
\Instru
tion Memoization:Exploiting Previously PerformedCal
ulations to Enhan
ePerforman
e"
A dissertation submitted in ful�llment of therequirements for the degree of Do
tor of PhilosophybyDaniel Citron

Submitted to the senate of the Hebrew University inthe year 2000

\Instru
tion Memoization:Exploiting Previously PerformedCal
ulations to Enhan
ePerforman
e"
A dissertation submitted in ful�llment of therequirements for the degree of Do
tor of PhilosophybyDaniel Citron

Submitted to the senate of the Hebrew University inthe year 2000

i

This dissertation was
ompiled under the supervision ofDr. Dror G. Feitelson.

ii

Abstra
tThis thesis explores the
on
ept named memoization: saving the input(s) andoutput(s) of previously
al
ulated (side-e�e
t-free) fun
tions, and using the out-put if the input is en
ountered again. Our fo
us will be on the memoization ofinstru
tions. The operands and results of previous invo
ations of multi-
y
leinstru
tions are saved in dedi
ated tables named Memo-Tables. Su

essfullookups in these tables, before or parallel to instru
tion exe
ution, make it pos-sible to improve exe
ution by redu
ing the laten
ies of these instru
tions to one
y
le. We named this te
hnique Instru
tion Memoization (IM).To test this idea we used a detailed RISC pro
essor simulator running theSPEC and MediaBen
h ben
hmarks. We �rst explore the organization of theMemo-Tables in sear
h for an \optimal" design that will maximize hit-ratioand minimize
ost. A hit-ratio of over 50% is a
hieved for moderate sized tables.Next we integrated IM into a RISC super-s
alar pro
essor's datapath. Wedis
overed that 13% of the ben
hmarks' exe
ution time
an be attributed tomulti-
y
le instru
tions. With a 52% hit-ratio an average (harmoni
 mean)speedup of 1.07 was obtained (1.10 for FP intensive appli
ations). In our sear
hfor greater performan
e improvement we de
ided to memoize single-
y
le in-stru
tions as well.The speedup rised by 50% to 1.11 (1.13 for FP appli
ations). However thenew speedup is attributed not to instru
tion laten
y redu
tion but rather tothe arti�
ial addition of more Fun
tional Units (FUs). The Memo-Tables a
tas \virtual" FUs. Adding more FUs to a pro
essor nulli�es the e�e
t of single-
y
le IM. On the other hand multi-
y
le IM yields a better speedup for fasterpro
essors.

iii

Contents
1 Introdu
tion 11.1 What is Memoization? . 11.2 Instru
tion Memoization . 21.3 Prior and Related Work . 31.3.1 Early Use of Memoization 31.3.2 Instru
tion Reuse . 41.3.3 Other Te
hniques . 41.4 Thesis Outline . 42 Instru
tion Memoization 52.1 The Memo-Table . 52.2 The Rationale Behind Instru
tion Memoization 73 The Organization of the Lookup Tables 103.1 Simulation Framework . 103.1.1 Simulations . 113.1.2 Ben
hmarks . 113.1.3 The Instru
tions Memoized 123.2 Memo-Table Stru
tural Fa
tors 133.3 Size and Asso
iativity . 153.4 Trivial Cal
ulations . 173.5 Contents of Memo-Tables . 193.5.1 Exploiting Inverse and Commutative Operations 233.6 Mapping Strategies . 243.7 Summary . 264 Integrating IM in a Pro
essor's Datapath 284.1 A Basi
 Mi
ropro
essor Design 284.1.1 Pipeline Stages . 284.1.2 Fun
tional Units . 294.1.3 Pro
essor Chara
teristi
s 304.1.4 Integrating IM . 304.2 Basi
 Pro
essor Speedup . 344.3 Measuring Attributes of the Datapath 35iv

4.3.1 Hit-Ratio . 374.3.2 Instru
tions Per Cy
le (IPC) 384.3.3 Fra
tion Enhan
ed (FE) 394.3.4 Speedup . 394.3.5 Correlation Between Measurements 404.4 Additional Measurements . 414.4.1 Speedup as a Fun
tion of Memo-Table Organization . . 434.5 Summary . 435 Memoizing Single Cy
le Instru
tions 455.1 Comparing Single and Multi-Cy
le IM 455.1.1 s
IM Compared to Other Enhan
ements 475.2 Lowering the
ost of s
IM . 486 Comparing IM to Other Te
hniques 506.1 Early Memoization . 506.2 Value Predi
tion . 516.3 Comparing IM to IR . 526.3.1 PC vs. Value Mapping . 536.3.2 Table Organization . 546.3.3 Lookup Stage . 556.3.4 Design Simpli
ity . 557 Summary and Con
lusions 567.1 Memo-Table Organization . 577.2 IM in the datapath . 587.3 Single-Cy
le Instru
tion Memoization (s
IM) 587.4 The Bottom Line . 59A IM on Real Pro
essors 60B Memoization of Fun
tions 63B.1 Memoization of Mathemati
al Fun
tions 65B.1.1 Memoization of Software Implemented Fun
tions 65B.1.2 Overhead Considerations 67B.2 Experiments and Results . 67B.2.1 Simulations . 68B.2.2 Speedups Obtained . 69B.2.3 Memo-Table Con�guration 70B.2.4 Memoization of User Fun
tions 72B.2.5 Memoization of Fun
tions and Instru
tions 73B.2.6 Implementing the Fun
tions in Hardware 74B.3 The Rationale Behind Fun
tion Memoization 75B.4 Related Work . 76B.4.1 Compiler-Dire
ted Dynami
 Computation Reuse 77B.4.2 Value Pro�ling . 78v

vi B.5 Comparing Hardware to Software Memoization 78B.6 Summary . 80

Chapter 1Introdu
tionIn the �eld of Computer Ar
hite
ture the end goal of almost all innovations andenhan
ements is speed. We want our programs to run in less time. This
an bea
hieved in numerous and various ways: running the pro
essor at higher speeds,introdu
ing
hanges to the design of the pro
essor,
hanging the instru
tion set,
ompiler enhan
ements, and �nally by altering the programs themselves.This thesis will fo
us mainly on enhan
ing the design of the datapath. thedatapath is by analogy the \blood system" of the pro
essor. Through its stages
ow the instru
tions fet
hed from memory. The instru
tions are de
oded, theiroperands are obtained, they are exe
uted, the results of the instru
tions arewritten ba
k to memory or the register �le, and �nally the instru
tions are
ommitted and exit the datapath. During ea
h
y
le, a ti
k of the pro
essor's
lo
k, instru
tions either
ow through the datapath or are delayed in the data-path until previous instru
tions have progressed through the stages.The less
y
les it takes instru
tions to traverse the datapath the faster theprogram will exe
ute. This thesis shows a te
hnique that shortens the stayof some of the instru
tons in the datapath. Just as memory
a
hing exploitsthe \Prin
ipal of Lo
ality" in order to present the pro
essor with a short andalmost uniform memory a

ess time, we will exploit the
on
ept of memoizationin order to shorten the exe
ution time of many long laten
y instru
tions.1.1 What is Memoization?The
on
ept of memoization is as follows: saving the input(s) and output(s)of previously
al
ulated (side-e�e
t-free) fun
tions, and using the output if theinput is en
ountered again.Before a side-e�e
t-free fun
tion is to be
omputed its input(s) are used toa

ess (usually with a hash fun
tion) a Look Up Table (LUT). If the inputs areresident in the LUT the previously
al
ulated output(s) is obtained from thetable and re
al
ulation of the fun
tion is averted. If the input(s) aren't in theLUT the fun
tion is
al
ulated and its input(s) and output(s) are stored in the1

2 CHAPTER 1. INTRODUCTIONLUT for future referen
e.This te
hnique
an result in faster re
al
ulations if the storage and lookupof formerly
al
ulated fun
tions is faster then re
al
ulating the fun
tion again.But in the general
ase the LUT is a software based table residing in mainmemory. Thus the lookup and storage are time
onsuming. A su

essful lookupmust have a lower a

ess time than
al
ulating the fun
tion. Every unsu

essfullookup results in a penalty. Thus a high su

essful lookup ratio is ne
essary inorder to bene�t from memoization. Coupled with the fa
t that most softwarebased fun
tions aren't side-e�e
t-free, the use of memoization seems limited.But when looking \right under your
ode", we �nd that almost all instru
-tions are side-e�e
t-free (ex
ept for memory a

esses). And if the LUTs arededi
ated tables lo
ated on-
hip the lookup and storage times are now veryshort. Thus memoizing instru
tions seems a mu
h better prospe
t than memo-izing fun
tions. This te
hnique is named Instru
tion Memoization (IM) and isthe topi
 of this thesis.1.2 Instru
tion MemoizationInstru
tion Memoization (IM) is a te
hnique that shows great potential forin
reasing pro
essor performan
e. The te
hnique exploits the redundan
y ofinstru
tion results by storing the operands and results of exe
uted instru
tionsin a Lookup Table (LUT), whi
h we will
all a Memo-Table. When the sameinstru
tion type with mat
hing operands is en
ountered again the result is ob-tained from the Memo-Table and instru
tion exe
ution is avoided. The \ex-e
ution time" of the instru
tion is the a

ess time of the Memo-Table, whi
his a single ma
hine
y
le for a small hardware based table. When the lookup isunsu

essful the instru
tion must be exe
uted in one to tens of
y
les (depend-ing on the instru
tion type). Thus for su

essful lookups the exe
ution time ofthese instru
tions is one
y
le, whi
h in turn minimizes their o

upan
y in thedatapath whi
h leads to shorter exe
ution times.The performan
e improvement (speedup) obtained is dependent on four ma-jor fa
tors:1. The per
entage of instru
tions that
an bene�t from memoization. In-stru
tions that have a laten
y (number of
y
les from exe
ution start untilthe result is ready) of a single-
y
le and instru
tions that must be exe
uted(stores to memory) are examples of instru
tions that aren't
andidates formemoization. This fa
tor is de
ided by the appli
ation's instru
tion mixand by the implementation of the mi
ropro
essor (laten
ies of instru
-tions).2. The integration of Memo-Tables in the datapath of the pro
essor: Thestage of the pipeline that Memo-Tables are a

essed, multiple-issue ofinstru
tions, long-laten
y instru
tions
ompleting sooner than expe
ted,and the penalty of an unsu

essful lookup. All these issues a�e
t theusefulness of IM.

1.3. PRIOR AND RELATED WORK 33. The per
entage of su

essful lookups, i.e. the hit-ratio of the Memo-Table. This is in
uen
ed by the nature of the program being exe
uted,how mu
h redundan
y it
ontains, and by the design of theMemo-Table.4. The physi
al integration of IM modules on the pro
essor: The numberof transistors needed to implement IM, the added power
onsumption,and the
omplexity of design all in
uen
e the Cost/Performan
e ratioof implementing IM. This thesis is an ar
hite
tural resear
h, the physi
alaspe
ts of implementation are beyond the s
ope of this work. However theissues will be addressed, tradeo�s
ompared (not always quantitatively),and solutions given for the problems.In this thesis we will explore all four fa
tors in order to understand the im-pa
t of memoization on the pro
essor and in order to obtain the best possibleperforman
e enhan
ement when using IM.1.3 Prior and Related WorkThis se
tion will survey prior and
losely related work. At this point in thethesis we won't
ompare our te
hnique to these works but just present themas is. In
hapter 6 after the te
hnique of IM has been fully presented we will
ompare it to several of the alternate and
omplementing approa
hes of reusingprevious
omputations.1.3.1 Early Use of MemoizationThe
on
ept of memoing was introdu
ed by Mi
hie [1℄ in 1968. The idea is tosave the inputs and results of side-e�e
t-free fun
tions in a table and reuse theresults for mat
hing inputs. Sin
e then it has been used mainly in the
ontextof de
larative languages like Prolog, Lisp, and ML [2, 3, 4℄.In 1982 Harbison [5℄ proposed a sta
k-oriented ar
hite
ture
alled the TreeMa
hine (TM) whi
h assumes the role of an optimizing
ompiler by dete
tingand eliminating
ommon subexpressions (CSEs) and invariant expressions inloops. It performs this by using a value
a
he. Results of instru
tions are savedin the value
a
he. If the same instru
tion is to be exe
uted and its operandshaven't been
hanged, the result is obtained from the value
a
he instead ofbeing performed again. Thus the s
ope of optimizations
an be widened toexpressions that aren't available at
ompile time.The idea of exploiting redundant
omputation for o�-the-shelf RISC ar
hi-te
tures was introdu
ed by Ri
hardson [6℄ in 1992. The results of multipli
ation,division, and square-root instru
tions are saved in dedi
ated tables. When theinstru
tions are to be exe
uted a lookup in the table is performed and if thelookup is su

essful the result is obtained from the table (this is in fa
t memo-ization). This idea was further expanded by Flynn and Oberman [7℄ (1995) toin
lude storing the re
ipro
als of division instru
tions.

4 CHAPTER 1. INTRODUCTION1.3.2 Instru
tion ReuseIn 1997 Sodani & Sohi [8℄ introdu
ed the
on
ept of Instru
tion Reuse (IR).All instru
tions, even single-
y
le instru
tions are
andidates for reuse. Theinstru
tions are inserted in a table
alled the Reuse Bu�er (RB). Instru
tionsin the RB are a

essed using the Program Counter (PC). If the operand valuesof the instru
tion mat
h the operands values in the RB, the result is obtainedfrom the the RB. Variations of the s
heme in
lude mat
hing the operand registernames (requires invalidation of entries if the registers were written into), andmat
hing instru
tions that supply the
urrent instru
tion with its operands(again requires invalidation). The te
hnique of IR is
losely related to IM andin some
ases overlaps it. In
hapter 6 we will des
ribe the di�eren
es in detail.1.3.3 Other Te
hniquesOther te
hniques su
h as Value Predi
tion (VP) (Gabbay & Mendelson [9℄ ,Lipasti, Wilkerson & Shen [10, 11℄, and Sazeides & Smith [12℄), Compiler-Dire
ted Dynami
 Computation Reuse (Connors and Hwu [13℄), and ValuePro�ling (Calder, Feller & Eusta
e [14℄) will be presented in more detail in
hapter 6.1.4 Thesis OutlineThe rest of this thesis
overs the following topi
s: Chapter 2 des
ribes how IMworks and shows the rationale behind its su

ess. Chapter 3 explores variousorganizations of the Memo-Table. Chapter 4 des
ribes the integration of IMinto the pro
essor's datapath. Chapter 5 shows how single-
y
le instru
tions
anuse IM. Chapter 6
ompares IM to other similar resear
h e�orts and
hapter7
on
ludes this thesis. Two appendi
es at the end of the thesis show how IMperforms on real world pro
essors (appendix A) and appendix B widens thes
ope of IM to in
lude fun
tion memoization.

