (presented later) which differs from the current market solutions.
Most current solution involve WDM with it’s drawbacks. Our network does
not use WDM, thus overcoming the known problems of limited wavelengths,

complexity, loss of light power, etc as explained in section 1.5.

However, this switch has it’s drawbacks too. The switching time is relatively
large, broadcast can not be used and multicast is limited to a small number of
nodes. In this work we design network topologies and communication algorithms

that can make the most out networks based on this switch.
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2 The physical model

2.1 Overview

The system consists of computing nodes that are connected via an optical fiber
to one central optical switch. All the nodes are also connected together by
an electronic control network such as Ethernet. The switch is electronically
controlled by the control station. The switch is based on a KLTN crystal in
the paraelectric phase, which enables to turn on and off a hologram by applying
different voltages to the crystal. The switch configuration is determined by
which hologram is activated. Writing the holograms is done in advance when

the switch is created.

The system sketch is shown in figure 2.1. Following is a description of each part

of the system:

Nodes: a PC, and preferably an SMP. If the node is an SMP, one processor
can be dedicated to the communication and the other can be dedicated to
the actual computing task. These nodes are also connected via a regular

network card to an Ethernet network.

e AMCC: a PCI card that functions as a device that can read/write data

from the optical network.

e FIFO: a component that performs buffering and adjustments of the clock

between the PC and the BCP.

e BCP: a component that performs a translation between the electronic
media and the optical media. It can translate electronic signals to optical

signals and vise versa.

13
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Figure 2.1: Overview of the physical system

e Optical switch: a crystal that has holograms written on it. Light that
passes through this crystal is routed according to the current hologram

configuration.

e Control station: A PC that is responsible for controlling the switch. It
can change the configuration of the switch by sending commands to the
switch using an RS232 connection. This station is also connected to the

nodes’ Ethernet.

e Ethernet network: the control network. The nodes can either request
configuration changes from the control station or receive the new con-
figuration information from the control station as an Ethernet broadcast

message.
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Figure 2.2: The configuration when node ¢ sends to node ¢ + 1

2.1.1 Examples for configuration changes

Following are examples of possible configurations of the switch. In figure 2.2 the
switch is configured such that each node can send messages to the next node.
In figure 2.3 each node is configured to send data to the node that is after the

next node.

2.2 Specific physical system properties

This system differs from other system that have optical switching in the way
the switch configuration is controlled. In this system the switching is controlled
by applying different electric voltages to the crystal. These voltages turn on
and off holograms written on the crystal. The holograms define the switching.
Unfortunately, this electroholographic effect has an undesired side effect. The
voltage can be applied instantly on the crystal, but the new hologram is not

instantly ready. It takes some time for the new hologram to stabilize on the
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Figure 2.3: The configuration when node 7 sends to node i + 2

crystal. Messages that are sent in this period of time using the routing that
has just changed might not reach their destination. The final result of such a
send operation is unpredictable. The amount of time it takes for the switch
to stabilize is in the scale of several milliseconds (up to 10 ms) and is the
main drawback of this system. As a result of this fact, configuration changes
are a costly operation that should be avoided as much as possible. Our work

concentrates on this issue of avoiding configuration changes.

Another issue that is connected to the optical media is that the system needs
some bus mastering. Potentially, a switch configuration can be set in such a way
that one node can receive messages from several other nodes. In this context,
those nodes are on the same bus. The bus mastering method should insure
that no node will receive more than one message at a time. This requirement
is mandatory since in an optical media messages are received as light signals.
In case two messages are sent to the same node on the same time, the receiver

will get a combination of the light signals of both messages. It is impossible for
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the receiver to decode such a message. Each node can only send one message
at a time so from this aspect there is no problem. It is left to synchronize
different nodes not to send messages to the same node. Our work also includes

synchronization methods of this sort.

Finally, there are two main advantages to this system over other systems. The
first is the bandwidth of this network. Optical media have a very large band-
width in the scale of many giga bit per second for each fiber. The second
advantage is the optical switching. The switching is done solely in the optical
medium. No translations to electronic form back and forth are needed. These
two factors are the main advantage of this network. It should be noted however,
that the switching is done based on a configuration and not on the contents of a
specific packet. Therefore, this network is only appropriate for circuit switching

and not for packet switching.

2.3 Switch structure

In this discussion and in the whole work the switch is treated as a single “black
box” with a defined interface that enables changing its internal configuration.
In this section we will provide a brief description of the internals of the switch.
In the rest of our work, there will not be any more reference to the exact

implementation.

The beam that reaches a single crystal can be either diffracted or sent directly
ahead. This is the basic building block of the switch. This basic structure is
used as a single unit in the construction of more complex topologies. Hence,
these topologies can support switching between many nodes. There are two
main alternatives for these complex topologies: multi stage and crossbar. An
example for a multi stage topology can be seen in figure 2.4. This figure demon-

strates how to construct a multi stage network that can support 64 nodes. A
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15 Ghivsee Fiber Oplic

Figure 2.4: Example for building the switch with a multi stage topology

multi stage network requires O(n*log(n)) units. In a very large system this is a
clear advantage over the crossbar that needs O(n?) units. Ideally, we would like
each node to be able to send messages to any other node in the system. This
switch configuration can be represented by a permutation (when we do not use
multicast). However, some variants of multi stages network can not support all
possible permutations. An example of a multi stages network that can support
all the possible permutations is the Benes network. This network is constructed

by setting up two butterfly networks back-to-back. Even though the Benes net-
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work can support any arbitrary permutation, it is relatively difficult to calculate
the exact “wiring” of each switch that matches a certain permutation. More-
over, even a local change in the permutation of the switch might cause a global
change in the topology. In this sense a cross bar topology is superior. A cross
bar can support every possible permutation and a local permutation change can
remain as such. On the other hand, a crossbar is much more expansive in the

number of units in large systems.

2.4 The current status of the physical system

The current system is in its prototype stage. It consists of four nodes and a
controller machine. The prototype’s switch is implemented using a cross bar.
Two kind of tests were performed on the system. The first one is a basic test
of the optical part. The second one is a full system test. In the first test, the
optical switch and the BCP’s connecting to it were checked. A bit generator was
connected to one of the node’s BCP. The bits generated were passed through
the switch and directed to another node. The other node displayed the data
received using a logic analyzer. An electric voltage was applied to the switch
which functioned correctly and redirected the generated bits to a different node.
This test worked fine and is fully described in the article [8]. The second test
is in its working phase. Until the time of the writing (8/2000) the system
managed to transfer a packet of data from one PC to another PC. The switch
was configured on a certain permutation, which was set from the control station.
The packet that arrived on the other side contained errors that were resolved
using a forward error correction scheme. These errors are induced by problems of

clocking synchronization and will be hopefully fully resolved in the near future.
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3 The formal model

3.1 Model intuition

The components of our real optical system are limited by the current hardware
we managed to purchase under financial limitation. They are also limited by
the amount of time that the physics department could spend working on this
development. The formal model described in this section is free of those limita-
tion. We have based it on the physical one but extended it with many features.
We believe these features can be implemented with the proper resources. We
have also let ourselves take several simplifying assumptions to make the model

practical for calculations. These assumptions are presented below.

3.2 Model overview

Similar to the physical model the system consists of several independent comput-
ing units (referred to as nodes), an optical switch, and a regular control network.
Each node is connected to the optical switch through two links, one dedicated
for transmit and the other dedicated for receive. The nodes are also connected
to each other over some electronic control network. As explained in the previous
chapter the optical switch is set with a specific configuration. A node is capable
of doing the following tasks: local computations, sending a request for a switch
configuration change on the control network, and sending packets on the optical
media to other nodes. The optical network supports both unicast and limited

multicast packet delivery. The control network supports broadcast as well.
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3.3 Model terms

e Switch configuration - noted by C = (a0, @1, @2, .. , @i, .. , Q5 , ...
, an ) , such that without multicast support by the switch Vi , 0< i<N: a
packet sent by node i will by directed by the switch to node «; . This will
be also noted by : C(i) = a; . C should also hold Vi,j : i # j = a; # «; .
For simplicity matters we will use the same notation to indicate a switch
configuration that supports multicast. However, in the multicast version
with multicast size m, «; — (i, i1, ... , Im ). In this case, a packet sent
by node i will be directed by the swith to the nodes i,, iy, ... , i, and all

these nodes should be different.

e Local configuration set - a switch configuration change that is triggered
by a request of the format CSet ( i, k ). After the change the new
configuration is Cpew = (@ 5 oo , @1 , kK, @j31 , ... , an ). A global

configuration set consists of several local configuration sets.

e Local configuration exchange - A switch configuration change that is
triggered by a request of the format CEx (i, j ). After the change the
new configuration isCpew = (@0 , @1 , Q2 , oo , O, oo , QG 5 ... , QN
). A global configuration exchange consists of several local configuration

exchanges.

e Forwarding - Lets consider C for which C'(i) = j and C(j) = k. Under the
limitation of C node i can only send packets directly to node j and node j
can only send packets directly to node k. In the case where node i wants to
send a packet to node k it can either change the global configuration or use
node j to receive the packet and deliver it to node k. The latter is called
forwarding. Forwarding can be done with any number of intermediate

nodes, and is not limited to only one node as in this example.
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3.4

3.5

Model variables

N : the number of processes.

M : the multicast size. M can hold several values. Usually we will use
M=1 but in some advanced algorithms we used M=3 and explicitly stated

s0.
T, : the amount of time it takes to change a configuration.

T, : the amount of time it takes to transmit/receive 1 byte. T} includes
the overhead of the application. For a transmit operation T is measured
from the time the transmitted byte is still in the application layer until
the time that same byte gets to the optic wire. For a receive operation T}

is measured exactly in a reverse manner from the transmit.

T : Time to transmit/receive 1 byte using forwarding. ( See explanation

below )

Ty : (Tp - Tf). The difference between a regular byte transfer to a

forwarded one.

Model assumptions

There exists some k such that N — 2*¥. We have limited our research to
systems with number of nodes that is in the scale of from about 50 to

about 2000.

Setting a configuration is an operation that once started, finishes after a
fixed period of time. The operation consists of the request ( T ), the oper-
ation itself ( T ) and a constant waiting period until the switch stabilizes

into the new setting ( T3, ). Therefore T, = T, +Ts+Ty,. First, we assume

22



that the configuration set itself is the only atomic action, since it involves
setting the switch’s hardware. The other two actions can be overlapped
in time with similar actions made by other nodes. For example, if the
switch got several requests for changes then each requesting node should
waits for it’s local configuration change to stabilize. Those waiting nodes
are waiting in the same time. Second, we assume that Ts is smaller by
several scales than Tr and Tw. More formally Ty <« T, + T}, and therefore
T. =~ T, + T, which are both not atomic. We conclude that setting a
global configuration which consists of k local configuration changes, takes
about T, time instead of k * T, , because all the non negligible operations

can be overlapped in time.