Chapter 2Instru
tion MemoizationIn this
hapter we will des
ribe in detail how Instru
tion Memoization (IM)works and the basi
 stru
ture of the Memo-Table. The idea is to mitigate thee�e
t of multi-
y
le instru
tions (instru
tions with a laten
y of more than one
y
le) by redu
ing their laten
y via IM. The input (operands) and output (re-sult) of parti
ular instru
tion types are stored in a
a
he-like lookup table (theMemo-Table). The Memo-Table is a

essed in parallel to the
onventional
omputation. A su

essful lookup gives the result of a multi-
y
le
omputationin a single
y
le, and a failed lookup doesn't ne
essitate a penalty in
omputa-tion time. Figure 2.1 shows a s
hemati
 layout of the idea. The operands areforwarded in parallel both to a division unit and its adja
ent Memo-Table.2.1 The Memo-TableA Memo-Table is a
a
he-like Look Up Table (LUT), that is pla
ed adja
entto ea
h Fun
tional Unit (FU) that has a laten
y of multiple
y
les. The likenessto a
a
he is due to the fa
t that the values in the LUT
hange dynami
allyover time with the most re
ently used values present in the Memo-Table.Just like in a
onventional
a
he when a value is forwarded to the Memo-Table, a subset of its bits are used to form an index into the LUT. The remain-ing bits are
ompared to the value stored in the indexed entry. If they mat
h,we say that we have a \hit" and the value stored in the entry is returned. Ifthey do not mat
h, we say that we have a \miss", no value is returned and thetable is updated with a new value (evi
ting an \older" entry). Whi
h subset ofbits to use is one of the
hara
teristi
s explored in se
tion 3.6.Unlike a
onventional
a
he where ea
h line
ontains more than one wordand a relatively small asso
iated tag, theMemo-Table
ontains a large tag andjust the one word result in ea
h line. To emphasize this distin
tion, we shalluse entry instead of the traditional line or blo
k. Figure 2.2 shows a Memo-Table with n entries. The shaded area
ontains the results, the unshaded areas
ontains the operands and op
ode (in the
ase where several instru
tion types5

6 CHAPTER 2. INSTRUCTION MEMOIZATION

Result

DIVISION

UNIT

MEMO

TABLE

MUX

hit/miss lineoperation

completed

line

Operand 1

Operand 2

Figure 2.1: A division unit using a Memo-Tablereside in the same Memo-Table) whi
h are
ompared to the operands andop
ode of the instru
tion being memoized. Note that no valid bit is ne
essary,and data is valid at all times even a
ross
ontext swit
hes due to the fa
t thatthe instru
tions stored in Memo-Tables are
ontext free, the result dependsonly on the operands1. The only time invalid data is in a Memo-Table isduring startup, initially loading the op
ode �elds with invalid op
ode solvesthis problem.During exe
ution the operands are forwarded to the appropriate
omputa-tion unit and in parallel, to the
orresponding Memo-Table. If there is a hitin the Memo-Table, its value is forwarded to the next pipeline stage , the
omputation in the FU is aborted and it signals it is free to re
eive the nextset of operands. If there is a miss in the Memo-Table, the
omputation isallowed to
omplete, and the result obtained is forwarded to the next stage andin parallel entered into the Memo-Table.1Ex
ept if di�erent IEEE 754 rounding modes are used.

2.2. THE RATIONALE BEHIND INSTRUCTION MEMOIZATION 7
Operand 1 Operand 2 Opcode Result

Entry 0

Entry 1

Entry 2

Entry n-1 Figure 2.2: Layout of a n entry Memo-Table.2.2 The Rationale Behind Instru
tion Memoiza-tionAfter we have shown the basi
 IM te
hnique we will explain why it should work.To best understand the rationale a few examples will be presented:vsqrt The appli
ation vsqrt takes the square-root of all pixels in an image.We have previously shown [15℄ that neighboring pixels in an image tendto have the same values, thus leading to a high hit-ratio in the Memo-Table.vspatial Performs image enhan
ement based on lo
al histograms. An examina-tion of a sample image, a self portrait of Guya (�gure 2.3), shows that outof 256 possible pixel values only 161 are represented (�gure 2.4). Zoom-ing in to an 8x8 window surrounding Guya's nose (�gure 2.5) shows thatthere are only 11 unique values. Building a histogram of this windows andrunning the following loop:n = N*N; /* N=8 */for(i=0;i<L;i++) /* L = # of values */e += (hist[i℄/n) * log2(hist[i℄/n);results in a 94% hit-ratio when memoizing division. The same is true for
olor images whi
h are
omposed of three \bands" (red, green, and blueimages). Ea
h band displays a similar amount of redundan
y.tom
atv In the following
ode ex
erpt 2:A = 0.25 * (XY*XY+YY*YY)B = 0.25 * (XX*XX+YX*YX)2This ex
erpt was taken from Ri
hardson's paper [6℄.

8 CHAPTER 2. INSTRUCTION MEMOIZATIONThe number of unique pairs is 769. Using an \in�nite" multipli
ationMemo-Table results in an almost perfe
t hit-ratio.As we
an see the nature of the programs and inputs
auses instru
tion repeti-tion. Most Multi-Media appli
ations work on lo
al areas of an image or signalwhi
h may result in the same
al
ulations being performed over and over again.Of
ourse not all programs that exhibit redundan
y have sour
e
ode ex
erptsthat pinpoint the
ause, most don't.
Figure 2.3: A self portrait of Guya.

Figure 2.4: Histogram of the Guya image.Sodani and Sohi [16℄ have performed a detailed analysis of instru
tion rep-etition for the SPEC 95 integer ben
hmarks and have found that most of therepetition originates from internal values of the program (immediates) or fromglobal initialized data. Our
on
lusions are that for most Floating Point ben
h-marks the redundan
y originates from the input sets of the appli
ations [15℄.

2.2. THE RATIONALE BEHIND INSTRUCTION MEMOIZATION 9

Figure 2.5: A blowup of Guya's nose.

Chapter 3The Organization of theLookup TablesThis
hapter is dedi
ated to �nding the near optimal design for Memo-Tablesthat will enable us to re
eive the maximal hit-ratio possible (for �nite Memo-Table sizes). In this
hapter we memoize all instru
tions that have a laten
yof more than one
y
le1. The Memo-Table we will explore is the same asproposed in
hapter 2. Ea
h entry
onsists of two operands, a result, and anop
ode. The organization of the pro
essor's datapath is irrelevant at this stageof the resear
h and will be explored in
hapter 4 after we �x the Memo-Table
hara
teristi
s.The
hara
teristi
s of the Memo-Tables explored are its
a
he-like traits:size, asso
iativity, and repla
ement method, and
hara
teristi
s that are uniqueto memoization su
h as indexing methods (whi
h bits of the values
ompose theindex into the Memo-Table),
ontents (whi
h instru
tions are in ea
h Memo-Table), dete
tion of trivial
al
ulations that
an be
omputed easily (x + 0,y�1, ...),and the relationships between instru
tions types (a+b =
!
 = b�a,...).3.1 Simulation FrameworkTo �nd the optimal design of a Memo-Table we performed a series of exper-iments with an ar
hite
turally detailed simulator: SimpleS
alar [17℄, a RISCinstru
tion-level simulator based upon the MIPS ISA. SimpleS
alar re
eives asinput a binary exe
utable
ompiled for the simulator and exe
utes it down to the
y
le level. All appli
ations were
ompiled using g

 version 2.6.3 with the op-timization
ags -O3 -finline-fun
tions -funroll-loops. We tailored Sim-pleS
alar to in
orporate Memo-Tables in it's design and thus simulate IM.The two indi
ators that measure the su

ess of the memoization are:1Ex
ept memory a

esses whi
h aren't side-e�e
t free (stores) or aren't
ontext free (loads).10

3.1. SIMULATION FRAMEWORK 11Hit-Ratio The hit-ratio of a Memo-Table (number of su

essful lookups di-vided by number of lookups) will show how many instru
tion exe
utionswere avoided.Speedup The end goal of using Memo-Tables is to a

elerate pro
essing; ifthe enhan
ement has no impa
t on performan
e, the extra
omplexity ofadding it isn't worth the e�ort.The emphasis of the simulations in this
hapter will be on enhan
ing the hit-ratios of the Memo-Tables. The speedup a
hieved by using IM will be shownin
hapter 4.3.1.1 SimulationsThe simulations were performed using the SimpleS
alar simulator. As we wantto negate the in
uen
e of the datapath the programs were run through thesim-fast version of the simulator. This version simulates instru
tion exe
utionstep-by-step but doesn't simulate the memory hierar
hy, pipelining, multiple-issue, bran
h predi
tion, or any other ar
hite
tural enhan
ements (ex
ept theuse of Memo-Tables, of
ourse).3.1.2 Ben
hmarksThe ben
hmarks were taken from several sour
es:� SPEC CFP95 - the
oating point
omponent of the SPEC CPU95 suite[18℄.� SPEC CINT95 - the integer
omponent of the SPEC CPU95 suite [18℄.� MediaBen
h - a suite of multi-media and
ommuni
ation appli
ationsfrom UCLA [19℄.The ben
hmark appli
ations are either FP intensive or perform integer mul-tipli
ation and/or division. Appli
ations that don't exe
ute large amounts ofmultiple-laten
y instru
tions
an't bene�t from IM and aren't simulated2.Table 3.1 des
ribes the spe
i�
 appli
ations, the number of instru
tions exe-
uted, and the per
entage of multiple-
y
le instru
tions exe
uted3. Even thoughless than 1% of the instru
tions in integer intensive appli
ations are multiple-
y
le instru
tions we simulate them and give them an equal standing to FP2For this reason adp
m and pegwit from the MB suite and li and go from CINT95 aren'tsimulated. Jpeg from MB and ijpeg from CINT95 are similar so only jpeg is run. m88ksimfrom CINT95 is invariant to any Memo-Table
hanges, 99% of all integer multipli
ations arereused in any
on�guration, thus this appli
ation was dropped from the simulations.3In some
ases the numbers are the sum of several appli
ations that make up a ben
hmark(eg. de
ode and en
ode for mpeg2). The SPEC ben
hmarks were run with the test or trainversions of the inputs in order to keep them relatively short, running them with the referen
einputs gives similar results.

12 CHAPTER 3. THE ORGANIZATION OF THE LOOKUP TABLESsuite appli
ation des
ription input # of insts %MediaBen
h rasta Spee
h re
ognition ex5
1.wav 23M 10.4%mesa 3D graphi
s library hard
oded 130M 17.8%mpeg2 Video
ompression mei16v2.m2v 1282M 7.8%epi
 Image
ompression lenna.pgm 60M 15.5%gsm Spee
h trans
oding
linton.p
m 223M 14.9%ghosts
ript Posts
ript interpreter tiger.ps 1294M 4.4%g721 Voi
e
ompression
linton.p
m 529M 0.6%pgp Cryptography pgptest.pgp 159M 2.3%jpeg Image
ompression monalisa.jpg 161M 0.3%CFP95 tom
atv Ve
torized mesh generation train.in, ITACT=20 818M 10.4%swim Shallow water equations train.in 842M 26.3%su2
or Monte-Carlo method test.in 1050M 12.8%hydro2d Navier Stokes equations test.in 1124M 16.4%mgrid 3D potential �eld train.in, NTIMES=1 382M 14.5%applu Partial di�erential equations train.in, itmax=20 1000M 7.7%turb3d Turbulen
e modeling train.in, nsteps=1 398M 7.5%apsi Weather predi
tion test.in 888M 22.6%fpppp Quantum
hemistry train.in 344M 32.8%wave5 Maxwell's equation test.in,nsteps=2 1389M 31.7%CINT95 g

 C
ompiler 1stmt.i 119M 0.3%
ompress Lempel-Ziv
ompression test.in 35M 0.5%perl Perl interpreter s
rabll.pl, train input 40M 0.4%Table 3.1: Des
ription of ben
hmark appli
ations, inputs, number of instru
-tions exe
uted, and per
entage of multiple-
y
le instru
tions.intensive appli
ations4. We are exploring primarily Memo-Table
hara
ter-isti
s not overall speedup, thus the impa
t of these appli
ations whi
h have adi�erent instru
tion mix than FP appli
ations is important. The following sim-ulation results are the average (harmoni
 mean) hit-ratios of theMemo-Tablesfor all the above appli
ations5.3.1.3 The Instru
tions MemoizedAll the instru
tions memoized have a laten
y of more than one
y
le. Thesein
lude integer division and multipli
ation and all the
oating point instru
-tions. Table 3.2 lists the instru
tions memoized along with their laten
ies andthroughputs6 on the R10000 and 604e7. For ea
h instru
tion type there is a4The integer intensive appli
ations are g721, pgp, and jpeg from MediaBen
h and theCINT ben
hmarks.5The average is unweighed, every ben
hmark, short or long running, has an equal standing.We didn't want the SPEC ben
hmarks, whi
h have a longer exe
ution time, to dominate theresults.6If an unit is pipelined it
an
omplete an instru
tion every
y
le, this is the throughputof the instru
tion.7The 604e doesn't implement the fsqrt instru
tion listed in its instru
tion set, we de
idedto do so in our simulator in order to
ompare the datapaths of both pro
essors (a software

3.2. MEMO-TABLE STRUCTURAL FACTORS 13Memo-Table that stores the operands and results of the instan
es of the in-stru
tion, for a total of 19 su
h Memo-Tables in use.instru
tion MIPS R10000 PPC 604etype lty thpt lty thptInt Division 35 35 20 19Int Multipli
ation 6 6 3 1FP Add/Subtra
t 2 1 3 1FP Comparison 2 1 3 1FP$FP Conversion 2 1 3 1FP!Int Conversion 2 1 3 1Int!FP Conversion 4 1 3 1FP Neg/Abs 2 1 3 1FP Move 2 1 3 1FP Multipli
ation 2 1 3 1FP Division (sp/dp) 12/19 14/21 18/31 18/31FP Sqrt (sp/dp)� 18/33 20/35 50/60 50/60� The 604e doesn't implement the fsqrt instru
tion.Table 3.2: Instru
tion laten
ies and throughputs for the MIPS R10000 and PPC604e.3.2 Memo-Table Stru
tural Fa
torsWe �rst measured the e�e
ts of four fa
tors related to the stru
ture of theMemo-Table rather than to its
ontents. The fa
tors and their levels are:� Size - the number of entries in ea
h Memo-Table, the levels are from 8to 16K entries, and an in�nite table size.� Asso
iativity - the number of entries in ea
h set. The levels are fromdire
t-mapped (set size 1), to 8-way set asso
iative (set size 8), and fullyasso
iative (one set).� Repla
ement Strategy - Whi
h entry is evi
ted from the Memo-Table inthe
ase of a miss. The levels are: repla
e randomly, First In First Out(FIFO), pseudo Least Re
ently Used (where the LRU entry is approxi-mated), Most Re
ently Used (MRU) and true LRU. As memoization isn'tspe
ulative we don't explore any
on�den
e s
hemes, on
e a value is inthe Memo-Table it is valid.� Mapping Strategy - How an entry is mapped to a set. The levels are tohash the Program Counter (like [8℄ do) or hash the values. The values
an be hashed using various te
hniques, simple ones su
h as hashing theLeast Signi�
ant Bits (LSBs), to more
omplex te
hniques whi
h hash theexponent, mantissa or some bit mix of them.implementation of the sqrt fun
tion
an take over 1000
y
les).

14 CHAPTER 3. THE ORGANIZATION OF THE LOOKUP TABLESThe number of simulations needed to perform a full fa
torial design, simulatingevery possible
ombination of all levels, would take: n = Qki=1 ni simulations.In our
ase it is (12 levels of size)�(5 levels of asso
iativity)�(5 levels of repla
e-ment s
hemes)�(6 levels of mapping strategies) = 1800 simulations for ea
h andevery appli
ation. This number is daunting and beyond our pro
essing power.In su
h
ases where a full fa
torial design is impossible, a 2k fa
torial designis used. For ea
h fa
tor two levels or alternatives are
hosen resulting in only16 simulations in our
ase. These simulations
an give us an indi
ation whi
hfa
tors have a higher impa
t on the hit-ratios and whi
h fa
tors have little orno impa
t at all.By using the Sign-Table [20℄ te
hnique it is possible to
ompute the allo
ationof variation of ea
h fa
tor and the intera
tion between fa
tors. The importan
eof a fa
tor is measured by the proportion of the total variation in the result thatis explained by the fa
tor.The levels
hosen for simulation are: Size - 32, 1024 entries; Asso
iativity- dire
t mapped, 8-way set asso
iative; Repla
ement Strategy - random, LRU;Mapping - PC, value (LSBs); The results (harmoni
 mean hit-ratios of all ap-pli
ations) are shown in table 3.3.32 1 rand p
 0.17 32 1 rand val 0.321024 1 rand p
 0.22 1024 1 rand val 0.3932 8 rand p
 0.30 32 8 rand val 0.391024 8 rand p
 0.32 1024 8 rand val 0.5132 1 lru p
 0.17 32 1 lru val 0.321024 1 lru p
 0.22 1024 1 lru val 0.3932 8 lru p
 0.32 32 8 lru val 0.401024 8 lru p
 0.33 1024 8 lru val 0.51Table 3.3: 24 fa
torial design and resulting hit-ratios. The fa
tors and lev-els are size (32, 1024), asso
iativity (dire
t mapped, 8-way set asso
iativity),repla
ement strategy (random, lru) and the hashing s
heme (p
, value).The results obtained are inserted into a Sign-Table. The sample varian
eof the data is
al
ulated by
omputing the Sum of Squares Total (SST), thisnumber
an then be broken into its
omponents. The main
omponents ofvariation are: Mapping s
heme - 55%, Asso
iativity - 31%, and Size - 10%. Thevariation attributed to the repla
ement strategy is 0%. From these numbersand a look at the table we
an make two important observations:1. The mapping s
heme is of utmost importan
e. The left hand side ofthe table whi
h uses the PC as the index into the Memo-Tables shows
onsistently poorer results than the right hand side whi
h uses the operandvalues as indi
es into the Memo-Tables. Thus in future simulations wewill use the operand values only as indi
es. Se
tion 3.6 explains thisphenomena in greater detail.2. The repla
ement strategy is of little importan
e. The top half of the table

3.3. SIZE AND ASSOCIATIVITY 15whi
h uses a random repla
ement strategy has the same results as thebottom half whi
h uses the LRU repla
ement strategy. This is
onsistentwith memory
a
hes where the repla
ement method has little impa
t onthe hit-ratio [21℄. The reason is that values that are highly reused willbe reentered into the Memo-Table, even if they were randomly evi
ted.Be
ause of the simpli
ity of implementing a random repla
ement methodwe use this method in future simulations.The variation allo
ated to size and asso
iativity and the results displayedprohibit us from making
lean
ut de
isions as with the mapping and repla
e-ment method. We must investigate more levels of both size and asso
iativity,we will do this in the next se
tion.3.3 Size and Asso
iativityThe next set of simulations are targeted at determining the highest hit-ratiowith the lowest Memo-Table size and asso
iativity. The levels of size arefrom 16 to 16K entries per Memo-Table (omitting 512, 2K, and 8K sizes) andan in�nitely large Memo-Table (1MB entries), and the levels of asso
iativityare from dire
t-mapped to 8-way set asso
iative and fully asso
iative (for largeMemo-Tables an asso
iativity of 512 was used).

16 64 256 1K 4K 16K
infinity

Size1
2

4
8

fa

Set Associativity

0.2

0.3

0.4

0.5

0.6

0.7

Hit Ratio

Figure 3.1: Hit-ratio as a fa
tor of Memo-Table size and set asso
iativity.

16 CHAPTER 3. THE ORGANIZATION OF THE LOOKUP TABLESA two-fa
tor full fa
torial design is used [20℄ to determine whi
h fa
tor in
u-en
es the hit-ratio more. The total variation
an be divided into parts explainedby fa
tors A (size) and B (asso
iativity) and an unexplained part due to exper-imental errors. The results show that 68% of the variation is attributed to
hanges in the Memo-Tables size and 30% to
hanges in the asso
iativity, 2%of the variation is unexplained.Size/Asso
 1 2 4 8 full16 0.29 0.33 0.35 0.36 0.3632 0.32 0.37 0.38 0.39 0.4064 0.35 0.40 0.42 0.43 0.44128 0.36 0.41 0.44 0.46 0.47256 0.38 0.43 0.46 0.48 0.501K 0.40 0.45 0.49 0.51 0.554K 0.41 0.47 0.50 0.53 0.5716K 0.43 0.48 0.52 0.54 0.58in�nite 0.46 0.51 0.54 0.56 0.60Table 3.4: Tabular version of hit-ratio as a fa
tor of Memo-Table size and setasso
iativity.Figure 3.1 is a 3-D plot of the hit-ratio (z-axis) as a fun
tion of size (x-axis),and asso
iativity (y-axis) (the a
tual results are in table 3.4). Looking at thelesser fa
tor of variation, asso
iativity, shows that raising the asso
iativity fromdire
t-mapped to 2-way gives a
onsiderable hit-ratio enhan
ement and raisingthe asso
iativity beyond 4-way hardly
hanges the hit-ratio. This is fortunate asimplementing a 8-way set asso
iative Memo-Table is the
utting-edge [22℄ of
urrent on-
hip memory
a
he te
hnology whi
h will be used in implementingMemo-Tables. Current on-
hip
a
hes
an perform a 4-way set asso
iative
a
he lookup in a single ma
hine
y
le so there is no reason not to set theasso
iativity of Memo-Tables to 4.Looking at the plot again shows that for sizes 16 to 128 the
urve risesrapidly, from Memo-Table size 256 the
urve starts to
atten. Dividing thehit-ratio of using 256 entry 4-way set asso
iative Memo-Tables with the hit-ratio of using in�nite fully-asso
iative Memo-Tables, shows that 76% of allreusable multiple-
y
le instru
tions
an be reused with moderate size Memo-Tables.Figure 3.2 shows the breakdown of hit-ratios per instru
tion (asso
iativity:4; size: 32{1024). It is noti
eable that the hit-ratios for the integer instru
tionsare amongst the highest and they
ontinue to bene�t from a larger Memo-Table after the hit-ratios for other instru
tions
atten out (as does single pre-
ision to double pre
ision
onversion). For the square-root, FP
omparison, andFP$INT
onversion instru
tions the hit-ratio is invariant to Memo-Tablesizes above 128 entries. For FP move a Memo-Table of size 64 is suÆ
ient.Nevertheless, in order to work with a uniform Memo-Table size we will use abaseline size of 256 in future simulations.Another
onsideration to take into a

ount is the hit-time (the time to

3.4. TRIVIAL CALCULATIONS 17

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

32 64 128 256 1K

H
it

R
at

io

Size

All instructions
F2F conversion
I2F conversion
F2I conversion
FP move
FP subtraction
FP addition
FP negation

32 64 128 256 1K

Size

All instructions
FP multiplication
FP division
Square root
Int multiplication
Int division
FP comparison

Figure 3.2: Breakdown of hit-ratio by instru
tion type (4-way set asso
iativity,random repla
ement, mapping by value).a

ess a Memo-Table,
he
k if the entry is resident in the Memo-Table,and return the result) of a Memo-Table. This time must be a single ma
hine
y
le, with most FP instru
tions having laten
ies of 2-3
y
les, a longer hit-timewill redu
e the e�e
tiveness of IM. Thus the size of a Memo-Table should be
omparable to the size of small on-
hip
a
hes, whi
h have a hit-time of one
y
le. A 256 entry Memo-Table holds 256� 3 = 768 double pre
ision valueswhi
h is 768� 8 = 6144 = 6K bytes. This is
onsiderably less than the on-
hip
a
hes of the MIPS R10000 (32KB), Power PC 604e (32KB) and other leadingmi
ropro
essors. Thus in any
ase the upper limit on the size ofMemo-Tableswill be 1024 entries (24KBytes) with a set asso
iativity of 4.3.4 Trivial Cal
ulationsThe result of a trivial
al
ulation is immediately obtained from the operands ofthe
al
ulation itself. No
al
ulation is performed, just a input
he
k is needed todete
t the o

urren
e of triviality. In all previous simulations trivial
al
ulationswere treated as regular
al
ulations and forwarded to the Memo-Tables. Inthis se
tion trivial
al
ulations will be dete
ted in parallel to the Memo-Tablelookup. Thus only non-trivial
al
ulations will be stored in the Memo-Tables.Table 3.5 shows the trivial
al
ulations dete
ted. Figure 3.3 shows the layout ofa Memo-Table, division unit, and trivial test unit. The
al
ulation is testedfor triviality in parallel to the Memo-Table lookup and FU exe
ution. Ifthe
al
ulation is trivial the result will be obtained from the Trivial Test Unit(TTU),and the Memo-Table lookup and FU exe
ution will be terminated. If

18 CHAPTER 3. THE ORGANIZATION OF THE LOOKUP TABLESAddition a+ 0; 0 + a aSubtra
tion a� 0 aa� a 0Multipli
ation a� 0; 0� a 0a� 1; 1� a aDivision a=1 a0=a 0a=0 Inf0=0 NaNa=a 1Sqrt p1 1p0 0a < 0 NaNConversions 0 0Negation 0 0Absolute Value 0 0Table 3.5: Operation, trivial
al
ulation, and result.the
al
ulation isn't trivial the Memo-Table lookup or FU exe
ution suppliesthe result (for
larity ea
h
ontrol line is drawn using a di�erent line style).The TTU is
omposed of a set of 4
omparators, a FP negative bit test, and
ombinational logi
 to dete
t triviality (�gure 3.4). This design
overs all thetriviality tests de�ned in table 3.5 and enables building a uniform TTU8.Table 3.6 shows the hit-ratios for 256 entry (4-way sets) Memo-Tableswith and without trivial
al
ulation dete
tion, and the per
entage of trivial
al
ulations out of all memoized instru
tions. An average 3% enhan
ementis possible by just adding
ir
uits to perform trivial
al
ulation dete
tion, asopposed to quadrupling the Memo-Tables size in order to a
hieve the sameenhan
ement as shown by �gure 3.5. For FP appli
ations, Memo-Tables ofsize 128 with trivial
al
ulation dete
tion have higher hit-ratios than 1K entryMemo-Tables without trivial
al
ulation dete
tion.Table 3.7 shows the main trivial operation
ontributers. For ea
h instru
tiontype: the trivial operation ratio, the per
entage out of all trivial instru
tions,and the breakdown of trivial values dete
ted is displayed. The tables showsthat 93% of all trivial instru
tions
ontain the values one or zero. Thus we
ansimplify the triviality
he
k by just testing for zero and one. We
an furthernarrow down the s
ope of the triviality test by just
he
king triviality for thetop
ontributers (multipli
ation, addition, subtra
tion, and division) but for thesake of uniformity we will
he
k triviality (zero and one only) for all relevantinstru
tions. Thus our
on
lusions are straightforward: ea
hMemo-Table willhave a TTU integrated into it, this a
hieves a hit-ratio enhan
ement
omparableto a size in
rease of one order of magnitude.8Just as an integer Memo-Table is di�erent than a FP Memo-Table so is an integer TTUdi�erent than a FP TTU.

3.5. CONTENTS OF MEMO-TABLES 19

Result

MEMO

TABLE

DIVISION

UNIT

operation

completed

line

Operand 2

Operand 1

TRIVIAL

TEST

Opcode

trivial/nontrivial line

hit/miss lineMUX

Figure 3.3: Layout of a Trivial Test Unit adja
ent to a Memo-Table andDivision Unit.3.5 Contents of Memo-TablesOur previous simulations used a Memo-Table for ea
h instru
tion type. It ispossible that for di�erent appli
ations someMemo-Tables won't be utilized atall, while others will su�er from
apa
ity misses. Mi
ropro
essors have separateInstru
tion and Data
a
hes to make it possible to a

ess them at the same
y
le, not be
ause this enhan
es the hit-ratio (it doesn't [21℄). On the otherhand one
entralized Memo-Table will su�er from a longer hit-time, mighthave to be multi-ported, might su�er from non-uniform a

ess due to line delays,and disallows di�erent mapping s
hemes for integer and
oating point values.Our previous simulations show that the average number of Memo-Tablesused per appli
ation is 11.7 (out of 19). When
ounting the number of a

essesper Memo-Table we dis
overed that the mean is lower than the standarddeviation for all appli
ations. This shows that there are many tables that area

essed relatively little and a few whi
h are highly a

essed, leading us toassume that using a uni�ed Memo-Table might enhan
e the hit-ratio.Due to the problems in using a uni�ed table mentioned earlier we suggestadding a level betweenMemo-Table per instru
tion to a uni�edMemo-Table.