We assume that it takes the same time to receive one byte as it takes to

transmit one byte.

The control network is a broadcast/select network like Ethernet. Each
node is capable of listening to all the traffic on the network, even if that
traffic is not sent to it. Since configuration changes/exchanges are sent over
the control network we can assume that every node can trap those requests
and deduce the current switch configuration. Therefore we assume that in
any point in time every node is fully synchronized with the current switch

configuration.

There exists some external synchronization method that can be used to
run a command almost simultaneously on all nodes. Such a method can
be implemented by using the control network with a barrier for example.
Then we can assume that all the global operations, like broadcast, global
exchange, etc. are operations in which each node simultaneously calls a
library routine to perform this task. Thus, each node already knows at

the beginning of the execution of the library routine what it is supposed
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to do without having to wait for a packet from the network to trigger an

action.

e In several protocols that do not involve global actions we assume a differ-
ent method for global synchronization. The synchronization is achieved
by sending a pulse to all the nodes every fixed time period. This pulse can
be sent by a special hardware and wiring. For example using a machine
that has direct connections to all the nodes communication ports. This
machine can send a special signal on all the communication ports to in-
dicate a synchronization point. The same effect can be achieved without
additional hardware. A broadcast message can be periodically sent on the
control network by a dedicated machine. This message can indicate the

synchronization point.

3.5.1 The Forwarding Unit

Forwarding is assumed to be a very quick action in comparison to regular send
and receive. More formally Ty << Tp. This assumption is correct in the
following scenario. Forwarding is handled by a special hardware which we will

refer to as a forwarding unit (FU) [ Figure 3.1 |.

The node’s network interface card (in the physical model the AMCC card) will
be referred to as the NIC and the unit which translates the optical media to
electronic one (in the physical model the BCP) will be referred to as the O2E
unit. We will place the FU between the node’s NIC and the E20 and O2E units.
Every packet that is sent to a specific node is first passed through the node’s
O2E Unit and only from there it reaches the network. Every packet that is
received by a specific node is first passed from the network to the E20 unit and
only then it moves to the node’s NIC. The FU job during a receive operation

is to intercept every packet, examine its header and decide on the fly whether
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Figure 3.1: The Forwarding Unit

to deliver it to that node or to return it back to the network. A packet that
is delivered to that node is passed directly to the NIC. A forwarded packet is
moved to outgoing buffers on the FU itself (explained in detail below). That
packet is then translated back to optical form and from there to the optical
switch. The NIC holds it’s own buffers so whenever it is blocked, outgoing
packets are saved locally on the NIC to be later transmitted when the bus is
free. In the opposite direction packets are delivered from the NIC to the buffers
on the FU and from there to the E20 unit which translates the packet to optical
form and sends it to the switch. The implication to the overall performance is
minimal. A packet that needs to be forwarded is moved back to the network
almost instantly, because the comparison is on the fly and because of the higher
priority of the FU. From the point of view of the NIC the overhead is also
minimal since it only adds a buffering layer which can consume packets much

faster then the NIC can produce.
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The last packet sent out of the FU is not thrown away until a new packet
arrives. This mechanism enables the corresponding node to forward the same
message to different nodes with only part of the operating system overhead.
Without this mechanism a node, for example A, which wants to forward a
message to B and C would have to do the following tasks : forward an incoming
message and deliver it to the operating system, once the operating system has
received the whole message it can request a configuration change, only after the
configuration change occurred pass the whole message again down the stack and
forward it. In the new mechanism, once the header of a message is delivered
up the stack a request for the configuration change is done. In the mean time a
direct small command is sent back down the stack to reach in a safe time after
the configuration set is over. This new command instructs the FU to forward
the last message again, but this time, since the switch configuration is different

it will be forwarded to a new node.

We assume extra functionality in the FU to support efficient broadcast. There
is a special broadcast bit in the header of each incoming packet. If this bit is
off then the functionality of the FU is the same as described above. If this bit
is on then every incoming message is also passed to the upper layers and in the
same time forwarded ahead ( the FU is a hardware component that is capable
of doing so). In this way, a message can be forwarded from one node to another,
and also get delivered to all the nodes in the forwarding route. A problematic
point in this approach is that we need some method to stop the forwarding of
a message. Two methods are suggested. The first is based on the broadcast bit
and the node’s address. We can instruct the FU to forward a broadcast message
only if the message destination is not the current node. For example in a ring
topology, we can issue a send from 0 to N with the broadcast bit on. Each node

will forward it to the next one, until the last node will stop the forwarding. The
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second approach, that was finally chosen for presenting broadcast algorithms,
is based on TTL (time to live). In each message we have a TTL field. In each
hop the value in the TTL is decreased by one and when the TTL value is 0
the message is not forwarded any longer and is dropped. The initiator of the
broadcast should put the correct value of the TTL so the message would get to
the correct nodes and not beyond it. It is possible to assign a correct value for
the TTL field in every algorithm that is deterministic, since we can know the
exact route of each message. It does not matter which approach is chosen, they

are both correct and analogous one to the other.

One last point that should be noted is the buffer management on the FU. These
buffers can be filled by the node’s NIC and by the FU itself. Therefore, accessing
those buffers will require some initial handshake to insure that in any time only
one entity will fill the buffers. An entity filling the buffers will be entitled to
fill one entry at a time. Each entry will require a new handshake. The FU
has a higher priority than the node’s NIC over this bus. If both units (the FU
and the NIC) are competing on the privilege to transmit on this bus then the
FU will be the one to get this privilege. The NIC will be blocked until the
FU finishes. We can of course limit the number of times the NIC is blocked
to prevent starvation. The FU has priority over the bus in order to minimize
the amount of time a packet is traveling on the network. We must first handle
packets that are already on the network before we produce more packets and

put them on the network.

3.5.2 Assumptions results

From the behavior of the FU we can assume Ty will be in the order of few
microseconds. A regular send/receive of a byte that should pass all the network

stack of the operating system should take at least two or more orders of time
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longer then forwarding. Therefore : Ty << T, . The switch takes about 10
milliseconds to stablize so we can conclude that T,>>T} . The size of a message
can vary from 100 bytes to 1k and more. Considering these numbers we can
assume that in the time that a configuration is set something between 10-100

messages can be forwarded ahead, without any more configuration sets.

3.6 Objectives

We are interested only in the performance of the optical network. Our goal
is to find specific network topologies and algorithms that would maximize the
throughput of the network. Bandwidth and switching are the two main factors
in the performance of the network. The bandwidth of the optical media is
very large and an important benefit. On the contrary, the switching time is
poor. Therefore, we will concentrate on building network topologies that will
need minimum switch configuration changes. We believe that this attitude will
eventually improve the overall performance of the network. In our research we
have checked topologies with respect to two different approaches. In the first
approach we examine a global operation like broadcast and try to find methods
to finish this operation as quickly as possible. In the other approach we assume
a certain distribution for the traffic on the network and try to minimize the

communication time a message travels until it reaches it’s destination.
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4 Broadcast algorithms

In this section we present several broadcast algorithms. We start by presenting

basic algorithms and advance to more sophisticated algorithms, that run faster.

We deliberately present all the algorithms, even the trivial ones, in order to

show our gradual progression in solving the broadcast problem.

4.1

Assumptions

The following assumption were made to simplify calculations:

1.

In all the algorithms we assume that the broadcast is initiated by node

number 0 and only one message is broadcasted among all the nodes.

. A configuration set ( that costs T,.) is a non-blocking action which can

be overlapped in time with other actions. More specifically, a node can
request a new configuration set and until this action is completed send data
on it’s current outgoing link. Performing these two actions in parallel can
save time. However, this scheme is not safe since it relies on the fact that
setting a switch configuration takes relatively more time than sending
one or more messages on an existing configuration. This assumes that
the messages sent on the old settings will get received before the switch
stabilizes on the new settings. Taking this assumption can lead us to race
conditions, caused by network congestion and operating system delays and
might not work well on a real system. Therefore, we will not perform any

send /receive operations on a configuration that is currently being changed.

On the other hand, it is safe to run several switch configuration changes
in parallel. In the time of one T, a whole new configuration can be set,

provided that no other send /receive operations are done at that same time.
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4. We assume a receive operation is done overlapped with the corresponding
send operation. It is true there is a small gap in time between the starting
point of the send operation to the starting point of the corresponding
receive. However, in an optical, point to point network, this time gap
is negligible. Therefore we will not count the receive operations in our

formulas.

5. The system can physically support almost any message size (S). In order
to simplify the structure of the FU we will restrict ourselves to S that is

in the scale of 1K and not more.

4.2 Semantics

In all the calculations where the first and the last stage can not use forwarding
I will still write T instead of Ty but also add the difference T so the sum will

stay the same. Writing so is clearer and more understandable for the reader.

As explained in the previous chapter we are using the FU with the TTL ap-
proach. We will assume that every forwarding action is done with the correct
TTL value. We can calculate this value for each call but it will make the al-
gorithms descriptions very complex and will withdraw the attention from the

main purpose, which is to understand these algorithms.

In the calculation there is a subtle point concerning forwarding. There are
several approaches used to describe parallel algorithms. We decided to describe
the algorithms in a pseudo high level “code”, using two notations. The first
notation is to divide the running time of the algorithm into stages and elaborate
what each node does in every stage. The possible actions a node can perform
in a certain stage are to : send a message / forward a message, request a

configuration set or to do nothing. If several nodes are doing some action in
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the same stage it means that those actions are done in parallel. The notation
of “par:* was added in front of “code” sections that have some parallelism. For
example : ’par: for each i send (i — i + 1)’ means that in the same time all the
nodes are sending a message to their next neighbour (i+1). The second notation,
used only in the last algorithm, is to present a function that recursively calls
itself on differnet nodes. A stage that contains more than one recursive call
in parallel ( with the 'par’ notation ) on several nodes, will imply a parallel

execution of the same function in the next stage on those nodes.

4.3 Algorithms evaluation
4.3.1 Mission

Our goal is to find a method to perform the broadcast operation in the minimum
amount of time. We define the time of the broadcast operation to be from the
first action done until the last node has received the broadcast message. For
every algorithm, we present a formula of it’s running time. In the last section
we compare different algorithms and note their advantages and disadvantages.
The success of an algorithm depends on its ability to maintain the right tradeoff
between configuration sets and forwarding. Too many configuration sets result
in a slower running time, but sometimes it is better to do one configuration set

instead of forwarding the message between too many nodes.