20 CHAPTER 3. THE ORGANIZATION OF THE LOOKUP TABLES
Comparator Comparator Comparator

a a 0 b 1 b 0

Comparator

b1Opcode

Neg

Test

a

equal/not equal equal/not equal equal/not equal neg/not negequal/not equal

Opcode

Triviality
Detection

a b 0 1 NaNInf

trivial/nontrivial line

Result Source

MUX

MUX

Result

1 2 30

Figure 3.4: Layout of a Trivial Test Unit, the op
ode of the instru
tion deter-mines whi
h
omparisons are used.The motivations for a spe
i�
 setup are the utilization per table, the fun
tionalunits that pro
ess ea
h instru
tion, and the e�e
t of theMemo-Tables' size onthe hit-ratio. Ea
hMemo-Table will
ontain one heavily exe
uted instru
tionand one or more under utilized instru
tions. Thus are
hoi
e of tables is:1. Integer - integer multipli
ation (heavily used) and division (lightly used).Both use the same unit (604e) or adja
ent units (R10000). This table willbe the largest (double size) as the hit-ratio
onstantly rises for a largerMemo-Table size (se
tion 3.3). Total dynami
 instru
tion
ount:35%.2. Long Laten
y -
oating point multipli
ation (heavily used), division,and square root taking. Usually share
ir
uitry in most mi
ropro
essors.Total dynami
 instru
tion
ount: 24%.3. Addition -
oating point addition. Total dynami
 instru
tion
ount:18%.4. Subtra
tion -
oating point subtra
tion (moderately used), negation,

3.5. CONTENTS OF MEMO-TABLES 21appli
ation org hr new hr trivial ratiomesa 0.42 0.51 23%epi
 0.15 0.18 4%rasta 0.32 0.37 9%mpeg2 0.58 0.65 51%gsm 0.05 0.08 3%ghosts
ript 0.96 0.97 57%jpeg 0.82 0.84 54%g721 0.49 0.51 22%pgp 0.07 0.07 0%tom
atv 0.19 0.28 13%swim 0.19 0.22 7%su2
or 0.25 0.26 5%hydro2d 0.90 0.93 46%mgrid 0.69 0.71 6%applu 0.40 0.43 7%turb3d 0.75 0.83 62%apsi 0.35 0.40 16%fpppp 0.40 0.44 8%wave5 0.11 0.12 1%g

 0.94 0.96 72%
ompress 0.13 0.13 8%perl 0.96 0.97 1%harmoni
 mean 0.46 0.49 22%Table 3.6: Hit-ratios for 256 entry (4 entries to a set) Memo-Tables with andwithout trivial
al
ulation dete
tion, and the per
entage of trivial
al
ulationsout of all memoized instru
tions.instru
tion tr/a
 inst/all value breakdown (%)0 1 = �Int Multipli
ation 0.38 0.31 45 55 0 0FP Multipli
ation 0.23 0.25 86 14 0 0FP Addition 0.26 0.22 100 0 0FP Subtra
tion 0.24 0.11 42 0 52 0Int Division 0.25 0.3 46 29 24 0FP Division 0.13 0.2 56 30 14Int!FP Conversion 0.8 0.2 100 0 0 0All Instru
tions 0.22 1.00 72 21 7 0Table 3.7: Breakdown of triviality per instru
tion type. Column 2 is the trivialratio out of all Memo-Table a

esses,
olumn 3 is the ratio between the in-stru
tions' trivial operations to all trivial operations, and the last
olumns showthe breakdown of the trivial values.absolute value and move. Using Memo-Tables both for addition andsubtra
tion, although they use the same
ir
uitry, makes it possible to

22 CHAPTER 3. THE ORGANIZATION OF THE LOOKUP TABLES
��
��
��
��
��

��
��
��
��
��

��
��
��

��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

Change

Ratio

Hit

6%

128
trivial

256 256
trivial

1024

3%

3%

3%

6%

6%

128

integer applications

all applications

fp applications

Figure 3.5: Changes in hit-ratio of Memo-Tables with and without trivial
al
ulation dete
tion (base Memo-Table of size 128/4).a

ess both in the same
y
le. Total dynami
 instru
tion
ount:11%.5. Comparison & Conversion -
oating point
omparisons and
onver-sions from single pre
ision to double pre
ision to integer formats. Thistable will be smaller (half size) due to the fa
t that the hit ratios of
om-parisons and
onversions hardly grow with in
reases inMemo-Table size(se
tion 3.3). Total dynami
 instru
tion
ount: 12%Table 3.8
ompares using single instru
tionMemo-Tables, multiple instru
tionMemo-Tables and a uni�ed Memo-Table. Using multiple Memo-Tables,has the same bene�ts of using single Memo-Tables with a better utilization.Using a uni�ed Memo-Table has a better utilization but
an have a higherhit-time whi
h o�sets the possible hit-ratio enhan
ement.trait single multiple uni�edlookup time small table, small table, larger table,low lookup time low lookup time higher lookup timetable a

ess
lose to FU,
lose to FU, distant from some FUs,uniform a

ess uniform a

ess nonuniform a

essports read/write read/write 1 op
ode, read/write 1 op
ode, 2 operands,2 operands, 1 result 2 operands, 1 result 1 result, per FUmapping di�erent mapping di�erent mapping same mapping s
hemes
hemes s
hemes for di�erent data typesutilization low, some tables moderate, 2-5 instru
tion high, all instru
tionsaren't used types per table use 1 table
ontention low, only one moderate, several high, all instru
tionsinstru
tion per table instru
tions per table
ompete for entrieshardware high, needs
omparators moderate,
omparators very low, one set
omplexity and TTU per instru
tion and TTU per table of
omparators and TTUTable 3.8: Comparison of the three Memo-Tables
ontents s
hemes.

3.5. CONTENTS OF MEMO-TABLES 23
single(64)

single(128) multiple(512)
unified(1024)

unified(2048)
multiple(256)

��
��
��
��

��
��
��
��

fp applications

all applications

integer applications
��
��
��
��
��

��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

0.40

0.50

0.60
Hit

Ratio

Figure 3.6: hit-ratio of single, multiple, and uni�ed
ontents s
heme. Ea
hMemo-Table is 4-way set asso
iative, uses random repla
ement, uses the LSBsof the operands (and op
odes) as indi
es toMemo-Table entries, and performstrivial
al
ulation dete
tion.Figure 3.6 shows the hit-ratios of 19 single instru
tion 64 and 128-entryMemo-Tables, 5 multiple instru
tion 256 and 512-entry Memo-Tables, anda uni�ed 1024 and 2048-entry Memo-Table. Ea
h level uses approximatelythe same amount of storage. The rest of the
hara
teristi
s of the the Memo-Tables are 4-way set asso
iativity, random repla
ement, indexing using theLSBs of the values and op
odes, and trivial
al
ulation dete
tion.The �gure shows the multiple table approa
h is better than the single tableapproa
h and
omparable to the uni�ed approa
h. Given that using multi-ple Memo-Tables is a good
ompromise between single Memo-Tables and auni�ed Memo-Table (table 3.8), and that the di�eren
e in hit-ratios is negli-gible (�gure 3.6) our de
ision is to use multiple Memo-Tables ea
h
ontainingseveral instru
tion types.Using multipleMemo-Tables also answers the question: \How does addingMemo-Tables impa
t the die size of the pro
essor?". It is obvious that addingMemo-Tables requires additional transistors and wires to bring the operandsand results from the FUs to the Memo-Tables. However, the size of 5x6KBMemo-Tables is 30KB. Modern mi
ropro
essors are already integrating L2
a
hes with sizes in the 256KB range (Intel Pentium-III, AMD Athlon) withfuture pro
essors proje
ting on
hip
a
hes in the ex
ess of 1MB. In fa
t, mi
ro-pro
essor designers are looking for beter uses of their transistors than just usingthem as
a
hes. IM �ts this role perfe
tly. The wire problem is solved by usingmultiple Memo-Tables lo
ated adja
ent to the FUs that use them, no long,
ross
hip, wires are needed.3.5.1 Exploiting Inverse and Commutative OperationsThe multipli
ation, addition, and equality operations are
ommutative, for ex-ample: a � b =
 ! b � a =
. It might be possible to exploit this trait byperforming a
ommutative lookup in the Memo-Table. The index
reated byhashing the bits of a; b are the same as for b; a. All we have to do now is
omparethe entries in the set to a; b and to b; a. Thus if a previous instru
tion
al
ulated

24 CHAPTER 3. THE ORGANIZATION OF THE LOOKUP TABLESb�a we will re
eive a hit for an instru
tion
al
ulating a�b. The disadvantage ofthis te
hnique is that we now need twi
e the amount of
omparators as before.4-way set asso
iativity be
omes 8-way.Another mathemati
al rule we
an exploit is the properties of inverse opera-tions. If a+ b =
 were exe
uted and inserted into the Addition Memo-Table,the information to exe
ute operations a =
� b and b =
�a are residing in theMemo-Table. The question is
ould we exploit this information and memoizeinstru
tions that weren't exe
uted even on
e yet? The same is true for FP mul-tipli
ation and division. We
an't implement the same idea for integers be
ause
=b = a doesn't ne
essarily imply that a � b =
 (100=3 = 33, 3 � 33 = 99). Thesame problem exists for
onversions. Converting a FP number to an integeror
onverting a double pre
ision FP number to a single pre
ision FP numberresults in loss of a

ura
y. Therefore trying to perform an inverse lookup
anlead to wrong results (1:3! 1 but 1! 1:0). We built an elaborate me
hanismto enable inverse lookup and simulated it.In addition we
omposed aMemo-Table whi
h we will
all the ComparisonMemo-Table, whi
h
ontains the equal, less-then, equal or less-then instru
-tions. In order to have
omparisons bene�t from previous
omparisons betweenthe same two numbers we altered the Memo-Table to store the relationshipsbetween two numbers in the result �eld. It is either -1 (a < b), 0 (a = b), or 1(a > b)9.We ran the ben
hmarks on this new organization whi
h performs
ommuta-tive and inverse lookups and stores the relationships between pairs of numbers.The results were disappointing, no in
rease in the hit-ratio was measured. Thesenew ideas were abandoned in future simulations.3.6 Mapping StrategiesUntil this point in our resear
h we have indexed the Memo-Tables using theoperand values and spe
i�
ally the least-signi�
ant-bits (LSBs) of the value(s)(XORed them together if a two operand operation is memoized) and used themas an index into a Memo-Table. The bene�t of this s
heme is it's simpli
ityand the fa
t that integer values and FP values
an be dealt with in a similarmanner. Mapping using the PC was shown to be inferior.For integer values this mapping strategy is optimal as the LSBs show thehighest entropy [23℄. For FP numbers this isn't ne
essarily true. Due to theIEEE 754 representation s
heme for FP numbers, where the numbers are nor-malized, the most-signi�
ant-bits (MSBs) of the mantissa or the LSBs of theexponent would seem to be likely
andidates for index bits. Another reason notto use the LSBs for FP numbers is in the
ase where integers are the inputs.In this
ase the LSBs are all zero, leading to all numbers being mapped to thesame entry.9We are assuming that any
ompare instru
tion
an provide this information, this mightnot be true for all ar
hite
tures.

3.6. MAPPING STRATEGIES 25Using these assumptions we devised four additional mapping s
hemes (as-suming the number of sets in a Memo-Table is n):� Least Signi�
ant Bits (lsb) - The log2 n LSBs of the mantissa.� Mantissa (mant) - The log2 n most-signi�
ant-bits of the mantissa.� Mixture 1 (mix1) - The LSB of the exponent and the log2 n� 1 MSBs ofthe mantissa.� Mixture 2 (mix2) - The 2 LSBs of the exponent and the log2 n� 2 MSBsof the mantissa.� Exponent (exp) - The log2 n least-signi�
ant-bits of the exponent.Figure 3.7 shows the s
hemes.
lsb

mant

mix
exponent mantissa

expFigure 3.7: The index bits are taken from the LSB of the exponent and MSBof the mantissa.The 5 s
hemes (and PC indexing) were run on the re
ommended Memo-Tables of se
tion 3.5: multiple Memo-Tables of size 256 and 512 and set-asso
iativity of 4. An asso
iativity of 1 and 2 was simulated as well, as a goodmapping s
heme may result in having to use a lesser degree of asso
iativity.Figure 3.8 shows the hit-ratios of the FP appli
ations (as 4 of the 6 s
hemesaren't relevant to integer appli
ations).The graph shows that for a lower asso
iativity the \middle" s
hemes (mant,mix1, mix2) result in noti
eable better hit-ratios. When the asso
iativity is 4the di�eren
es are mu
h smaller with exp, mix1, and mix2 having a slight edgeon the lsb and exp s
hemes. This is due to the
exibility of repla
ing entries ina set. In a dire
t-mapped Memo-Table mapping two instru
tions to the sameset results in
on
i
t misses, a better mapping s
heme avoids this. If the degreeof asso
iativity is higher, instru
tions mapped to the same set
an
ontinue toreside together in the Memo-Table, thus the mapping s
heme has less impa
t.For any degree of asso
iativity and any size (the results for 512 entryMemo-Tables add one per
ent of hit-ratio to the 256 entry results) using the operandvalues as indi
es results in
onsiderable higher hit-ratios than using the PC asan index. The
on
lusion of this se
tion is that using a mix of bits from themantissas and exponents of the operand values results in slightly better hit-ratios than the other operand value s
hemes and mu
h better hit-ratios thanthe PC based s
heme.

26 CHAPTER 3. THE ORGANIZATION OF THE LOOKUP TABLES
lsb mant mix2mix1 exp

��
��
��
��

��
��
��
��

direct-mapped

2-way associativity

4-way associativity
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

0.40

0.45

0.50

Ratio

Hit

Figure 3.8: hit-ratios of a 256 entry Memo-Table (set asso
iativity 1/2/4)using the 6 mapping s
hemes3.7 SummaryThis
hapter investigated the stru
ture of theMemo-Tables used in Instru
tionMemoization (IM). The
hara
teristi
s of the Memo-Tables explored were itssize, asso
iativity, repla
ement method, indexing methods,
ontents (instru
tionmix in the Memo-Tables) and the dete
tion of trivial
al
ulations.Our main
on
lusions from the simulations regarding the organization ofMemo-Tables are:� The repla
ement method is irrelevant, random is as good as LRU.� A degree of set asso
iativity higher than four is unne
essary.� Enlarging a Memo-Table beyond a
ertain point results in diminishingreturns as the hit-time in
reases as well as the hit-ratio.� Using several Memo-Tables for di�erent instru
tion types enables a
-
essing them
on
urrently but not having to implement a Memo-Tablefor every instru
tion type.� Inverse and
ommutative operation lookup is hardly su

essful and isn'tworth the added Memo-Table
omplexity.� Using the ProgramCounter (PC) as the index into aMemo-Table resultsin mu
h poorer hit-ratios than when the operand values are used as indi
es.� By dete
ting trivial
al
ulations, and not entering the operations into theMemo-Tables, a hit-ratio improvement is a
hieved that is
omparableto a four-fold size in
rease.Spe
i�
ally we re
ommend implementing IM with 5 Memo-Tables: (i) forlong-laten
y instru
tions (FP div, mult, sqrt), (ii) integer instru
tions (INT divand mult), (iii) FP
omparisons and FP,INT
onversions, (iv) FP addition, (v)and all other FP instru
tions (sub, neg, ...). Ea
h Memo-Table
ontains 256entries in sets of 4 (the Integer Memo-Table's size is 512 and the Comp ConvMemo-Table's size is 128) . Entries are repla
ed randomly and are indexedby the 2 LSBs of the exponent and the 6 MSBs of the mantissa XORed with

3.7. SUMMARY 27the op
ode. Trivial
al
ulations aren't entered into the Memo-Tables but aredete
ted with dedi
ated
ir
uitry. This organization yields an average hit-ratioof 0.50, this is over 80% of the hit-ratio obtained when using an in�nite fully-asso
iative Memo-Table (0.60 hit-ratio).

Chapter 4Integrating IM in aPro
essor's DatapathThis
hapter is where we show how IM is integrated into a pro
essor's dat-apath and enhan
es exe
ution. We will �rst integrate multi-
y
le instru
tionmemoization (m
IM) in a mi
ropro
essor's datapath (se
tion 4.1.4), show thespeedup attained (se
tion 4.2), and explore the in
uen
e of several datapath
hara
teristi
s on IM (se
tion 4.3). In the next
hapter we will widen the s
opeof IM to in
lude single-
y
le instru
tions.4.1 A Basi
 Mi
ropro
essor Design4.1.1 Pipeline StagesThe SimpleS
alar simulator, whi
h is modeled after the MIPS series pro
essors,possesses a �ve stage pipeline for all non Load/Store instru
tions (�gure 4.1):1. Fet
h: Instru
tions are fet
hed from the Instru
tion Ca
he and stored inthe Instru
tion Fet
h Queue (IFQ).2. De
ode: Instru
tions are read from the IFQ and de
oded. Their operandsour
es are de�ned: either from the Register File (RF) or from instru
tionsthat are already in the pipeline. The instru
tions are entered into theRegister Update Unit (RUU) (named also the A
tive List (R10000) orReorder Bu�er (604e)) where they will reside until
ommitted.3. Issue: When an instru
tion's operands are available it is issued to a freeFun
tional Unit (FU) to be exe
uted, instru
tions are issued out-of-order.An instru
tion
an be delayed in this stage until it's operand dependen
iesare satis�ed and a FU is available.4. Exe
ute: The instru
tion is exe
uted by one of the FUs (there might beseveral types and more than one of ea
h type). For multi-
y
le instru
tions28

4.1. A BASIC MICROPROCESSOR DESIGN 29
RUUIFQ

Cache
Instruction

Register
File

Fetch Decode Issue

Commit

Execute

IALU

MMU

FADD

FMULT

IMULT

Figure 4.1: Datapath of basi
 mi
ropro
essor.this stage takes several
y
les. Results are written ba
k into the RUU,where instru
tions wait to be
ommitted.5. Commit: The instru
tion is
ommitted by having its result written intothe RF and it is removed from the RUU. Instru
tions are
ommitted inprogram order, thus even though an instru
tion has been exe
uted it
an'tbe
ommitted until all previous instru
tions have been
ommitted.4.1.2 Fun
tional UnitsThe pro
essor simulated has �ve di�erent FU types that exe
ute the pro
essor'sinstru
tion set:1. Integer ALU (IALU): Exe
utes all integer instru
tions (addition, sub-tra
tion, logi
al operations, shifts,
omparisons, and bran
hes) with theex
eption of multipli
ation and division. All instru
tions have a laten
yof one
y
le.2. Integer Multiply Unit (IMULT): Exe
utes integer division and mul-tipli
ation. The unit may be pipelined for multipli
ation, division isn't

30 CHAPTER 4. INTEGRATING IM IN A PROCESSOR'S DATAPATHpipelined.3. Memory Unit (MMU): Exe
utes Load/Stores from the L1
a
he.4. Float Add Unit (FADD): Exe
utes
oating point addition, subtra
-tion,
omparisons,
onversions, negations, and absolute value. The unit ispipelined.5. Float Multipli
ation Unit (FMULT): Exe
utes
oating point multi-pli
ation, division, and square-root taking. The unit is pipelined only formultipli
ation.4.1.3 Pro
essor Chara
teristi
sL1 Instru
tion Ca
he 16-KBytes, 32-Byte blo
ks, dire
t-mappedL1 Data Ca
he 16-KBytes, 32-Byte blo
ks, 4-way asso
iativeL2 Uni�ed Ca
he 256-Kbytes, 64-Byte blo
ks, 4-way asso
iativeMemory Laten
ies (
y
les) L1 hit - 1, L2 hit - 6, L2 miss -18Bus Interfa
e 64-bit data, 32-bit addressBran
h Predi
tion 2048-entry BTB, 2-bit
ountersRegisters 32 General Purpose, 32 Floating PointFun
tion Units 2 IALU, 1 IMULT1 FADD unit, 1 FMULT, 2 MMUInstru
tion Laten
ies Integer multipli
ation: 4,1& Throughputs Integer division: 20,19All other integer instru
tions: 1,1Floating point multipli
ation: 3,1Floating point division: 20,20Floating point Sqrt: 35,35All other
oating point instru
tions: 2,1Pipeline attributes 4-instru
tions fet
hed, de
oded, issued,and
ommitted per
y
le; 16 instru
tions in RUU,out-of-order exe
ution, in-order retirementTable 4.1: Chara
teristi
s of basi
 mi
ropro
essor.The
hara
teristi
s of the basi
 datapath we used in our �rst set of simu-lations is listed in table 4.1. This pro
essor is
alled the basi
 pro
essor. It's
hara
teristi
 values where taken from two popular RISC pro
essors, the MIPSR10000 [24℄ and PPC 604e [25℄, and from the default values of the SimpleS
alarsimulator.4.1.4 Integrating IMThe 5Memo-Tables des
ribed in the previous
hapter are integrated adja
entto the relevant FUs (�gure 4.2). The questions we are
onfronted with are: Atwhat stage in the pipeline is memoization performed? What is the laten
y of

4.1. A BASIC MICROPROCESSOR DESIGN 31
MT

Integer

MT

MT
Subtract

MT

MT
Long-Lat

Comp-Conv

Addition

IALU

MMU

FADD

FMULT

IMULT

Figure 4.2: Integration of IM in the datapath.a Memo-Table lookup? How many lookups per
y
le
an a Memo-Tablesustain? We will answer the questions in the following se
tions.
Pipeline StageAs the instru
tion's operands must be ready before memoization may
ommen
ethere are three alternatives:� Exe
ute stage: After the instru
tion is allo
ated to a FU the Memo-Table lookup and instru
tion exe
ution are performed in parallel. A hitterminates the exe
ution, a miss results in the
ompletion of exe
ution andupdating the Memo-Table with the result. Su

essful lookups
ompletein 1
y
le, unsu

essful lookups
omplete in the laten
y of the instru
tion.

32 CHAPTER 4. INTEGRATING IM IN A PROCESSOR'S DATAPATH
MT

Lookup

Fetch Decode Issue Execute Commit

instruction’s latency
cycles, the

Save multiple

Overhead
free
lookup

� Issue stage: When the operands are ready we perform a Memo-Tablelookup, whether a FU is ready or not. A hit results in the instru
tionbypassing the exe
ute stage, a miss results in the instru
tion waiting for aFU, exe
uting, and updating the Memo-Table. Su

essful lookups
om-plete in 1
y
le and may gain
y
les if a FU isn't available. Unsu

essfullookups lose one
y
le due to the lookup, wait for a FU to be available,and then
omplete in the laten
y of the instru
tion. Thus an instru
tionmay spend extra
y
les in this stage due to the Memo-Table lookup.
MT

Lookup

Fetch Decode Issue Execute Commit

Save multiple
cycles if FU

isn’t free instruction’s latency
cycles, the

Save multiple

Misses pay a
penalty if a FU
is free

� De
ode stage: If during the de
ode stage it
an be determined that theoperands are available, and if they
an be read, and if a Memo-Tablelookup
an be performed then memoization is possible in this stage. Forhigh-speed pro
essors su
h as the Alpha [26℄, whi
h requires a pipelinestage just to a

ess the register �le, this is impossible. For other pro
es-sors with longer pipeline stages this might be possible with small Memo-Tables (with lower lookup times). A hit
ompletely bypasses the issueand exe
ute stage in one
y
le. A miss
ontinues normal exe
ution.

4.1. A BASIC MICROPROCESSOR DESIGN 33
Fetch Decode Issue Commit

MT
Lookup

cycles if FU
isn’t free instruction’s latency

cycles, the
Save multiple

Only 12% of hits ready
at this stage, need very
long stage in order to complete lookup

Execute

Save multipleSave 1
cycle

Memoization in the de
ode stage has the most potential for speedup but only12% of all hits have their operands ready at this stage and we would need a veryaggressive design to enable a Memo-Table lookup at this stage. Memoizationin the issue stage eliminates the need to wait for a FU and
an
onserve power[27℄ if instru
tion exe
ution isn't started, however in the
ase of a miss there is anoverhead of the lookup time if a FU was available but wasn't used. Memoizationin the exe
ute stage is overhead free but the potential gain is the lowest andlimited to the instru
tion's laten
y (less one
y
le for the lookup).A hybrid solution whi
h results in a win-win situation is to perform memo-ization in the exe
ute stage if a FU is available and to perform it in the issuestage if not. This way instru
tions that
an't issue due to a stru
tural hazard
an still bene�t from memoization without paying the lookup penalty. Futurereferen
es will
all this s
heme: memoization in the issue stage.A

esses to a Memo-Table in this stage are
ounted as issues even if thelookup failed and the instru
tion must wait in the issue stage until a FU is avail-able. The alternative, not to
ount Memo-Table lookups as issues, assumesthat the pro
essor
an handle more than four instru
tions (the issue width) per
y
le. This demands resour
es that aren't available to the pro
essor. We de-
ided not to make this assumption.
MT

Lookup

instruction progresses to
execute stage

If an FU is available:

Fetch Decode Issue Execute Commit

available: perform
If an FU isn’t

memoization

34 CHAPTER 4. INTEGRATING IM IN A PROCESSOR'S DATAPATHMemo-Table Laten
y and ParallelismOur assumption is that aMemo-Table lookup has a laten
y of one
y
le. Thisis based on the a

ess time of on-
hip
a
hes whi
h
an perform several tag
ompares (in the
ase of a set asso
iative
a
he) and retrieve the
a
hed datain a single-
y
le. Thus it should be possible to
ompare the operands of aninstru
tion with a Memo-Table entry and retrieve the result in a single
y
le.The only di�eren
e between the lookups is the size of data to
ompare.The data
a
he tag is at the most 64-bits wide (32-bits for most pro
essors),the Memo-Table tag may
ontain 2 FP numbers and an op
ode (133 bits).However the
omparison is a bitwise equality test so the added gate delay dueto the wider tags shouldn't be mu
h very big.The same
omparison to
a
hes
an be made in order to determine themaximum number of lookups per
y
le. Most L1
a
hes
an sustain two lookupsper
y
le, so we will assume that ea
h Memo-Table is limited to two a

essesper
y
le (both lookup or update).4.2 Basi
 Pro
essor SpeedupOur �rst set of experiments simulates the basi
 mi
ropro
essor with IM per-formed in the issue stage only if an FU isn't available. For all ben
hmarkssimulated the dynami
 Fra
tion Enhan
ed (FE)1 , hit-ratio, and speedup areshown in table 4.2. The FE was measured by simulating a pro
essor where allmulti-
y
le instru
tions have a laten
y of one
y
le and exe
ute without theneed of a FU. The di�eren
e between this run and a regular run is the FE.The table shows that there is a
ertain
orrelation between the FE to thespeedup, while there is a lesser
orrelation between hit-ratio and speedup. Fig-ure 4.3 whi
h shows the a
tual points and the best-�t lines (nonlinear leastsquares �tting using the Marquardt-Levenberg algorithm), depi
ts this fa
t.For example, the integer ben
hmarks (g721, jpeg, pgp, g

, perl, and
ompress,whi
h are
ir
led in �gure 4.3), show a very low speedup, even though theyhave relatively high hit-ratios, due to their low FEs. Floating Point intensiveben
hmarks show a mu
h higher speedup due to a higher FE. Figure 4.4 showsthe breakdown of speedup by suite (SPEC, MB) and data type (Int, FP). Thisshows that we must widen the s
ope of memoization to en
ompass more in-stru
tions and thus enhan
e more appli
ations. Chapter 5 is devoted to thistask.1Amdahl's law [21℄ states that the speedup obtained by using an enhan
ement isTnew = Told � ((1� FE) + FE=SE):Fra
tion Enhan
ed (FE) is the fra
tion of
omputation time in the original ma
hine that
an use the enhan
ement. Speedup Enhan
ed (SE) is the improvement gained if only theenhan
ement mode
ould be used.