4.3.2 The “half optimal” metric

A broadcast operation running time is mainly affected by the number and timing
of configuration sets (noted by 7. in our model). Therefore, we have examined
an interesting metric on configuration sets, which we will call the ’half optimal’

metric. In this metric we consider 77 to be the running time of the algorithm
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with some value of T, and T5 to be the running time of the same algorithm with
T. = 0. We would like to know for what value of T, does the following equation
hold : Ty = 2Ty ? We will call this value T°® . Note that T, can accept values
from 0 to oo so Ty represents the optimal case in this respect. With this metric
we can have a better evaluation for the performance of an algorithm in respect
to configuration changes. We would like to ensure that the values we use for
T, in the real system are about equal or lower than the values being calculated
in the “half optimal” metric. In order to solve this metric we have to assume
some relation between the two values of Ty and Ty . We have assumed that

Tq =1 x Ty where i is a small integer in the scale of 10.

4.3.3 Forwarding issues

One of the patterns that are frequently used in these algorithms consist of three
nodes : A,B and C. First, node A forwards a message to node B and then to
node C. We will specifically evaluate the running time of this pattern, as it is
so common in the following text. Lets assume node A is already configured to
send messages to node B. When A’s FU receive a message it is automatically
forwarded to node B if the broadcast bit is on. In this case the message is
also delivered to the operating system. When the header, or part of it reaches
the operating system is it possible for node A to deduce that it also needs to
forward the message to node C. The time it takes for a small header to reach
the operating system layer is T; % ¢ where i is the size of this header in bytes.
We assume that i is very small so that T,; can be a good approximation for this
time . In this point node A issues a request to set the configuration towards
node C. Note that until this happens all the data forwarded to node B should
have already been received by the FU of node B. We can deduce this due to our

assumption number 5 in the assumption subsection, and because this action is
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much faster than the corresponding action done by node A. Node A also issues
a request to the FU to re-forward the current message, and makes sure this
request will reach the FU right after the switch has stabilized it’s configuration.
Those two action, the configuration set and the command to the FU, occur in
parallel and the longer of them which is the configuration set requires T,. . To
summarize, the overall time for this patternis : S*x Ty + Ty +T.+ S*T¢ . The
first .S x Ty is for the first forwarding to node B and the second one is for the
second forwarding to node C. The T, value is for the time it takes the header

to reach the operating system and 7, is for the new configuration set.

4.4 Algorithms
4.4.1 Naive configuration change

In the naive method a node broadcasts a message by doing N-1 local configura-

tion sets and sends. This method does not use forwarding.

Algorithm description:

1: for (i=1.. N)
2 set_configuration ( 0 = )
3 : send ( 00— )

Running time analysis : (N — 1) x (T. + S *T3). We need (N — 1) stages
and in each stage we perform one configuration set and one send. Note that S

is the size of the message being broadcasted.

4.4.2 Naive forwarding in a ring.

The previous method didn’t use forwarding. In this method we add forwarding

on a network topology of a ring. First we will set the ring topology and then
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each node will forward the message to the next node.

Algorithm description:

1 : par: foreach i : set_configuration (¢ —i+1 )
2 : for (i=1.. N)
3 send (1 —i1+1)

Running time analysis : T, + (N — 1) * S « Ty + 25 % T . The formula is

correct since every cycle takes exactly S * Ty of time except of the first and
the last one. Those sends can not be forwarded and must reach the node’s
machine. This takes T} instead of T; so adding 25Ty yields the same result.
We also added the first T, to set the ring topology. The ’half optimal metric’ :
Te+(N—-1)«S+Tp+2S%Ty = 2(N—1)«S«Ty+4S+Ty . From here we conclude
that 795 = (N — 1) * S * Ty + 2S5 x Ty. Lets assume 2S5 x T, is negligible for a
large value of N then we can get T2 = N % S x Ty . The systems that interest
us are in the scale of 100-1000 nodes and the message size is about 100-1000
bytes. Therefore T9® = i x Ty where 10000 < i < 1000000. In a typical case
the configuration time will be somewhere between 10 to 100 times slower then
the forwading time of a message, which means that the configuration time is
somewhere between 1000 to 100000 slower then the forwading time of one byte.
In this typical case the ratio between T, and T is even worse than the current
result of the ’half optimal’ metric. In this algorithm 7, is not a problem. It is
not surprising since only one T, is included in the total running time. There

can not be a better solution if we only consider T, .
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Figure 4.1: Naive forwarding in a tree

4.4.3 Naive forwarding in a tree.

In the previous subsection we have used forwarding in a ring topology. The
biggest disadvantage of that algorithm is that it works in sequential manner.
Sequential algorithms which have a running time of O(n) can not be optimal
for a ring with a large number of nodes. Therefore, a way to deal with this
problem might be to use a parallel algorithm that does not work sequentially.
We suggest a tree topology to perform the broadcast. In each stage one layer

of the tree broadcast the message to the next layer (figure 4.1).

In stage 0 the sends that are done are Oa and Ob. In stage 1 the sends are 1la and
1b for the left branch and also for the right branch. In this way the broadcast

proceeds for more stages ( only 3 stages are shown here ).
Algorithm description:
1 : par: foreach i : set_configuration (¢ —>2x%i+1 )

2 : while (there exists a node that didn’t get the broadcast) {

3 : par: foreach i : If i just got a message then {
4 : forward (i = 2x%i+1)

5 : set_configuration ( ¢ = 2xi+2 )

6 : forward (1 —2%i4+2 )

7 }
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Running time analysis : In each stage the number of nodes that got the

broadcast message are doubled so the running time is logarithmic. It can be
formulated into : T, + ((logaN) —1)(2S Ty + Ty +T,) +2S+Ty . The first T, is
due to the first global configuration set in line 1. ((logaN) — 1) is the number of
levels until all the nodes have received the broadcast. In each stage we do two
forwards that cost 25+ T} (line 4,6) and one configuration set that costs T, (line
5). We also have to add Ty betweem the two forwarding as explained in section
4.3.3. Finally, we add 25 * Ty since the first and the last stage can not be done
using forwarding. Note that in each stage there is only one configuration set
since the first configuration set was done in line 1. The ’half optimal’ metric :

T, +((logsN)—1)(28+T+Ty+T,)+25xTy = ((logaN) —1) (45T +2T) +45xT,

N 1)%(28% Ty +Ty)+2T, t
Uog2N—1)*x(25xTy+Ta)+2Ta  phe value of 2L

0.5 _
= .. T = e . 2L

is negligable and

the fraction 1‘71%2912\’1\71 = 1. Therefore T?-% = 25« Ty + T, . According to the
assumption in section 4.3.2, we can again approximate T, = 25 « Ty . Using
the regular value of S : 100 < S < 1000, we conclude that T = i x Ty when
200 < 4 < 2000. This result is not as good as the previous algorithm but is still

in the reasonable range of values for 7.

4.4.4 Smart forwarding in a tree with no idle nodes.

In the previous algorithms we have used forwarding and reached a logarithmic
running time limit. However, once a node has forwarded a message it stopped
contributing to the broadcast process. In this algorithm we correct this by
having all the nodes active in the broadcast process until it is finished. Table
4.4.4 shows the algorithm progress along the first stages. The first row is the

stage number and the other rows are the sends that are executed in that stage.

Smart forwarding in a tree
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Stage 0 1 2 3 4

Received 0..3 0..15 0..63

Operations | 0—1 | 0—»3 | 0—»4 | 06 0—16 | 0—18

152 | 17 1—9 1—19 1—-21

2—10 | 2—12

3—13 | 3—15
4—5
7—8
10—11

13—14 | 15—61 | 15—=63

Algorithm description:

1 : for(stage=0;exists a node that didn’t get the broadcast;stage++){

2 par: foreach i : {

3 : if (I got a message for the first time in the last round)
4 : set_configuration_and_forward(i — i+ 1)

5 : else if ( I got a message before previous round ) {

6 : if ( stage is odd )

7 : set_configuration_and_forward(i — 3% i + 25t@9¢+1)

8 : else

9: set_configuration_and_forward (i — 3 x i + 25179¢ 4 2)

10: } // end of else if

11: } // end of the parallel for each

12: } // end of for
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Running time analysis : In each stage the number of nodes that got the

broadcast message is twice as big as the number of nodes in the previous stage.
Formulating we have : Time = (logoN)* (S*Ty +Ty+T,) +2S+Ty .The number
of stages is logoN. In each stage we have one set of a configuration and one
message sending : (S * Ty + Ty + T¢.). Finally, we add 2S5 % T, for the first and
the last operations which can not use forwarding. In the ’half optimal’ metric
we should get a similar result to the previous algorithm since in both algorithm

we have O((logaN)T,) in the running time formula.

4.4.5 Smart forwarding in a ring with no idle nodes.

In the previous algorithm all the nodes contributed to the broadcast process in
all the stages and it worked in a logarithmic running time. The main drawback
is that on each level two configuration sets must be made. During those sets no
productive work can be done. Given our regular assumption that T, = 105 T
or more, it is more efficient to use this period of time to forward messages
without the need for more configuration sets. The idea is to set a regular ring
topology and then to recursively work on continuous smaller fractions of the
ring, starting with the whole ring. In each stage, forward a message ahead,
along the ring. In the mean time set a permutation to somewhere in the current
ring fraction, such that when this message will be received, the number of nodes
after the receiver node will be about equal to the number of nodes that didn’t

receive the message before the receiver node. The value of k is taken to be equal

Ta+ T,

to STy

+ 1. We reached this figure by comparing the running time of the
left box to in the algorithm description to the running time of the right box in
the same description. Figure 4.2 shows the progression of the algorithm along

three stages. The highlighted nodes are nodes which have already received the

broadcast and are in groups of k nodes.
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K Stage 0
K| K K Stage 1
K| K| K K K| K K Stage 2
Figure 4.2: Algorithm progress in the first three phases.
Algorithm description:
1 : func broadcast ( left , right ) {
2 forward (left — left+ 1)
3 . mldle __ right+left+k
: - = 2
3 : par_section: ( the left code runs in the same time as right
code)
4: set_configuration (left — for (i =left+2.left+k—1) {
middle) forward (1 — i+ 1)
5: forward (left — middle) }
6:
broadcast (middle,right)
7: broadcast (left+ k, middle)
8: 1%

Running time analysis : We can see that the number of nodes that have

received a message in stage i is k x (2! — 1). We would like to know how many

stages do we need to finish the broadcast or more formally: for what i does

N =k x (2" — 1). Therefore i = log,(% + 1) and if we assign k as TatTe and

omit the 41 to simplify calculation we get :

Nx+S+Ty SxTy

STy

i = logs(=757L) = logaN + logz(ﬁ). Assuming T, > T, we get that
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i =loga N + logg(S;CTf) . The second sum is depended on the ratio between

the forwarding time to configuration set time in a logarithmic scale. Our

regular assumption is that a configuration set takes more than a forwarding by

STy
T.

at least one scale or more. So, logs( ) is equal to a small negative number
(-2,-3,..,-5) . Therefore, even for a very big system with 2'° nodes

t =10 — 3 = 7. For any realistic system size we get ¢ < 8. For this algorithm
the ’half optimal’ metric is not meaningful. In this metric we look on T2 in
which 7. = 0. When 7, = 0 this algorithm can not work, since it is strongly
based on the fact that during the time it takes for a configuration set, several

forwardings are done. Unlike other algorithms, when 7. = 0 this algorithm will

behave differently, so we will not examine this metric here.