4.3. MEASURING ATTRIBUTES OF THE DATAPATH 35appli
ation FE hr spdpmesa 20% 0.51 1.09epi
 23% 0.20 1.05rasta 12% 0.40 1.06mpeg2 8% 0.64 1.07gsm 13% 0.09 1.02ghosts
ript 25% 0.97 1.33jpeg 1% 0.75 1.00g721 1% 0.54 1.01pgp 4% 0.12 1.01harmoni
 mean 12% 0.47 1.07tom
atv 10% 0.30 1.04swim 24% 0.28 1.08su2
or 14% 0.12 1.02hydro2d 20% 0.92 1.21mgrid 24% 0.70 1.27applu 6% 0.58 1.04turb3d 10% 0.46 1.04apsi 38% 0.39 1.16fpppp 6% 0.44 1.02wave5 16% 0.34 1.05g

 1% 0.96 1.01perl 0% 0.97 1.00
ompress 3% 0.27 1.01harmoni
 mean 13% 0.55 1.07harmoni
 mean 13% 0.52 1.07Table 4.2: FE, hit-ratios, and speedups on the basi
 pro
essor when IM isimplemented.4.3 Measuring Attributes of the DatapathIn order to gauge the impa
t of di�erent datapath attributes on the e�e
tivenessof IM we will
hange attributes of the datapath and the memoization pro
ess andexplore their impa
t on the hit-ratio, pro
essor performan
e (measured in IPC),fra
tion enhan
ed, and speedup. We
hose eight attributes of the datapath andMemo-Tables to variate:1. Pipeline Width: The maximal number of instru
tions that
an befet
hed, de
oded, exe
uted, and
ommitted ea
h
y
le. Can vary froma width of 1 (no multiple-issue at all) and upwards.2. Instru
tion Window: The maximal number of instru
tions the pro-
essors \sees" in any given
y
le. Only these instru
tions
an be issuedout-of-order to the FUs. Must be at least the width of the pipeline.3. Bran
h Predi
tion: The s
heme used to predi
t the out
ome of bran
hesand thus avoid
ontrol hazards. Can vary from simple taken/nottaken

36 CHAPTER 4. INTEGRATING IM IN A PROCESSOR'S DATAPATH
1

1.1

1.2

1.3

1.4

10% 20% 30% 40%

S
pe

ed
up

Fraction Enhanced (FE)

O OOOO

1

1.1

1.2

1.3

1.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
pe

ed
up

Hit Ratio

OOO OO OFigure 4.3: Correlation between FE to speedup and between hit-ratio to speedup(integer appli
ations are
ir
led). Lines are best �t using the Marquardt-Levenberg algorithm.s
hemes to a \perfe
t" predi
tion s
heme.4. Fun
tional Units: The number of FUs of ea
h type available, must beat least one of ea
h type.5. Instru
tion Laten
ies: The number of
y
les it takes to
omplete theExe
ute stage of ea
h multi-
y
le instru
tion.6. Memory Hierar
hy: The
apa
ity, line size, asso
iativity, hit/miss timeof the
a
hes,
an vary from a perfe
t
a
he to no
a
he at all.7. Memoization Laten
y: The laten
y of a Memo-Table lookup.8. Memoization Stage: Could be either at the issue (hybrid solution) orexe
ute stages.

4.3. MEASURING ATTRIBUTES OF THE DATAPATH 37
all applications

integer applications

By Data Type
1.00

1.02

1.04

1.06

1.08

1.10

Speedup

By Suite

MB applications

fp applications

SPEC applications

Figure 4.4: Breakdown of speedup by appli
ation suite (SPEC, MediaBen
h)and by data type (FP, Int) .In order to perform a full fa
torial design we would have to perform thousandsof simulations, even a 2k fa
torial design (as performed in the previous
hapter)would take 256 simulations. However performing a 2k�p fa
torial design withp = 4, ne
essitates only 16 simulations but provides almost the same level ofa

ura
y. The levels of ea
h of the above 8 fa
tors used are:Fa
tor Low Level High LevelInstru
tion Window 8 32Pipeline Width 2 8Bran
h Predi
tion Predi
t taken Perfe
t predi
tionFun
tional Units 2 IALU, 1 IMULT, 2 MMU 4 IALU, 2 IMULT, 2 MMU1 FADD, 1 FMULT 2 FADD, 2 FMULTInstru
tion Laten
iesint multipli
ation 6,6 3,1int division 35,35 20,20fp multipli
ation 3,1 2,1fp division 31,31 20,20fp sqrt 50,50 35,35Memory Hierar
hy Basi
 Perfe
t memory a

essMemoization Laten
y 2
y
les 1
y
leMemoization Stage Exe
ute stage Issue stageWe measured the hit-ratio, speedup, FE, and IPC (Instru
tions Per Cy
le)for ea
h simulation. The following sub-se
tions present and explain the resultsfor ea
h of the measurements.4.3.1 Hit-RatioThe minimal and maximal values of the hit-ratio are 0.51 and 0.63. Using theSign Table method [20℄ to allo
ate the variation between fa
tors shows that 47%

38 CHAPTER 4. INTEGRATING IM IN A PROCESSOR'S DATAPATHof the allo
ation is attributed to the bran
h predi
tion me
hanism, 27% to thepipeline width, window size and their
ombination and an additional 24% to the
ombinations of bran
h predi
tion with pipeline width and window size. Thememory hierar
hy, number of FUs and their laten
ies and the stage and laten
yof memoization have no impa
t on the hit-ratio.The allo
ation of variation is
onsistent with the results that show that forthe runs in whi
h the bran
h predi
tion rate is perfe
t the hit-ratio is the lowest.This is explained by the fa
t that instru
tions are re-exe
uted when the bran
hpredi
tion rate is low. The following
ode ex
erpt explains the phenomena:/* 1 */ if (a < b)/* 2 */
 = a + 2.5;/* 3 */ else/* 4 */
 = b + 2.5;/* 5 */ d = a*b;The instru
tion at line 5 isn't dependent on the result of the
omparison atline 1. If the
omparison is predi
ted as being taken lines 2 and 5 are exe
uted,if later the predi
tion turns out to have been in
orre
t the pipeline is
ushedand lines 4 and 5 are exe
uted. Thus the
al
ulation at line 5 resides in one ofthe Memo-Tables and a lookup results in a hit. This
ase was the primaryreason Sodani and Sohi [8℄ started exploring instru
tion reuse, they named it\squash reuse".A wider pipeline and larger instru
tion window raise the IPC, thus moreexe
uted but not yet
ommitted instru
tions are
ushed during a bran
h mis-predi
tion, whi
h in turns raises the Memo-Tables hit-ratio. The highest hit-ratio, 0.63, is a
hieved when the bran
h predi
tion rate is low (a predi
t takens
heme is used) and the pipeline width (8) and window size (32) are large. Thisshows that the \true" hit-ratio attributed to program and data
hara
teristi
s isaround 50%. Any additional hit-ratio per
entage is due to bran
h mispredi
tion.4.3.2 Instru
tions Per Cy
le (IPC)We will use the IPC, whi
h is the number of
ommitted instru
tions divided bythe number of
y
les, as our performan
e metri
. The higher the IPC the betterthe pro
essor's performan
e. We measured both the IPC for a run without IMand for a run with IM. The allo
ations of variations are almost identi
al. Thevalues measured range from 0.65 to 2.63. The allo
ation of variation is: Bran
hPredi
tion - 58%; Window Size - 16%; Memory Hierar
hy - 12%; Pipeline Width- 7%; Instru
tion Laten
y - 4%;The results indi
ate that bran
h predi
tion plays a very important role inimproving performan
e. The IPC for the basi
 pro
essor is 1.19 with a BPrate of 0.94, when altering only the bran
h predi
tion s
heme the IPC is 1.26(perfe
t, BP rate of 1.00) and 0.82 (taken, BP rate of 0.26). This shows thatstandard bran
h predi
tion te
hniques are very
lose to the perfe
t s
heme.

4.3. MEASURING ATTRIBUTES OF THE DATAPATH 394.3.3 Fra
tion Enhan
ed (FE)The part of the program that is sus
eptible to IM is
alled the Fra
tion Enhan
ed(FE). This is the part of the program that bene�ts from IM. The larger the FEis the larger the potential for speedup is. The minimal and maximal FE valuesare 3% and 28%. The allo
ation of variation is: Instru
tion Laten
y - 31%;Pipeline Width - 23%; Windows Size - 13%; Bran
h Predi
tion - 11%; MemoryHierar
hy - 6%;That the instru
tion laten
y is a
ontributing fa
tor is obvious. A longlaten
y instru
tion
onsumes more pro
essor
y
les, raising the fra
tion of theprogram spent exe
uting multi-
y
le instru
tions. However the
ombined e�e
tsof pipeline width and window size have an even larger part in the variation. Awide pipeline
an issue more instru
tions per
y
le, that
an exe
ute in parallelto the multi-
y
le instru
tion \stu
k" in the exe
ute stage. Our intuition saysthat the wider the pipeline is the less the FE is.However the results are
ounter intuitive and show exa
tly the opposite: Ifthe datapath
an't pro
ess more instru
tions due to a low pipeline width, smallinstru
tion window size, and/or a low bran
h predi
tion rate, the long laten
yinstru
tions stall only a small number of instru
tions. Thus the IPC is lowerbut so is the FE, slower pro
essors have less potential for exploiting IM. Onthe other hand if the pro
essor
an exe
ute multiple instru
tions per
y
le thelong laten
y instru
tions delay the
ommitment of many more instru
tions. Soalthough the IPC is higher the FE is as well, whi
h lead to a higher potentialfor improvement using IM.4.3.4 SpeedupFinally we arrive at the most important measurement from our point of view:speedup. A high speedup proves the viability of implementing IM in the data-path. The speedups range from 1.01 whi
h isn't very promising to 1.18 whi
hshows great potential. The allo
ation of variation is: Instru
tion Laten
y -42%; Pipeline Width - 20%; Memoization Laten
y 9%; Memory Hierar
hy -7%; Bran
h Predi
tion - 6%; Windows Size - 4%; Again we see that instru
tionlaten
y is, obviously, the leading speedup fa
tor, su

essfully memoizing theseinstru
tions leads to
onsiderable savings. Of the other fa
tors pipeline width isthe dominant, this is
onsistent with the FE fa
tors and strengthens the relationbetween FE and speedup.The memoization stage doesn't impa
t the results at all. Neither do thenumber of FUs. Both these fa
ts are related. When simulating the basi
 pro-
essor the number of stru
tural hazards
aused by multi-
y
le instru
tions arerelatively low, only 10% of issue requests to multi-
y
le FUs are stalled due tothe la
k of an appropriate unit, this is opposed to 31% for all instru
tions2. Inaddition only 9% of all su

essful memoizations o

ur in the Issue stage. Com-paring memoization in the issue stage to memoization in the exe
ute stage showsthat the average number of
y
les an instru
tion is resident in the RUU (RUU2Multi-
y
le instru
tion stru
tural hazards are 8% of all stru
tural hazards.

40 CHAPTER 4. INTEGRATING IM IN A PROCESSOR'S DATAPATHlaten
y) is the same. This leads to both runs having the same IPC. The aprioriadvantage of memoization in the issue stage isn't used, se
tion 4.4 elaboratesthis point. Another surprise is that the memoization laten
y
ontributes only9%, we will explore this phenomena in se
tion 4.4 as well.
1

1.05

1.1

1.15

1.2

0 0.05 0.1 0.15 0.2 0.25 0.3

S
pe

ed
up

Fraction Enhanced

1

1.05

1.1

1.15

1.2

0.5 0.55 0.6 0.65 0.7

S
pe

ed
up

Hit Ratio

0.5

1

1.5

2

2.5

3

0.5 0.55 0.6 0.65 0.7

IP
C

Hit Ratio

1

1.05

1.1

1.15

1.2

0.5 1 1.5 2 2.5 3

S
pe

ed
up

Instructions Per CycleFigure 4.5: Correlations between FE and speedup (upper-left), hit-ratio andspeedup (upper-right), hit-ratio and IPC (lower-left), IPC and speedup (lower-right).4.3.5 Correlation Between MeasurementsIn order to verify the usefulness of IM we must
orrelate the four measurementsre
orded above. A high hit-ratio
ombined with a low speedup is useless, as isa high speedup on a slow ma
hine. Figure 4.5 show the
orrelation between allfour measurements. Our observations and
on
lusions are:� As mentioned above there is a dire
t
orrelation between FE and speedup.The more potential there is for memoization the better the speedup is.

4.4. ADDITIONAL MEASUREMENTS 41� There is no
orrelation between hit-ratio and any other measurements.This doesn't mean that a higher hit-ratio doesn't in
uen
e the speedup,it does as will be shown in se
tion 4.4.1. It means that given a �xedMemo-Table stru
ture the FE or IPC of a pro
essor don't alter the hit-ratio. The only in
uen
e the datapath has on the hit-ratio is throughbran
h predi
tion. A poor predi
tion rate leads to a higer hit-ratio, butthis \gain" is o�set by the low performan
e (low IPC) of the pro
essor.� There is no dire
t
orrelation between IPC and speedup. This fa
t isen
ouraging, our preliminary assumption was that for powerful pro
essors(high IPC) the speedups would be low. This isn't true, in fa
t the speedupon the most powerful pro
essor is 1.11, whi
h is higher than the speedupon the basi
 pro
essor (1.07), although the powerful pro
essor is morethan twi
e as fast (1.19 vs. 2.63 IPC). We will explore this
orrelationfurther in se
tion 4.44.4 Additional MeasurementsAfter examining the previous results we de
ided to re�ne the simulations and
on
entrate on three of the eight previously simulated fa
tors, fa
tors for whi
hwe
ouldn't make any
lear
ut de
isions. The fa
tors and levels are:1. Pipeline size: This fa
tor
ondenses 3 fa
tors (pipeline width, windowsize, and number of FUs) into one fa
tor. All 3 fa
tors are enlarged orshrunken together, a wide pipeline needs a large instru
tion window anda large number of FUs. In our previous simulations we saw that their
ombined in
uen
e surpassed their individual in
uen
es. The low level isa small pipeline with a width of 2, instru
tion window of 8, and 1 unit ofea
h type. The high level is a large pipeline with a width of 8, instru
tionwindow of 64, and 4 units of ea
h type.2. Memoization Stage: In the previous simulations we
ouldn't dis
ernany di�eren
es between them. The levels are memoization in the exe
uteor issue stages.3. Memoization Laten
y: Memoization laten
y
ontributed only 9% tothe variation. The levels are 2 or 1 ma
hine
y
les for a Memo-Tablelookup.For the remaining three fa
tors we
hose to target faster pro
essors by im-plementing low laten
y instru
tions, perfe
t bran
h predi
tion and a perfe
tmemory hierar
hy. As we have only 3 fa
tors we performed a 2k fa
torial designwhi
h
onsists of 8 runs. The results are in table 4.3. We
hose to display theresults for the FP intensive appli
ations only in order to magnify the e�e
ts ofthe IM stage and IM laten
y on the results.The allo
ation of variation of the IPC (100% pipeline size) and hit-ratio(equal distribution) is trivial. The allo
ation of variation of the speedup is:

42 CHAPTER 4. INTEGRATING IM IN A PROCESSOR'S DATAPATHFa
tor Levels IPC hr Spdp Fa
tor Levels IPC hr Spdpsmall exe
ute 2 1.02 0.47 1.04 small issue 2 1.02 0.47 1.04small exe
ute 1 1.03 0.47 1.06 small issue 1 1.03 0.47 1.06large exe
ute 2 3.54 0.47 1.09 large issue 2 3.54 0.47 1.09large exe
ute 1 3.65 0.47 1.13 large issue 1 3.65 0.47 1.13Table 4.3: 23 fa
torial design and resulting IPCs, hit-ratios, and speedups. Thefa
tors and levels are pipeline size (small, large), IM stage (exe
ute, issue), andIM laten
y (2 or 1
y
les).
1.1

1.15

1.2

1.25

0 0.1 0.2 0.3 0.4 0.5

S
pe

ed
up

Structural hazard ratio

Issue stage
Execute stage

Figure 4.6: Comparison of IM in the issue and exe
ute stages. On a largepipeline ma
hine the number of FUs is raised until the stru
tural hazard ratiois 0. Speedup is shown as a fun
tion of the stru
tural hazard ratio.Pipeline size - 78%; IM laten
y - 20%; IM stage - 0%; To understand why theresults are neutral to the memoization stage we measured the stru
tural hazardratio (number of su

essful issues divided by number of issue attempts) andfound it to be under 0.02. Redu
ing the number of FUs raises the stru
turalhazard ratio. When this happens the di�eren
es between memoization in theissue and exe
ute stage be
ome apparent as displayed in �gure 4.6. Followingthis set of experiments we
an
on
lude:� The most important
on
lusion is that IM favors fast pro
essors. A higherIPC usually results in a higher speedup. A pro
essor with short laten
yinstru
tions, perfe
t memory hierar
hy, perfe
t bran
h predi
tion, andmultiple-issue
apabilities still has it's performan
e hampered by the la-ten
ies of multi-
y
le instru
tions. Using IM redu
es this impediment anda

elerates pro
essing.� The hit-ratio is orthogonal to the datapath design and is dependent uponthe appli
ation's inherent lo
ality and the Memo-Table design.� The memoization stage has little to no in
uen
e (as
an be seen by
om-

4.5. SUMMARY 43paring the right and left hand sides of table 4.3). Most instru
tions �nd aFU and progress to the exe
ute stage, this limits the e�e
t of performinga lookup in the issue stage. Figure 4.6 shows that only when the stru
-tural hazard ratio (number of su

essful issues divided by number of issueattempts) is high (due to less FUs) IM in the issue stage is better.� A memoization laten
y of 2
y
les isn't \fatal" to IM, even though in ourmodel most FP instru
tions have a laten
y of 2
y
les. This indi
atesthat a large amount of the speedup
an be attributed to long laten
yinstru
tions su
h as division and sqrt.4.4.1 Speedup as a Fun
tion of Memo-Table OrganizationThe previous simulations all used a �xed Memo-Table organization. In thisse
tion we shall observe the impa
t of varying theMemo-Table organization onthe hit-ratio and speedup (over the basi
 pro
essor). We will use the multipleMemo-Table design and vary the size, asso
iativity, and trivial
al
ulationdete
tion of the Memo-Tables. The repla
ement method will be random andthe mapping s
heme will use the mix2 s
heme (se
tion 3.6).Table 4.4 shows the Memo-Table organizations, hit-ratios, and speedups.The hit-ratio in
rease rises swiftly until a size of 512 entries and then tapersout, no matter whatMemo-Table enhan
ements are introdu
ed. This dire
tlya�e
ts the speedup whi
h also
attens out. The results strengthen our
hoi
eof Memo-Table organization. Investing more hardware resour
es in Memo-Tables isn't worth the small improvements a
hieved. These results mirror theresults observed in
hapter 3Size Asso
 Triv hr spdp32 1 no 0.34 1.0464 2 no 0.41 1.05128 2 yes 0.48 1.06256 4 yes 0.51 1.07512 8 yes 0.54 1.081024 8 yes 0.56 1.082048 16 yes 0.57 1.08Table 4.4: Di�erent Memo-Table organizations and the resulting hit-ratiosand speedups (on the basi
 pro
essor).4.5 SummaryIn this
hapter we investigated the integration of IM into the pro
essors's datap-ath, the performan
e enhan
ement gained by exploiting IM, and the in
uen
e ofthe datapath stru
ture on IM and vi
e-versa. On a basi
 pro
essor whose designis similar to the MIPS R10000 and PPC 604e, two ubiquitous RISC pro
essors,

44 CHAPTER 4. INTEGRATING IM IN A PROCESSOR'S DATAPATH13% of the exe
ution time
an be attributed to multi-
y
le instru
tions. 52%of those instru
tions are repeated with the same operands. By implementingIM an average (harmoni
 mean) speedup of 1.07 is attained. This speedup is ashigh as 1.32 for highly intensive FP appli
ations, and as low as 1.003 for integerappli
ations whi
h hardly use multi-
y
le instru
tions.The in
uen
e of the datapath on IM is minimal. The only datapath fa
torthat e�e
ts the hit-ratio is the bran
h predi
tion rate. Mispredi
ted bran
hes
ause instru
tions to be
ushed from the pipeline, many of these instru
tionsmay later be re-exe
uted
ausing hits in the Memo-Tables. Thus the hit-ratiois raised , together with the total exe
ution time.On the other hand the in
uen
e IM has on the datapath is large. Themajor
ontribution is the redu
ed laten
y of su

essfully memoized instru
tions.Having instru
tions
omplete exe
ution earlier enables dependent instru
tionsto be issued earlier. The number of
y
les an instru
tion spends, from beingfet
hed until it is
ommitted (RUU laten
y) is redu
ed, whi
h dire
tly redu
esexe
ution time. A minor
ontribution to enhan
ed exe
ution is the virtualaddition of FUs. When a stru
tural hazard o

urs aMemo-Table lookup maybe able to provide the instru
tion's result, thus the exe
ute stage of the pipelineis
ir
umvented.Instru
tion memoization is best utilized when it redu
es the laten
y of \
riti-
al" instru
tions, instru
tions that are prohibiting many other instru
tions fromadvan
ing through the pipeline. It is hard to say in what datapath design aninstru
tion is
riti
al and in what design it isn't. However it is
lear that fasterpro
essors that
an exe
ute more instru
tions per
y
le bene�t greatly from IM.A pro
essor with a wide pipeline, a near perfe
t memory hierar
hy, a high rateof bran
h predi
tion, and enough FUs will en
ounter a bottlene
k when waitingfor long laten
y instru
tion to
omplete. IM relieves this bottlene
k.On the other hand slower pro
essors might have their bottlene
k in thememory hierar
hy or issue rate. In this
ase IM will still speedup pro
essingbut at a lower rate. Even in the
ase of an inorder pro
essor, where everyinstru
tion delays its su

essors, the e�e
t of memoization is less than for anout-of-order pro
essor whi
h
an mask the e�e
t of long laten
y instru
tions byexe
uting \around" them. The average speedup on an inorder basi
 pro
essoris 1.05 (over an IPC of 0.70)
ompared with 1.07 (over an IPC of 1.27) for thesame out-of-order pro
essor.All the above notwithstanding, the s
ope of multi-
y
le IM is limited. Fewappli
ations spend more than 20% of their exe
ution time
omputing multi-
y
le instru
tions. Many more spend less than 1%. It is imperative that wewiden the s
ope of IM to en
ompass single-
y
le instru
tions as well. Chapter5 is dedi
ated to this issue.

Chapter 5Memoizing Single Cy
leInstru
tionsIn this resear
h we have only memoized multi-
y
le instru
tions. The rationalebehind this de
ision has been that single-
y
le instru
tions
an be exe
uted inthe same
y
le a Memo-Table lookup is performed, thus no improvement isgained. However if instru
tions are memoized in the issue stage their results
anbe obtained even if a suitable FU isn't available, thus many stru
tural hazardsare avoided.We added to our simulator the
apability to memoize single-
y
le instru
-tions as well. The instru
tions memoized are integer addition and subtra
tion,shifts, logi
al instru
tions, moves, and set less than (slt) instru
tions. Themnemoni
 single-
y
le IM (s
IM) refers to the memoization of both multi-
y
leand single-
y
le instru
tions.We do not memoize
onditional and un
onditional bran
hes, these instru
-tions aren't
ontext free and their results are Program Counter (PC) dependent.In any
ase the bran
h predi
tion me
hanism is itself a Memo-Table of sorts,and performs very well. For the same reason we do not memoize loads or stores.We would have to tra
e all memory referen
es and invalidate Memo-Tableentries that had their addresses updated. Moreover the L1
a
hes are them-selves Memo-Tables whi
h do a very good job of exploiting previous memoryreferen
es.5.1 Comparing Single and Multi-Cy
le IMFor our �rst set of simulations we have added a 512-entry Memo-Table (theSingle-Cy
le table) that holds the single-
y
le instru
tions. Table 5.1 displaysthe single-
y
le hit-ratios, the a

umulated hit-ratio and the speedups, for
om-parison the speedups for m
IM are in
luded in parentheses. The table
learlyshows that memoizing single-
y
le instru
tions results in a speedup that is 50%better than the speedup obtained by memoizing only multi-
y
le instru
tions.45

46 CHAPTER 5. MEMOIZING SINGLE CYCLE INSTRUCTIONSappli
ation s
 hr hr spdpmesa 0.72 0.64 1.12 (1.09)epi
 0.52 0.45 1.08 (1.05)rasta 0.68 0.62 1.09 (1.06)mpeg2 0.49 0.49 1.10 (1.07)gsm 0.36 0.31 1.07 (1.02)ghosts
ript 0.92 0.92 1.49 (1.33)jpeg 0.45 0.45 1.07 (1.00)g721 0.51 0.51 1.12 (1.01)pgp 0.41 0.39 1.07 (1.01)harmoni
 mean 0.56 0.53 1.13 (1.07)tom
atv 0.57 0.48 1.06 (1.04)swim 0.37 0.33 1.10 (1.08)su2
or 0.55 0.42 1.03 (1.02)hydro2d 0.32 0.51 1.22 (1.21)mgrid 0.84 0.80 1.27 (1.27)applu 0.93 0.89 1.04 (1.04)turb3d 0.59 0.55 1.09 (1.04)apsi 0.45 0.42 1.17 (1.16)fpppp 0.65 0.46 1.02 (1.02)wave5 0.33 0.33 1.07 (1.05)g

 0.75 0.75 1.04 (1.01)perl 0.75 0.75 1.02 (1.00)
ompress 0.51 0.51 1.08 (1.01)harmoni
 mean 0.58 0.56 1.09 (1.07)harmoni
 mean 0.57 0.55 1.11 (1.07)Table 5.1: single-
y
le hit-ratios,
ombined hit-ratios, and speedups on the basi
pro
essor when single-
y
le IM is implemented.But what the table doesn't show is from where this speedup originates. TheRUU laten
y is redu
ed but why? If a Memo-Table lookup and the laten
yof a single-
y
le instru
tion are one
y
le, where is the speedup
oming from?The answer is: by redu
ing the number of stru
tural hazards. On the averagethe ratio of stru
tural hazards out of all requests for a FU is 31%. Almost every3rd instru
tion in the issue stage
an't �nd a free FU.Memoizing single-
y
le instru
tions redu
es the stru
tural hazard ratio to15%. Su

essful Memo-Table lookups over
ome the absen
e of enough FUs.Thus when the number of FUs a pro
essor possesses is su
h that no stru
turalhazards o

ur, single-
y
le memoization will be useless. Figure 5.1 is similar to�gure 4.6, it shows the speedup of m
IM and s
IM as a fun
tion of stru
turalhazard ratio and IPC. When the stru
tural hazard ratio drops the di�eren
ebetween multi-
y
le to single-
y
le narrows and then disappears. m
IM speedupis improved as the IPC of an appli
ation rises, on the other hand s
IM speedupde
reases as the IPC rises. The impa
t of s
IM diminishes as more FUs areavailable, s
IM e�e
tively be
omes m
IM.

5.1. COMPARING SINGLE AND MULTI-CYCLE IM 47
1.1

1.13

1.16

1.19

0 0.1 0.2 0.3 0.4

S
pe

ed
up

Structural hazard ratio

multi-cycle IM
single-cycle IM

1.1

1.13

1.16

1.19

3.45 3.55 3.65 3.75 3.85

S
pe

ed
up

Instruction Per Cycle

multi-cycle IM
single-cycle IM

Figure 5.1: Comparison of single to multi-
y
le IM. On a large pipeline ma
hinethe number of FUs is raised until the stru
tural hazard ratio is 0. Speedup isshown as a fun
tion of the stru
tural hazard ratio and of IPC.5.1.1 s
IM Compared to Other Enhan
ementsIt isn't ne
essary to push ILP to its limit to see the futileness of single-
y
leexe
ution. Table 5.2 shows the speedups of several
on�gurations over the ba-si
 unmemoized pro
essor. The
on�gurations add IALUs, multi-
y
le units,implement m
IM and s
IM, and
ombine all te
hniques. In addition we imple-mented a pro
essors with double the L1
a
he size and a pro
essor with perfe
tbran
h predi
tion. The base we are
omparing against is the basi
 pro
essorwhi
h has a performan
e of 1.0. The table shows that:1. Adding MCUs hardly e�e
ts performan
e, due to the inherent low stru
-tural hazard ratio of MCUs.2. Adding ALUs enhan
es integer appli
ation performan
e better than im-plementing s
IM, however FP appli
ation performan
e isn't improved aswell as using m
IM.