4.5 Algorithm comparisons

No | Algorithm Running time

1 Naive configuration change (N —1)%(T.+ S *Ty)

2 Naive forwarding in a ring Te+(N-1)«S«Tp+25xTy

3 Naive forwarding in a tree T + ((logaN) —1)(2S « Ty + Ty + T.) + 2S5 x Ty
4 Smart forwarding in a tree (logaN) % (S«Ty +Tqg+T,) + 25+ Ty

5 Smart forwarding in a ring logaN — i wherei = 2..8

The first algorithm is fairly simple but does not use forwarding. Therefore it
can be used for a system without a FU or for a system with a small number of

nodes. In a system with many nodes this algorithm is clearly inappropriate.

Adding forwarding lead us to the second algorithm. Here we use the basic ring
topology to forward the message with a minimum number of configuration sets.

We can show that this algorithm is better the the former by asking for what N
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does Algl < Alg2: (N—1)%(Tc+S*Ty) < Te+(N—-1)x«SxTp+25«Ty = ... =

N <2+ Ti%Td' Since Ty, T, > 0 the whole fraction is positive and smaller
then 1 which means N < 3. Therefore, we can generally say that the second
algorithm is better than the first one. However, it also has a flaw. This algorithm

still has a running time of O(n).

We have fixed it in the third algorithm to O(log(n)). The third algorithm uses
a tree in which every node in the lower layer that has received the broadcast
forwards it to its left and right sons. Comparing the two algorithms: (N —
1)S Ty < ((logaN) — 1)(2S « Ty + Ty + T,) . If we remove all the small
values (Ty + T.) and concentrate on the basis of this formula we can see that
this formula is analog to the formula : O(log(n)) < O(n). More formally this
formula is about the same as asking for what N does N < 2logo N. Therefore,
in a wide perspective the third algorithm is better than the second for about
N=>8. Since we did not count some of the parameters into the final formula it
would be safer to claim that this statement is true for N’s that are larger than
8, and the exact number is not so important in this case. A disadvantage of
the third algorithm is that half of the nodes are idle at any point. Nodes that
have finished forwarding to their two sons do not contribute anymore to the

broadcast process.

We have corrected this problem of the third algorithm in the fourth algorithm.
It is clear to see that the fourth algorithm is always better then the third from
the formula : T, + ((logaN) —1)(2S « Ty + Ty + T.) + 2S5 « Ty < (logaN) = (S

Ty +Ty+T.)+25%Ty = ... = logoN < 2= N < 4.

The fifth algorithm introduces the idea that during a configuration set other
actions such as forwarding can be done. It is difficult to compare these two
algorithms since we only have a recursive formula for the fifth algorithm. In

spite of that, a good approximation shows that for a system with 32/64 nodes
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the fourth algorithm works at least in the same time or even better than the
fifth algorithm. However, for larger number of nodes the fifth algorithm is much
better. We must also note that the fifth algorithm is a very complicated one,
which is difficult to implement in a real system because it requires fine tuning
work to find the value of k = (%T? + 1). Any variation from this exact ideal

number will lead to a definite degradation of the results, due to idle nodes.

4.5.1 Conclusion

The algorithms were presented in an oder from the most basic one to the most
sophisticated one. In a system with a small number of nodes it would be rec-
ommended to use a ring topology with forwarding. In larger systems I would
recommend to use the fourth algorithm, which uses a tree structure with no
idle nodes. This algorithm is the most realistic and reasonable to implement
in a real system. The last algorithm is nice in theory but very complicated to

implement, though it is clearly the fastest algorithm presented.
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5 Algorithms for a general point to point com-

munication model

5.1 Overview

Parallel systems usually use patterns of collective communication. The most
common pattern is broadcast, which was discussed in detail in the previous
chapter. There are some other popular patterns like multicast, global exchange,
etc. Although many parallel programs use these patterns, not all of the com-
munications in parallel systems is done in a defined collective communication
pattern. Many parallel programs send messages between pairs of nodes, or be-
tween small groups of nodes, which do not involve all the nodes in the system.
Even if a unique pattern exists, we would like to have a system that can han-
dle even unique patterns in a generic manner. For example, in parallel FFT

computation or parallel CFD (computation fluid dynamics).

A point to point(P2P) communication model is defined to be a model in which
there is no knowledge of any global operations. Each node operates on it’s
own, sending messages to other nodes . The frequency of sending messages and
their destinations are randomly set according to some given distribution. In
reality, there are probably no applications that behave according to this model.
However, this model enables us to simulate a generic communication model.

Our parallel system must efficiently work in this communication model too.

In contradiction with the broadcast algorithms, presented in the previous chap-
ter, both of the models presented here use limited multicast. This is a necessity
when using a P2P communication model. Since the messages are random and
distributed uniformly there can not be any specific switch configuration which

optimally satisfies all cases. A model that does not use multicast will be forced
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to do many configuration changes. We already know that many configuration
changes slow down the system due to the physical design of the switch. There-
fore, a model without multicast will not be efficient with the P2P communication

model.

We have formalized two topology models and two different distribution models,
and checked the four possible options for a topology model and a distribution
model. The distribution models are: a uniform distribution and a hot spots dis-
tributions. The topology models are: a model based on a cube connected cycles
topology and a model based on a multiring topology. These two models con-
sists of network topologies and network protocols. These models are much more
complicated to evaluate than the models we presented for broadcast. There-
fore, in addition to a partial mathematical analysis, we also used simulations to

measure their performance.

This chapter is organized in the following manner : first, we present our objec-
tive. Second, we present the simulation model used to evaluate both topology
models. Finally we describe each topology model in detail, and present the

results of the short mathematical analysis and of the simulation.

5.2 Objective

A send operation is defined to be the operation in which a packet is sent from
one node to another. The send operation starts when the source node wants to
send a packet and finishes when that packet is received by the destination node.
Our objective is to find a model in which the average time it takes to perform
random send operations is minimal, when these random sends are chosen from
a given distribution. We would also like this model to operate successfully in a

system with a heavy load of send operations.
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5.3 The simulation model

5.3.1 Structure

The running time of the simulation was divided into discrete periods of time,
called rounds. The simulation program supports the following operations : send,
receive, and set configuration. Each operation starts in the beginning of a round
and ends in the end of the same round. This model of division into rounds does
not fully reflect a real system since it is less flexible with respect to the exact
timing of the operations. However, we feel that in the current context, this
model is accurate enough and enables us to write a program that can easily
simulate running time scenarios, resulting in a more or less accurate evaluation

of our two topology models.

In each round the simulator processes the existing operations and adds new
random operations, according to a given distribution. A send operation consists
of a message that needs to be sent from a random source to a random destination.
Both models use forwarding to minimize configuration changes. The specific
route a messages passes from source to destination is determined in run-time by
the current model. The processing of a send operation can result in one of the
two situations: either the message is propagated one hop ahead from the source
towards the destination, or that no action is taken. No action will be taken
in case this send operation is blocked for some reason, for example : by other
sends, or by the model’s policy. The simulation is run until both the number of
requests and the number of rounds exceed a certain limit. In the results we drop
the first constant number of requests and don’t include them in the statistics,
since we want to evaluate the algorithm in a steady state and not during a cold

start where the load on the system is relatively low.

The number of hops between node i and node j is defined to be the number of
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nodes on a specific route between node i and node j plus one. This definition
implies that there can be several hop values between two nodes if there are

several different routes between these two nodes.

5.3.2 Hot spots

When the simulator adds a single send operation it is chosen randomly. The
only restriction is that the source node is different from the target node. The
nodes are chosen at random according to two distributions. The first is the
regular uniform distribution such that each node has the same probability to be
selected. The second one is a hot spot distribution. In this distribution a small
number of nodes are part of a group called H. This distribution is meaningful
only when this group is really small: |H| < |[N|. A hot spot distribution with
parameter p means that for every send operation the source and the destination
are chosen in the following manner: First, the destination group is chosen to be
group H in probability of p, or a group consisting of all the nodes in the system
in probability (1—p). Once the destination group is chosen, the probability that
the destination would be a specific node in that group is distributed uniformly.
Finally, the source is chosen uniformly from all the nodes in the system, except
of the already chosen destination. Hence, a hot spot distribution with parameter
p means that for every send operation there is pg = p+ % * (1 — p) probability
that the destination would be in group H, and 1 — py probability that the
destination would not be in group H. In our case, without loss of generality we
chose group H to include only node 0. Our topologies are symmetric so it does
not matter which node we choose to be a hot spot. We chose only one node to
enlarge the hot spot effect. As the number of the nodes in group H is bigger,
the hot spot effect is smaller since there are more different routes to those nodes

and less collisions. We used three different parameters for this distribution :
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1% , 3% and 5%. A hot spot with 5% is considered to induce heavy load on a

general network.

5.3.3 Evaluation

The average running time of a send operation is measured by the average sum of
the number of rounds(hops and delays) it takes to finish a random send opera-
tion. The sum of these two figures is by definition equal to the number of rounds
passed between the time the message started traveling in the network until it
reached it’s destination. The simulation program measures this number. The
result of the simulation is the average number of rounds needed to accomplish

a random request according to a given distribution.

We assume that a node can perform a receive operation and a transmit operation
at the same time. This assumption complies with the physical model under

certain assumptions that are explained in detail in the physical system chapter.

5.4 The Cube Connected Cycles (CCC) model

5.4.1 Overview

The motivation for the CCC model comes from the fact that a configuration
change in our model is a costly operation. We would like to use a network
topology and a protocol that works with the minimum number of configuration
changes. Reducing the number of configuration changes decreases our flexibility
and must be compensated with a new feature. The feature that is most appro-
priate here and also fits our model is limited multicast. With limited multicast
and a network topology of CCC it is possible to send a message from every

node to another without any configuration changes at all. We will show that
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even without configuration changes this model is quite efficient. The CCC net-
work topology with the multicast feature interduces a new problem of message

collisions. We will later show how to handle this problem.

5.4.2 Structure and Semantics

Our CCC model consists of a regular hypercube of dimension D with each node
replaced by a ring of D nodes. The rank of each node in a CCC is a constant
three. The switch supports limited multicast for three nodes. The switch is
statically configured such that a message from any node will reach the node’s
three neighbors. Since the configuration is static, every message is sent with
multicast from one node to it’s neighbors. This send operation is considered to

be a single operation.

An example of the CCC topology can be seen at figure 5.1. The figure illustrates
a CCC with D = 3. One ring is shown in bold. This ring includes the nodes:

110-0,110-1,110-2. Their neighbors are also connected with a bold line.

Two out of the three neighbors of any node are connected on the same ring. We
will call these nodes inner nodes. The other neighbor node which is connected to
a different ring will be called an outer node. The nodes in the CCC are numbered
by an ordered pair : (HN,RN) where HN is the hypercube node number and
RN is their node number in the ring. To get the HN we assume that each ring
in the CCC represents one node in a hypercube. Then we use the conventional
hypercube numbering scheme, which I will assume the reader is familiar with.
The RN number is the node’s index in the ring and corresponds to the dimension
number that node is connected to on the outer node. For example in a CCC
with D = 3 the node (111,2) is node number 7 in the analogous hypercube. This
node is connected to the inner nodes: (111,0) and (111,1) on the same ring and

also connected to the outer node (011,2) on the ring index which is dimension
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Figure 5.1: A CCC topology with D = 3.

2. Note that the outer node has bit number 2 opposite than the original node

( bit number 2 is the third bit from the right since the first bit is bit 0 ).

5.4.3 Routing in CCC

The routing scheme in a CCC topology is based on the naive routing in a
hypercube. In a hypercube with N nodes, the distance between any two nodes
is limited to D where D = log(N). It is assumed the reader is familiar with this
routing scheme. Routing in CCC from a source node s to a destination node d

can be broken up into three parts:

49



1. Routing within the ring of the source node s to node a (for example).

2. Routing from node a to a node in the destination node’s ring (say node

b) via nodes in intermediate rings.

3. Routing within the destination ring from node b to the destination node

d.

A detailed description of the routing in CCC can be found in [3].

5.4.4 The collision problem

The topology presented above is based on the use of multicast. It is possible
to connect every node to three other nodes because the switch is configured for
a limited multicast from a node to it’s three neighbors. A node sends every
message to it’s three neighbors. Actually only one of them should process the
message. When the other two neighbors look at the destination address they
understand that this message is not intended for them, and gracefully drop it.
This method causes a problem of collisions. A collision happens when more
than one node sends data to the same destination node. Due to the physical
limitation (as explained in chapter 2), a node that simultaneously receives data
from more than one other node gets the combination of the data sent to it. The
data received is of course damaged. There isn’t any way to get the original data

out of the damaged data.

5.4.5 Avoiding collisions

It is clear that any collision is unacceptable in our model. We must ensure
that there will not be any collisions at all. To achieve this goal we need a
synchronization method, that will make sure that any node will only receive

one message at a time. We have suggested two methods:
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1. on-demand : Let a central manager take care of the synchronization.
Each node asks the switch controller for permission to send a message
on it’s outgoing links, start sending only when it got the approval, and
notifies the controller when it is finished sending. In detail: node i wants to
send a message on it’s outgoing link. It sends a request for the controller.
The controller checks if there are any other nodes sending to one of the
neighbors of node i. If so, it does not grant the request of i and asks it
to be blocked. Otherwise, the controller immediately answers node i with
the approval to send messages. The controller also saves this fact in it’s
data bases for future checking. Now, node i can start transmitting several
messages in a row. In case a node is blocked, the controller’s responsibility
is to notify it when it’s request becomes valid. Earlier we suggested that
after finishing a send operation the sender must notify the controller of this
fact, so the controller can update it’s records. Another option is to give
the send operation a timeout value. After the timeout expires the node
loses it’s grant to transmit. In this case, it is also the node’s responsibility
to make sure it does not exceed this time quantum by sending messages
after the timeout expires. The on-demand method introduces an overhead
of calling the controller at least one time for each series of send operations,
but if the load is not high it should work fine. In a very high loaded system
this centralized mechanism can slow down the system, until the controller
is able to handle all the requests. A large percentage of the nodes might

get blocked, thus lowering the utilization of all the system.

2. Cycled : Let the send operations be limited to specific cycles that will
insure the synchronization.
Each node will listen on the control network for messages from the con-

troller which T will call pulse messages. The tick time is defined to be a
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small period of time in the scale of several milliseconds . The controller will
send a pulse message every tick time with the record: current dimension
and a boolean mode flag that can hold outer or inner. A node will receive
this message and according to the record know if it can send messages
on the data network or not. Each node has one outer connection and two
inner connections to other nodes. Node s can only send data to a node d if
the following two requirements are fulfilled: First, s must be connected to
d via the dimension received from the controller. Second, d must have the
same relation to s as the boolean mode flag received from the controller.
If d is an outer node of s than sending is possible only if the mode flag in
the pulse message is also outer. The same idea holds for inner mode. The
controller will cycle through all the available options for the pulse message
record in a round robin fashion. An option can be defined as the ordered
couple: (dim,mode) where dim = 1..D , mode = inner or oute. For ex-
ample, on a 24 nodes system that has 3 dimensions the pulse messages
will be: (0,inner), (1,inner), (2,inner), (0,outer), (1,outer), (2,outer),.... .
This method insures that there will not be any collisions. Therefore, there
is no need for the node to contact the controller. The node operates inde-
pendently, sending data only in the appropriate cycle (that matches the
corresponding pulse message) . This method can only work if we choose
a pulse time that is larger then sending several messages (at least 1 mes-
sage) and make sure that the node does not send more messages than it

is capable of, with respect to this time limit.

Note that in both methods, messages that are received when a node does not

expect them to be received, are immediately dropped. Every node will receive

such messages because we use multicast but the messages are intended only for

one destination.
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5.4.6 Optimization for the cycled version

The cycled synchronization method works well for all dimensions. The main
disadvantage is that the nodes are unable to send messages a large percentage
of the total time. To be more accurate, since there are D outer cycles and D
inner cycles, a node can send data only once every 2D cycles. This slowdown
is not acceptable for higher dimensions. It is possible to optimize this method

and do several sends in parallel that do not interfere with each other.

Optimizing inner sends

In dimension D we can do 3 + D modulo 3 parallel inner sends. For example
with D = 6 we can allow nodes 0,3 to send on the first round, allow nodes 1,4
to send in the second round and allow nodes 2,5 to send in the third round. In
dimensions which are divided by 3 with a reminder of 1 or 2, we must use 4 or

5 rounds respectively.

Optimizing outer sends

With outer sends there is no problem for every second node to send/receive data
as long as there is one node that is separating between them which knows that
the data it receives is garbage and should be disregarded this round. Hence,
the outer sends will be divided into 2 stages. In the first stage sends are legal
on even dimensions and in the other stage sends are legal on odd dimensions.
In dimension D we can do L%J parallel outer sends. We will restrain ourselves
to even dimensions since otherwise we will have to add special handling for
dimension (D — 1) and 0 that otherwise, on odd dimensions, are sending in the

same time.

With the two optimizations, the length of the round robin cycle is fixed. It
is decreased from 2D to not more than 7 cycles, and with the best case of

D modulo3 = 0, decreased to only 5 cycles.
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5.4.7 The tick time in the cycled version

When several messages are queued to be sent from node i to node j on the same
round it would be preferable to actually send them all on one round. Otherwise,
the sending queues of the nodes will grow too long and in high load the system
will have poor performance. However, in the cycled version, it is not possible
to send too many messages on the same round since the number of messages
is limited by the tick time. The tick time can not be too small, or else the
overall performance will significantly decrease. The tick time should not be too
big either. With a large tick time a node will use only a small portion of it for
the transmission and will stay idle the rest of the time. Moreover, when a node
wishes to transmit it will be blocked for a large period of time in average until
it gains access from the controller. From the simulations we have reached that
the optimal tick time should allow about 20-40 messages to be sent on the same

round. This topic will be discussed in detail later.

Note that in the on-demand version there is no meaning for this tick time. Still,
it would be wise to limit the number of messages a node can send once it gains

access, to prevent starvation of adjacent nodes.

5.5 CCC evaluation

5.5.1 Theoretical analysis

The distance between any two nodes is limited by 3 * D. One D is needed for
doing the hops between rings from dimension 0 to dimension D. Another D
for inner moves inside rings to reach the next outer node. Another D is needed
for reaching dimension 0 in the first ring. In this routing scheme, once the
message has reached the last ring, the target node can be reached by one step.

A tighter limit, 2 % D + floor(%) — 2, can be found in [3]. We can easily slice

o4



% off our limit to reach the tighter limit by starting the route from the current
dimension and not moving to 0 in the first ring. This optimization is currently

not implemented in the simulation.

In the on-demand method without collisions a request will take no more than
3x D = 3xlogyN rounds. In an average case with no collisions sending a message
should take less, but in case of collisions this number can rise extensively. It is
difficult to mathematically estimate it. The simulation is used to estimate the

degradation in performance due to collisions.

In the cycled version a request is bounded in any case almost regardless of
the load on the system. Above a certain extreme load the maximum number
of messages it is possible to send in the tick time is exceeded and the bound
is not guaranteed. With more realistic loads a request is bounded by 3 x D
multiplied by the number of times a node is idle. If we restrict ourselves to even
dimensions, and on average D modulo3 = 1 then there are 2 outer rounds and
4 inner rounds. The expectation for the number of rounds a node has to wait
is 3. Therefore in the worst case the limit is 6 * 3« D = 18 x D (the 6 comes
from 4 inner rounds + 2 outer rounds). However, this worst case requires a very
unique set of occurrences and has a very low probability. In the average case

the time is 3% 3+ D = 9% D = 9% logs N rounds.

On one hand, it is obvious that a system with a very light load should use the
on-demand version. On the other hand, a system with a high load would work
much better with the cycled version. The purpose of our simulation is to find
the point where it stops to be profitable to use one method and it starts to
be better to use the other method. Note that an adaptive algorithm, that can

dynamically switch between these two versions, can yield even better results.
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| Dimension | Average # of round with cycled | Average # of rounds with on-demand |

4 21 10-21
6 28 24-47
8 o8 45-82

Table 1: Average number of rounds needed to finish a random event
5.5.2 The simulation

The parameters for the simulation are :

e The dimension of the CCC. We have investigated the following dimensions
4 ;6 and 8 which have 64 | 384 and 2048 nodes respectively. These figures

represent small, medium and large systems.

e The maximum number of new events that are spawned each round. We
will call this number the spawn wvalue. Spawn values were checked in
the range of from 10% of the number of nodes till 100% of the number
of nodes. Each round the simulation chooses a new random number of
events to spawn from 1 to the spawn value. Hence, a spawn value of X%

means that on average there will be %% new events.

e The maximum number of messages that can be sent in one round from one
node is limited by a number we will call MMIR. When it is not explicitly
said we will use MMIR = 35.

5.5.3 Simulation results

Table 1 shows the average number of rounds needed to finish a random event
using the cycled and the on-demand versions. The cycled version is almost not

affected by the load so it has only one result in it’s column. The on-demand
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version has a range of results starting from very light load on the system and
ending with a high load with 100% spawn value. In general, it is clear that
with light load on the system the on-demand version is better then the cycled
version. Intuitively it is obvious since if there are very few collisions it is not
worth to introduce the overhead of the cycled version. With a very high load on
the system the situation is the opposite and it is clear that the cycled version is
better. It is also very understandable since in the on-demand version there are

too many collisions when the load is very high.

According to the theoretical calculation the on-demand version should take on
average about 3x D time to process one request. The simulation results that in-
clude the slowdown due to collisions are higher than the theoretical calculation.
The gap between the theoretical formula to the simulation results for light load
cases are -2,6,21 for dimensions 4,6,8 respectively. Note that the gap is very

large for D = 8. Unfortunetally, we still have no explaination for this large gap.

In the following graphs the X axis represents the “spawn value” and the Y
axis represents the average number of rounds needed to complete a random
event. The legend of each curve in a graph describes the test that produced
it. The legend name consists of the combination of: algorithm cycled or on-
demand , MMIR value or the distribution used: “regular” or “hot spots”, and

the dimension.

MMIR affect of on performance

From the simulation results it is possible to see that reasonable values for the
MMIR must be in the range of 5-50 messages per round. A value of 35 was
found to be the value that relatively to it’s size causes the smallest degrada-
tion in performance. Allowing less than 20-30 messages in a round degrade
the performance to a large extent. With D = 4 we can see a linear degrada-

tion in performance from 70% spawn value with MMIR=10. With D = 6 the
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Figure 5.2: Different MMIR values for D=6 with cycled version

same effect happens at 50% spawn value, while for MMIR=25,35 there is no

degradation in performance. This results refer to figure 5.2.

With D = 8 the same effect is even stronger as seen in figure 5.3.Even after
10% of spawns the performance is very low for not more then MMIR=10. With
larger MMIR’s (23,35) the degradation in the results is much slower and starts

only in states where the system has a very high load.
Note : In the on-demand version the value of MMIR is meaningless.

Hot Spots affect on performance

Hot spots alone don’t have any effect on the performance of both versions. This
fact is seen in figure 5.4. In this figure the on-demand version was tested with

hot spots values of 1,3 and 5 and with D = 6,8 (the cycled version has a similar

graph).
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Figure 5.3: Different MMIR values for D=8 with cycled version

The combination of hotspots and limiting MMIR, has very dramatic effect on
the cycled version. This phenomena can be explained by the fact the hot spots
causes a lot of traffic to specific nodes in the topology, and enlarges the send
queue for some nodes dramatically. When in this situation the MMIR is limited
then the effect is much more drastic. It can be clearly seen in figure 5.5. In this
figure the cycled version is shown with D = 6 and with several values for hot

spots.

When the number of multiple sends is not limited (as in the “cycled unlimited dim6”,
lower line) then the hot spot effect is almost negligible. However, when MMIR
is low a large degradation in the results is noticeable. This effect is similar for

the other two dimensions.

comparison between the cycled and the on-demand version

The comparison with and without hotspots reveal that only with D = 4 the on-
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Figure 5.4: Different values for hot spots with D=6,8

demand is generally better then the cycled version. In all other cases the cycled
version is better, except for very low loads. Figure 5.7 presents a comparison

without hot spots for all dimensions.

With hotspots we get similar results as shown in figure 5.6.

5.5.4 Conclusion

Both the cycled and the on-demand versions are quite efficient for a general P2P
communication model. The on-demand version performs well on all cases except
when it is encountered with heavy load on the system. The cycled version works
better than the on-demand on large number of nodes (from D = 6), but it has a
main weakness with limiting the MMIR value (under 30-35). Hot spots do not

affect both models. In both versions the average time to fulfill a send request is

60



42
";:ycled_hotslpotsl_dim6|_limited" T ' ' ' '
"cycled_hotspots3_dim6_limited" --——%--
"cycled_hotspots5_dim6_limited" ------ %
“cycled_unlimited_dim6" -
40 x 4
,‘*”
38 | i
36 | P
1%} K e
E
> -
° -
e *
34 | i
," /%//
32+ * / .
30 u
- "";;;-;;;;»*;;;;’:;;;,’;i;:"';::::V 7777777777 W* 7777777777 5 » w/%’/ﬂ
28 oo S X v — S - L) £ e
10 20 30 40 50 60 70 80 90 100

spawn percent

Figure 5.5: different hot spots values with MMIR=30 in the cycled version with
D=6
logarithmic to the number of nodes, under certain conditions(MMIR, hotspots

values).

5.6 Adaptive Multi Ring model

In the previous section we have designed a topology that uses multicast and
forwarding. In this section we present the multi ring topology that also uses
these two building blocks. We have also tried to add configuration changes to

this model, and by that make it more efficient.

Regulars networks of low degree are easy to implement physically. Rings are
an example for such networks. Rings are a very simple structure and are at-

tractive for a network of a parallel computer. The main drawback to rings is
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Figure 5.6: comparing on-demand and cycled versions in all dimensions without
hotposts

the diameter size which is too large for more than several nodes. In order to
overcome this drawback the approach of a multi ring is taken. A multi ring is
a general name for a ring which also contains internal “shortcut” arcs between
nodes. The regular arcs are called ring arcs while the internal “shortcut” arcs
are called chordal arcs. This topology seemed to be a good candidate for having

forwarding, configuration changes and limited multicast all together.

There are many works on this subject. These works usually concentrate on
two issues. The first issue is to find an optimal static topology under the as-
sumption of a specific communication distribution model. The second issue is
to dynamically change the network topology according to a changing network
load. This can be achieved by using some smart assignment of the chordal arcs

while keeping the ring arcs in the original configuration. Some of these works
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Figure 5.7: comparing on-demand and cycled versions in all dimensions with
hotspots of 5%

reach an upper bound on the diameter of the network. For example : reference
[1] shows an upper bound of v/N to the diameter of the network that contains
N nodes. Other works have described several smart algorithms for dynamically
finding the shortest path with recalculations that are done on each hop of an
advancing message, etc. Our model has special requirements so it is not possible
to just take another work and fully implement it in our model. In our work, we
have looked for ways to convert some of the ideas behind methods described in

other works to our model.

This section is organized as following: First we formalize the definition, assump-
tion and semantics of the multi ring topology in our model, Second we examine
static multi ring topologies and investigate what is the best static assignment

for the chordal arcs. Finally, we try to add configuration changes and see if it
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is profitable in this model.

5.6.1 Model assumptions and semantics

A configuration change request is implemented as a broadcast query on the
control network such that each node knows the exact topology as it changes.
Therefore, we can assume that each node holds a shortest path routing table
to all the other nodes in the system. Each time a configuration change occurs,

this table is recalculated to reflect the possibly new routing.

In a ring that contains N nodes, the nodes are numbered sequentially from 0 to
N — 1. In this context, an even node means a node which has an even number,

and an odd node means a node which has an odd number.

5.6.2 Structure

Topology

The topology is based on a regular uni-directional ring with each node having
one additional chordal ring. The switch is configured such that each node is
able to send messages to two other nodes using limited multicast. The first
node is the next node in the ring. The second node is the node connected to
the chordal arc. Each node can only have two incoming links, the first link from
the previous node and the other link from another node connected to it by a
chordal arc. An example of a multi ring with fixed assignments can be seen
in figure 5.8. In this figure N = 16 and for each node i there is a chordal arc
to node ¢ + 4 modulo N. The chordal arcs can be used to reduce the number
of hops until the destination is reached. In this example the diameter of the

network is 4.
Synchronization
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Figure 5.8: A multi ring with a fixed assignment.

In order to insure the property that no node will ever receive two messages at
the same time from two different nodes we have restricted the chordal connec-
tions. We will use chordal links that are only connected to nodes with the same
parity with respect to their number. This means that even nodes can only be

connected to even nodes and odd nodes can only connect to odd nodes.

There are two modes of action. Each mode is valid for a constant period of time
called a round. Afterwards, the current mode is changed to the other mode. It is
possible to synchronize all the nodes to the correct mode in the same method as
the one used in the CCC model. In the first mode only even nodes are allowed
to send data and in the other mode only odd nodes are allowed to send data.
This method insures that there will not be any node which gets data from more

then one other node in the same time, at the expense of decreasing the available
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bandwidth by a factor of two. It is easy to prove that this method really insures
the required property. For example, lets examine an even node with the number
of 2i. In the mode where even nodes can send data it can only get messages
from the chordal arc, which also has an even number. The previous node, 2i-1
can not send it data in this round, since it has an odd number. In the other
mode, where only odd nodes can send data, node 2i can only receive from it’s
previous node 2i-1 and not from the chordal node since the chordal node has an

even number. The same logic works for odd nodes of the form of 2i+1.

Initial configuration

The ring arcs are statically set such that node i is connected to node (i +
1) modulo N . For the chordal arcs, there are two options for the initial configu-

ration:

e Every node’s connection is set by a specific formula in the form of chordal(i) =
j. An example of such a formula that we have decided to examine is that
every node i is connected to node (i + w)modulo N for some w. This

configuration will be called a fized configuration.

e Use a random non-fixed assignment in which each node is connected to

some other node at random.

Both method must restrict their assignments such that it would comply with

the requirement noted above.

Multiple send in the same round

Each link has large bandwidth but it is not unlimited after all. This means
we can not send an infinite number of messages in the same round on the same

link. Therefore, the number of messages should be limited to a constant number,
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called MMIR. The same reasoning for the size of the MMIR in the CCC model

(section 5.4.7) applies here.

5.6.3 Routing in Multi Ring

The routing algorithm is straight forward. For a fixed configuration the follow-
ing method is used: First, use the chordal arcs to jump to the correct segment of
the destination node. Since the ring is uni-directional the last hop must still be
before the destination. Second, advance on the ring nodes until the destination
is reached. In a random configuration the routing is more complex. A short-
est all-to-all paths table is kept on each node. Each node can independently
calculate what is the shortest path to every other node. When performing a
send operation the node sends the data on the first hop of this shortest path.
Any change in the configuration of the chordal arcs causes an immediate re-
calculation of the nodes shortest paths tables. This method is used to support

algorithms that dynamically set the chordal arcs.

5.7 Adaptive Multi Ring evaluation
5.7.1 The simulation

The parameters for the simulation are the same as those described in the CCC

mode (in section 5.5.2 ):

e The number of nodes (N) in the multi ring. We have investigated the
following node numbers: 64 , 384 and 2048. These figures represent small,
medium and large systems, and were chosen for an easier comparison with

the CCC model which also uses these figures.
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e The maximum number of new events that are spawned each round. Similar
to the CCC model, this number is called spawn value, and the values this
number can accept are the same values as in the CCC model. Unless
stated otherwise the spawn value used is equal to the number of nodes

tested.

e The maximum number of messages that can be sent in one round from one
node is limited by a number we will call MMIR. When it is not explicitly
stated we will use MMIR=35 as in the CCC model.

e In a fixed configuration w is the arc length of a chordal arc. Unless stated
otherwise we have used w = v/ N due to the result in reference [7] which

claims this figure is optimal.

5.7.2 Theoretical analysis

In the worst case the distance between any two nodes in a fixed configuration is
limited to 2v/N hops for a system with N nodes. The first v/N hops are needed
to reach the correct segment on the ring. In the worst case, the destination node
would require a full circling of the ring which can be done with v/N hops on
chordal arcs. Then, in the worst case another v/N hops are required to reach

the destination node, if it is the last node on this segment.

In the average case with a fixed configuration the distance between two ran-
dom nodes is v N hops (The calculation is simple and not interesting, so it is

omitted).

When using a random configuration or a dynamic configuration it is difficult to
theoretically estimate the distance between two random nodes. This calculation
is difficult both for the average case and for the worst case. We have used the

simulation results to measure the average case figure.
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5.7.3 Simulation results

Static fixed configuration

We were interested in finding the optimal figure for w, in a static configuration.

We have checked varying numbers of w, from 0 to the number of nodes. Our

simulation results for N = 64 appear in figure 5.9.

The dotted line represents an optimal average number of hops between any

source and destination. This value was calculated in the following manner:
First, the arcs size were set to the current value. Second, an all-to-all shortest
path algorithm such as Floyd was employed on all the nodes. Then, the average
path distance was calculated for all the nodes, assuming that all the paths

have an equal weight in the final average . The other line was calculated in a

regular simulation with spawn value equal to the number of nodes. Therefore,
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the average number of hops should be higher than the optimal values since the
optimal values do not include any load on the system. This exactly matches
our results. Two other interesting phenomena can be seen: First, there is a
remarkable correlation between the two graphs. This correlation means that
there is a correlation between the arc length in a static configuration to the
performance of the system (under our assumption). Second, the two graphs
have a symmetry between the left part and the right part of the graphs. There
seems to be a good correlation between the average number of hops for w = ¢ and
for w = N —i. The correlation can be intuitively explained with the following:
let’s say we examine wg = % or wy = %. In both cases N —w; = wi_; . We
try to find the shortest path from node 0 to node % and to node % . With wy
it will take 1 hop to reach the first node and 3 hops to reach the second node.
With w; it would take 3 hops to reach the first node and 1 hop to reach the
second node. This means that for each i: w =i and w = N — i are in average
equal with respect to the average number of hops between a random source and

a random destination.

According to reference [7] the optimal number for w is an integer close to v/N.
From our simulation N was discovered to be one of the optimal values for w
but not he only one. Other values that are optimal are /N i for i = 1,3,5...

Note that only odd multiples of /N are optimal and even multiples result
in values that are clearly not optimal. This phenomena is caused due to the
parameters of the system. We have taken the “number of nodes” parameter to
have an even square root. When the ring has an even number of nodes then
multipels of even numbers repeat the same points after a full circle. On the
contrary, odd multipels do not repeat the same points after a full round and
thus give a better coverage of the ring. There are also other values for w that

are close to optimal but they are usually found around the v/ N multiples.
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| Dimension | Optimal fixed | Average fixed | Optimal random | Average random |

4 6 12 4 7
6 18 35 7 10
8 42 84 9 14

Table 2: Number of rounds needed to finish a random event for a fixed /random
configuration

Static random assignment

The topology presented above is very ordered. For every node i there is a chordal
arc to node (i + w)moduloN . We have tried to find other topologies that
yield good results. The topology found is that of a random assignment for the
chordal arcs. We have found out that a random assignment of the chordal arcs
outperforms the fixed assignment of those arcs as it was described above. Table
2 summarizes random configuration results versus fixed configuration results.
For each mode (fixed or random) there are two columns: The first column
shows the results of the theoretical optimal number of hops as calculated in the
previous section. The other column shows the results of a real simulation with
spawn values equal to the number of nodes. It is clearly seen that the random
configuration yields better results than the fixed configuration in both cases.
The source for the superiority of the random version is the low diameter size of
the network. We think that in a successful random configuration the diameter of
the network gets closer to log(IN). Table 2 shows the optimal number of rounds
in the random version. This figure is actually the average diameter size and is
very close to log(N). In the fixed version the diameter is always v/N . The gap

between the diameter sizes explains the superiority of the random version.
MMIR values

Contrary to the CCC model, the effect of changing the MMIR in the multi ring
topology is much smaller. Simulations show that if the MMIR is not limited

than the largest number of messages sent in parallel is usually around 10. From
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the simulations, we have found out that using MMIR=20 insures that we will
not suffer almost any slowdown due to blocked messages. For example with
N = 384, figure 5.10 illustrates the effect of changing the MMIR value on a
static random configuration. In spite of this fact we have used MMIR=35 as in

the CCC model to ease the comparison between these two models.

Hot Spots affect on performance

Small values of hot spots percentage do not affect the performance of the multi
ring. The degradation in performance is linear with respect to the hot spots
percentage. The explanation to the linear degradation is that this degradation
is caused by messages that are blocked due to exceeding the MMIR value. The

results are shown in figure 5.11.
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5.7.4 Conclusion

The multi ring approach seems to achieve relatively good results. The results
of the simulations show that the average number of rounds is proportional to
the logarithm of the number of nodes. The algorithm works well when the
configuration of nodes is set at random. Using small percentage of hot spots

and small values of MMIR affect the overall performance in a mild manner.

5.8 Comparison between CCC and Multi Ring

It is clearly evident that the multi ring model yields better results than the CCC

model. A summary of the results is shown at table 3.

The reasons for the advantage of the multi ring model:
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Dimension | Average # of round with | Average # of rounds with
cycled/on-demand CCC multi ring

4 21 / 10-21 7
6 28 / 24-47 10
8 58 ] 45-82 14

Table 3: Average number of rounds needed to finish a random event

1. In the multi ring the limited multicast is done on two nodes and in the
CCC model the limited multicast is done on three nodes. The overhead
to synchronize three nodes is larger than the overhead to synchronize two

nodes.

2. The random topology in the multi ring model is more robust, and can
better support different kinds of patterns. The static topology of the

CCC is less flexible in this sense.

In spite of all these facts, there are also some advantages in the CCC model:

1. The routing in CCC is straight forward. In the multi ring each node must

keep the whole topology and the corresponding routing tables.

2. Our discussion was restricted to the communication pattern of random
messages. However, people that write programs for real systems, usually
exploit the locality between adjacent nodes, basing their process assign-
ment on a well structured topology. In this sense the CCC model has a
huge advantage over the multi ring model, which uses a random assign-

ment.
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5.9 Attempt for a profitable configuration changes model

Until now we have dealt with a model which has limited multicast and for-
warding. This model has proved itself to be efficient. Our initial intention
was to also use configuration changes in this model. This section is dedicated
to describing several methods for deciding which configuration to change and
when to perform the change. Although these methods seemed to be promising,
they were discovered to slow down the system, and did not improve the overall

performance.

The main idea behind dynamically changing the configuration is to adapt the
configuration to a certain load on the network. When the load on the network
is uniformly distributed between all the nodes, and the system uses a random
configuration, it can be assumed that there is not much of a gain in changing
the current configuration. There could be some gain if the random assignment
is accidentally very biased, but this scenario has a very low probability to oc-
cur. A real contribution to the network performance can be achieved when the
model uses some biased distribution like the hot spots distribution. With hot
spots, an adaptive algorithm can detect heavy loads on certain links and try to
dynamically reconfigure itself to handle the load better. Since the distribution is
biased we have assumed that there might be better configuration than a random

one for certain scenarios.

5.9.1 Requirements

e The algorithm should not make too many configuration changes due to

the physical nature of the system.

e Every change should maintain the properties of the multi ring. Local

changes are preferred.
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5.9.2 Semantics

e i — j notes that node 7 sends a message to node j.
e ; = j notes that node 7 is configured to send messages to node j.

e strength(i,j) is defined to be an integer that should reflect the load on the
link from ¢ to j. This strength is initialized with a constant value which is
some small integer. Each message that is sent from i — j increments the
strength(i,j) by one. This means that the strength will be raised for all
the nodes along the path from the source to the destination. Every time
one of the strength values reaches a large constant value (currently 100),
all the strength values for all the pairs are divided by two. This division
makes sure those values are normalized to some scale, and that previous
load will have a decayed effect on the current load. The strength value is

used by the algorithms to make decisions about configuration changes.

5.9.3 Algorithms

All the algorithms are based on the same idea but differ in its implementation.
Lets assume that in the current configuration a new event is added which in-
cludes sending a message i — j. Lets also assume that the current configuration

isi=>land k=7 .

1. Now, if strength(k,j) < C for some constant C' then it means that not
too many packets go on £ — j. Then we allow ourself to break this
link and make a direct connection i = j. A side affect of this process
is that in order to keep the properties of the multi ring we must also
configure K = [ . Then, the new message will take only one hop to

arrive. If strength(k,j) >= C we do nothing and let the message get
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forwarded as usual. Of course this action can only be made accordingly
to the restriction we took in section 5.6.2. If the parity of i and j are
different we can not perform this optimization. Note that in about half

the cases we can perform this optimization.

. In the current configuration build a shortest path matrix that holds dis-
tances from all the nodes to all other nodes using Floyd’s algorithm.
Compute a weighted average on this matrix, where the weight is the
strength(i, 7). For the first matrix we then get the average: M;. Perform
the same calculation on the same matrix, but where the configuration is
changed such that i = j and k£ = [. The second weighted average yields
Ms. Now, if My < M; then this change lowered the average and is more
efficient. In this case commit the change. Otherwise, roll back the whole
process. The advantage of this version is that it takes a global approach

to evaluating a configuration change and not just a local perspective.

. In version 2 we changed the configuration to point from the source to the
destination when we estimated it was profitable. When the distribution is
a hot spots distribution this approach has a big disadvantage. Each time
a new node might point to one of the nodes in the the hot spot group.
This group can be very small, and in fact in our tests it included only one
node. Hence, this change will not improve the overall performance. To
cope with this situation, we added the following improvement: instead of
trying to configure i = 7 we will try to configure ¢+ = k£ where from £ to j
the distance is a small number of hops. The number of hops is chosen at
random, but is limited by a constant number. We tried several methods:
k is a ring arc before j ; k is a chordal arc before j ; or a hybrid of both
methods. Using this improvement, many nodes will try to create a “short

cut”, chordal arc, to a random node before the hot spot and the chance of
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colliding this assignment gets much lower.

4. Generate a new random configuration every random number of rounds.
Do the comparison between the weighted average of the old matrix that
corresponds to the old configuration and the weighted average of the new
matrix that corresponds to the new configuration. In case the new matrix

has a lower average value switch to the new configuration.

5.9.4 Results

All the versions having dynamic configuration performed worse than the static
configuration. We do not present the exact results since none of the versions
presented showed any sign of performing well, even on fractions of the cases.
The best we could achieve was to get results which are no worse than the static
version on some distinct cases. We think we have understood the main reasons

that contributed to this failure:

e Any configuration change is harmful in the short term because messages
routing is based on the existing routing. Any change to the configuration
can cause messages to re-route and to increase the average hop count. We
tried to limit the number of configuration changes, but even that didn’t

help.

e Under our assumptions of hot spot distribution there is nothing the net-
work has to adapt to. At most the dynamic model adapts to a configu-
ration that is very similar to the random configuration it started with. A
dynamic configuration is needed where the load changes. We also tried to

use moving hot spots to emulate it but it was not successful either.

It seems that under the current model there can not be a better solution than

the static model.
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5.10 Conclusion

Both network topologies presented in this chapter yield good results in the P2P
model. The multi ring model is a better general solution. The CCC model is
more suited for exploiting advantages in the way people really write parallel

programs.

We have tried to design a model which has all the building blocks of this system:
forwarding, multicast and configuration changes. This attempt failed because of
two different reasons. The first reason is that in our theoretical model (especially
in the distribution model), it is probably impossible to gain any advantage with
configuration changes. The second reason is the synchronization overhead. The
multicast feature enhances the system but requires the added synchronization.
This synchronization can eventually degrade the performance of the system

more than the multicast can contribute to it.
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6 Algorithm for all to all broadcast operation

6.1 Introduction

An all to all broadcast operation is an operation in which every node receives
a message from every other node in the system. This operation can be easily
implemented in a network of N nodes using N consecutive broadcasts, where
each broadcast is done by a different node. However, this method is not efficient.
Many algorithms were developed in order to make this operation effecient. Usu-
ally it was done by pipelining or merging different broadcasts. In this chapter
we present a simple algorithm for all to all broadcast operation which is exactly

suited for our model.

For simplicity sake, we assume that any broadcasted message can be sent in a

single transmission unit, without the need to divide it into several packets.

6.2 Algorithms

We start by reminding the reader of two known solutions for the all-to-all broad-
cast operation. These solutions are briefly described and their running time is
analyzed. It is presumed that the reader is familiar with these two algorithims,
which are mentioned in order to highlight our way of measuring the algorithm’s
running time. Finally, we present our suggestion for an optimal algorithm,

analyze it and show that it is really optimal.

6.2.1 Hypercube

This algorithm is based on hypercube topology. In stage ¢, a node sends all the
messages it received until that stage on the link that connects it to dimension ¢.

Therefore, in every stage each node sends twice the number of messages it did
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in the previous stage. The process takes O(logN) stages to finish. Although
only O(logN) stages are needed, the number of messages sent by each node is

still O(IN). There are also O(logIN) configuration changes.

6.2.2 Tree

This algorithm is based on building a full tree with a degree that is equal to the
limited multicast level. First, each node propagated its message and those re-
ceived by it to the root of this tree. Second, the root multicasts all the messages
to its direct links, and recursively to all the nodes of this tree. Gathering the
information to the root takes O(logN). Scattering the information back to all
the nodes also takes O(logIN) . Hence, the whole process takes O(logN) stages
to finish. Similarly to the previous algorithm, when the messages are prop-
agated down the tree in the second phase, every node sends O(N) messages.
This algorithm also needs one configuration change to build up the tree for the

information gathering and one configuration change for the multicast tree.

6.2.3 Ring

The algorithm that we suggest to be optimal, is surprisingly based on a ring
topology. In the first stage each node sends its message to the next node. In
every other stage, each node forwards the message it received in the previous
stage to the next node, and in parallel passes it up to the local communication
stack. This process finishes after N — 1 stages, in which each node sends one
message. The whole process takes O(N) messages that are sent by each node
and one configuration change. The exact formula can be represented by: 27T, +

N —1)S x T (the meaning for each symbol is defined in the third chapter).
f g
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6.3 Algorithm evaluation

The question that should be asked is how to evaluate the performance of these
algorithms in our model. We claim that the best method to measure the per-
formance of these algorithm is by the number of messages that are sent by each
node, and also considering the number of configuration changes. The second ar-
gument is clear since configuration changes are a costly operation in our model.
On the other hand, the first argument should be explained. In the following sub-
section we explain the intuition behind this argument and in the next subsection

we present a more formal proof for it.

6.3.1 Intuition

In most systems it is extremely important to minimize the number of times a
node starts to send messages. There is a large overhead for sending just a single
message. This overhead is caused by the operating system’s network stack.
Adding more messages to an existing transmission is very cheap, in terms of
time. In our system, it is possible to use message forwarding. With this feature,
all messages are forwarded in hardware to their destination without reaching the
operating system level. Therefore, there is no overhead for forwarding only
one message and no advantage for forwarding a package that contains many

messages.

6.3.2 Formal explanation

Usually global communication algorithms are measured in the number of stages
that they require to finish. It is usually implicitly assumed that each stage can
finish in a constant time. However, in the hypercube algorithm, there is only one

message sent in the first stage, but gmessages sent in the last stage. These two
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stages can not take the same amount of time on our model. Therefore, in this
context this assumption is invalid. The only solid figure that can be measured is
the number of messages sent by each node. Without any configuration changes
(as presented in the ring algorithm), this figure determines the minimal running
time of the whole process. Now it is left to show that under this criteria the ring

algorithm we presented is really optimal. Consider the following arguments:

1. In an all-to-all broadcast operation each node must by definition receive N
(different) messages from other nodes. There can not be any overlapping
in the receive operation of every node. Only one message can be received

at a time.

2. A node can only send k messages in parallel using limited multicast where
k is a constant that is not related to N. In reality k is limited by the
optic medium to about 4. Hence, in average, each node must send at least
O(N) messages so the condition in the first point will hold. Also here,

there can not be any overlapping send operations.

3. In the ring algorithm presented above, each node sends and receives O(N)

messages.

Due to these arguments our algorithm is equivalent to the optimal algorithm,
in terms of the number of messages sent. In this algorithm there is only one
configuration change which is the minimum number of configurations possible.
Thus, our algorithm is optimal in the two measures: the number of configuration
changes and in the number of messages sent. This means that our algorithm
is optimal. Of course, a constant improvement might be possible, but only a

constant one. The optimal algorithm must remain at least O(N) (messages).
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6.4 Conclusion

There is a basic difference between our evaluation model to the common one.
Our model is best evaluated by the number of messages sent by each node in the
whole operation and by the number of configuration changes. Therefore, in our
model it is best to use a ring topology with the simplest algorithm presented

above to perform an all-to-all broadcast operation.

84



7 Conclusion and future work

7.1 Conclusions

This work is based on a novel optical switching technology. This technology
can be the basis for the next generation of networks for parallel computers. In
spite of the great advantages of this technology, there are still some open issues
that must be deeply examined before this technology can become practical. We
have chosen the slow configuration time, which is one of the main issues, as
the center of our study. Our model is composed out of three main elements:
forwarding, multicast and configuration changes. It was noticed that in general,

the successful models included a mixture of using these three elements.

In the first part of the thesis, we have developed models for performing efficient
broadcast and have theoretically analyzed them. These models used configu-
ration changes and forwarding. We have found out that these models are best
based on a variation of trees. In trees the running time can be logarithmic and
the initial configuration can be done in the first phase, which saves some of the

configuration changes in the following phases.

Second, we have developed algorithms for a P2P communication model and
used simulations to evaluate their performance. In these models we also used
the multicast feature. We have worked on two models: cube connected cycles
and multi ring. Both of these models used multicast and forwarding without
configuration changes. An important conclusions of the study in this section
is that in our model (P2P communication) it is unlikely to have all the three
building blocks working together successfully. This is why our two models didn’t

use configuration changes.

In the last part of the thesis we have examined algorithms for an all-to-all

broadcast operation. We came to the conclusion that the optimal algorithm for
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this operation, under the assumptions of our model, is based on a ring topology.

This conclusion is backed up by theoretical arguments.

7.2 Future work

In the theoretical area it would be preferable to work on global communication

operations such as: all-to-all, global exchange, etc.

In the practical aspect, the building of the prototype should be finished. Then,
it would be possible to conduct tests on it, using the algorithms presented in
this work. Once this happens, the algorithms effectiveness could be checked in
a real system and not only on simulations. It is also known that good protocols
and algorithms usually need some fine tuning in real systems to achieve optimal
performance. When the system is built, a session of fine tuning on the algorithms

should be conducted.
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