48 CHAPTER 5. MEMOIZING SINGLE CYCLE INSTRUCTIONS3. Adding ALUs to m
IMyields, a
ross all appli
ations, more than a 50%improvement over s
IM.4. Using the resour
es dedi
ated to IM in order to a
hieve a lower L1 missrate or a higher bran
h predi
tion rate improves integer appli
ations morethan IM. However FP appli
ations bene�t from a higher speedup whenthe resour
es are used to implement m
IM.What we have now is a tradeo� problem. An ALU, whi
h has a laten
y of 1
y
le and 100% hit-ratio (every
al
ulation is
orre
t), outperforms a 512-entry(12K bytes and 4
omparators) Memo-Table with a 57% hit-ratio. Whi
huses less transistors? Whi
h is simpler to design? Whi
h
onsumes less power?These questions are beyond the s
ope of this thesis. If adding an ALU is
heaperthen there is no
ontest: s
IM isn't worthwhile. However in the next se
tionwe will present several te
hniques that enable implementing s
IM with a lower
ost.Name # ALU # MCU IM Int FP Allbasi
 2 1 no 1.00 1.00 1.00basi
 +
a
he X 2 2 1 no 1.09 1.06 1.07basi
 + perfe
t BP 2 1 no 1.10 1.05 1.07basi
 + m
IM 2 1 m
IM 1.01 1.10 1.07basi
 + s
IM 2 1 s
IM 1.07 1.13 1.11basi
 + 3 ALUs 3 1 no 1.10 1.04 1.05basi
 + 4 ALUs 4 1 no 1.12 1.05 1.07basi
 + 2 MCUs 2 2 no 1.00 1.01 1.01basi
 + 3 MCUs 2 3 no 1.00 1.01 1.01basi
 + 3 ALUs + m
IM 3 1 m
IM 1.12 1.16 1.15basi
 + 4 ALUs + m
IM 3 1 m
IM 1.13 1.17 1.16Table 5.2: Comparison of adding FUs, integrating IM, and
ombining both onthe basi
 pro
essor. MCU stands for Multi-Cy
le Unit, any unit whi
h exe
utesmulti-
y
le instru
tions.5.2 Lowering the
ost of s
IMIn the previous se
tion we suggested that s
IM isn't \real" memoization, thebene�ts we gain are due to using the Memo-Table that
ontains single-
y
leinstru
tions as an additional ALU. Adding an ALU instead of theMemo-Tableresults in greater performan
e. In order to make s
IM worthwhile we have toredu
e the
ost of the single-
y
le Memo-Table or alternatively improve itsperforman
e. We suggest three s
hemes:� Use existing hardware. Spe
i�
ally use the existing Memo-Tables. We
hose to use the IntegerMemo-Table whi
h
ontains integer division andmultipli
ation instru
tions to hold all single-
y
le instru
tions as well. A

5.2. LOWERING THE COST OF SCIM 49variant of these s
heme is to use LRU repla
ement and a vi
tim
a
he thatonly
ontains evi
ted division and multipli
ation instru
tions.� Use a simpler Memo-Table. A small (32-entry), dire
t mapped, with notrivial dete
tion Memo-Table is used.� Perform s
IM in the de
ode stage. In se
tion 4.1.4 we des
ribed howthis may be implemented. The problem is that a long ma
hine
y
le isne
essary in order to determine if the operands are ready, �nd them, andperform a Memo-Table lookup. Our solution is to spe
ulatively performa lookup using the
urrent data in the Register File (RF). If the RF hasvalid data (no previous instru
tions are writing to the operand registers)and the lookup was su

essful, the instru
tion
an progress to the
ommitstage, bypassing the issue and exe
ute stages.S
heme Int FP Allregular m
IM 1.01 1.10 1.07regular s
IM 1.07 1.13 1.11s
 insts. in idiv/imult Memo-Table 1.05 1.12 1.10above with lru and vi
tim
a
he 1.06 1.12 1.10small s
 Memo-Table (32-entry) 1.02 1.11 1.08s
 memoization in de
ode stage 1.02 1.12 1.09Table 5.3: Speedups of di�erent s
hemes used to lower the overhead of s
IM.Table 5.3
ompares the 3 suggested alternatives with regular m
IM ands
IM. The �rst alternative yields an average speedup of 1.10 as opposed to 1.11when a dedi
ated Memo-Table is used for the single-
y
le instru
tions. Thespeedup attributed to integer division and multipli
ation is around 1.01, mean-ing that the single-
y
le instru
tions swamped the Integer table and redu
ed thehit-ratio of integer division and multipli
ation. Thus we
onverted the Integertable to the Single-Cy
le table. But this table itself is less produ
tive than anadditional ALU. In the se
ond alternative the hit-ratio of the Single-Cy
le tabledrops from 57% to 19%
ausing the speedup to drop to 1.08. The appli
ationsthat \su�er" the most are the integer appli
ations, their average speedup is 1.02
ompared to 1.10 for regular s
IM.The third alternative, memoizing single-
y
le instru
tions in the de
odestage only doesn't perform mu
h better. Only 30% of the previously su

essfullookups are dete
ted now. Morever if IM
an be performed in the de
ode stagewhy not dedi
ate an ALU or two to spe
ulatively perform
al
ulations in thede
ode stage. Thus we
ould
on
lude that s
IM reaps no real performan
egains. Nevertheless s
IM in all its variants enhan
es FP performan
e over onlyusing m
IM. If it isn't possible to add an ALU any of the above te
hniques willsuÆ
e to boost performan
e. In appendix A we will present how m
IM ands
IM work on real world pro
essors.

Chapter 6Comparing IM to OtherTe
hniquesIn the introdu
tion
hapter of this thesis we surveyed previous o

urren
es ofmemoization in the literature and other related te
hniques. In this
hapter wewill
ompare our view of Instru
tion Memoization to other te
hniques proposed,list the advantages and disadvantages of IM over these s
hemes and try to qualifythe di�eren
es. We won't quantify the di�eren
es as ea
h resear
h uses slightlydi�erent ben
hmarks with slightly di�erent simulators and in some
ases usesdi�erent units of measurement.In this
hapter we have not
hosen to belittle the work of others. All resear
his built upon previous su

esses and failures. We will show how IM expandsearlier work on memoization and di�ers from Value Predi
tion (VP). The workof Sodani & Sohi on Instru
tion Reuse (IR) is monumental in exploring thesour
es of instru
tion reuse and in laying out a framework that strives to reuseall instru
tions. We will show how IM is di�erent and
omplements IR.6.1 Early MemoizationThe earliest (1982) use of instru
tion reuse in hardware is by Harbison's TreeMa
hine (TM) [5℄. The TM is a sta
k-oriented ar
hite
ture whi
h evaluatesinstru
tions at the head of the sta
k. A value
a
he is used in order to reuseinstru
tions that haven't had their operands written to sin
e the last evaluationof the instru
tion. In this
ase the evaluation of the instru
tion is performedby obtaining the result from the value
a
he. The te
hnique is limited by twofa
tors: the instru
tions are identi�ed by their PC and are invalidated by awrite to their operands, thus true value memoization isn't possible. The sameoperation might be performed by di�erent instru
tions or the same instru
tionwill use the same values (but be invalidated by a write to one of the operands).The te
hnique is more suited to dete
ting CSEs during run-time and is almostimpossible to
ompare to due to the extraordinary ma
hine ar
hite
ture.50

6.2. VALUE PREDICTION 51In 1992 Ri
hardson [6℄ proposed integrating memoizaton and trivial oper-ation testing in multipli
ation, division, and sqrt instru
tions. This work is adire
t prede
essor to ours and di�ers only in s
ope. Ri
hardson used shade [28℄an instru
tion-level non-ar
hite
turally detailed simulator. The only ar
hite
-tural details supplied are the laten
ies of the memoized instru
tions. His resultsmat
h ours in that longer laten
y instru
tions are more sus
eptible to memoiza-tion than short laten
y instru
tions. Our resear
h, of
ourse, is ri
her in detailand explores all aspe
ts of a memoizing pro
essor. Ri
hardson [29℄ mentionsthat fun
tions and
ode areas
an be memoized as well (as we do in appendixB) but aside from a few simple examples he doesn't explore the issue in depth.Flynn & Oberman [7℄ expand the idea to in
lude storing the re
ipro
als ofdivision instru
tions. In addition they perform a detailed analysis of the traitsof the division
a
hes used (size, asso
iativity) and of the
ost/performan
etradeo�s (sili
on area vs. CPI) asso
iated with implementing them. As withthe work of Ri
hardson our resear
h is of a broader s
ope and more detailed.Azam, Franzon & Liu [27℄ use memoization in order to redu
e power
on-sumption rather than enhan
e performan
e. Thus almost every aspe
t of theirreuse te
hnique is di�erent from ours: The stage of memoization (only if alookup fails is the instru
tion exe
uted), the instru
tions memoized (only multi-pli
ation), and the
hara
teristi
s of the lookup table (small and dire
t-mappedin order to save more power).6.2 Value Predi
tionIn 1996 and 1997 a series of papers were published that introdu
ed and dis
ussedthe te
hnique of Value Predi
tion (VP) (Gabbay &Mendelson [9℄, Lipasti, Wilk-erson & Shen [10, 11℄, and Sazeides & Smith [12℄). The idea is that the resultsof an instru
tion
an be obtained spe
ulatively based on results of previous in-vo
ations of the same instru
tion, ex
eeding the data
ow limit on extra
tableILP.The values are saved in a table and if they are
onstant (the same value is re-peatedly produ
ed), are di�erent by a
onstant stride (an in
rement instru
tionwill have a stride of 1), or follow some re
urring pattern the result of the
urrentinvo
ation
an be predi
ted with a high-degree of a

ura
y. The instru
tionsare exe
uted spe
uatively and aren't
ommitted until their dependen
ies aresatis�ed. Of
ourse a wrong predi
tion will
ause the erroneous instru
tion andall instru
tions dependent on it to be re
al
ulated.The main di�eren
e between the te
hniques is their reliability: VP is spe
-ulative and while it may
apture redundan
y that
an break the ILP limit itin
urs a high overhead for mis-predi
tions. On the other hand IM is unspe
u-lative and
an't resolve data dependen
ies but it
arries no overhead. Sodani& Sohi perform a detailed analysis of the di�eren
es in [30℄. Perhaps a hybridVP/IM implementation
an exploit the advantages of both te
hniques.Gabbay and Mendelson [31℄ have proposed to use program pro�ling in orderto mark instru
tions that have a tenden
y to be predi
ted
orre
tly and only

52 CHAPTER 6. COMPARING IM TO OTHER TECHNIQUESpredi
t these instru
tions, thus lowering the mis-predi
tion rate. This is yetanother major di�eren
e between VP and IM. IM is software transparent andmay even be used a
ross
ontext swit
hes.6.3 Comparing IM to IRThe most
omprehensive work in the �eld of reusing previous
al
ulations wasperformed by Sodani & Sohi [8℄ in the years 1997-2000. They introdu
ed the
on
ept of Instru
tion Reuse (IR). The instru
tions are inserted in a table
alledthe Reuse Bu�er (RB). Three reuse s
hemes are presented:Sv Ea
h entry
ontains the PC, operand values, and result of an instru
tion.If the
urrent instru
tion's PC and operands mat
h an entry the result isused.Sn Ea
h entry
ontains the PC, operand register names and the result. If the
urrent instru
tion's PC and operand register names mat
h the resultis used. If a register is written into, all entries using that register areinvalidated. Thus it is enough for the PC to mat
h.Sn+d In addition to the information in the previous s
heme ea
h operand namehas a link to its sour
e instru
tion (if it's in the RB). By building theselinks instru
tions may be kept in the RB even if their registers are writtenupon (due to their links).The �rst s
heme is similar to IM, if the operands and operation mat
h obtainthe result from the RB. However IR uses the Program Counter as the sole indexto the RB. Thus instru
tions at di�erent lo
ations
an't use ea
h others previousresults. We will elaborate on this in se
tion 6.3.1. This s
heme is hampereddue to the fa
t that the reuse test
an be performed only in the instru
tionissue stage (the operands must be ready). For single-
y
le instru
tions no
y
leredu
tion is made.The se
ond s
heme is aimed at solving this problem by
omparing the registernames of the fet
hed instru
tion to instru
tions in the RB. If the register namesmat
h and the registers'
ontents haven't been altered sin
e storage in the RB,the result
an be obtained from the RB as early as the fet
h stage. This is asigni�
ant gain, unfortunately only the last appearan
e of an instru
tion
anbe used. Previous invo
ations with di�erent operand values will have beeninvalidated.Molina, Gonz�alez & Tubella [32℄ have re
ognized this and try to
reate linksbetween instru
tions that produ
ed the same result, resulting in instru
tionswith di�erent PCs a

essing the same entry. Their
on
lusion is that a hybrids
heme whi
h maps an entry both by its PC and by its operand values (doublingthe size of the table) is ne
essary in order to boost performan
e. In the fet
hstage the PC is used to index the table, if the lookup is unsu

essful the operandvalues are used in the issue stage.

6.3. COMPARING IM TO IR 53The third s
heme suggested by Sodani & Sohi is targeted at exploiting de-pendent instru
tions fet
hed together, these instru
tions are
alled dependen
e
hains. If dependen
e
an be determined it is enough to dete
t reuse of the�rst instru
tion in the
hain, the linked instru
tions
an be reused as well. Thiss
heme performs better than the se
ond one as all instru
tions are
hains ofone. However only 25% of all dependen
e
hains are of a length of more thanone. Thus the use of this s
heme is limited.The
on
lusion of Sodani & Sohi is that their �rst s
heme is the best asit un
overs the most reuse. However the potential for speedup is diminishedas most instru
tions
an be exe
uted during the time it takes to perform aRB lookup. For this reason IM whi
h is streamlined to use only the operandvalues
an outperform the Sv s
heme of IR. The reasons are due to the di�erentmapping s
hemes, organization of the tables, the stage at whi
h IM is performed,and the simpli
ity of IM.6.3.1 PC vs. Value Mapping. In se
tion 3.2 we have shown that mapping Memo-Table entries using theoperand values is superior to using the PC (table 3.3 displays this
learly).The di�eren
es between mapping using the PC vs. mapping using the operandvalues
an be understood by examining a simple yet widely used appli
ation:matrix multipli
ation.for (i=0;i<N;i++){for (j=0;j<N;j++){
[i℄[j℄ = 0.0;for (k=0;k<N;k++)
[i℄[j℄ += a[i℄[k℄*b[k℄[j℄;}} Table 6.1: Naive matrix multipli
ation.The most naive s
heme (table 6.1) performs N3 multipli
ations when multi-plying two N �N matri
es. To ensure that we will have redundant multipli
a-tions we usedN di�erent
oeÆ
ients whi
h result inN2 di�erent multipli
ations.The hit-ratios (of FP multipli
ation only) for multiplying two 100�100 matri
esare shown in the top graph of �gure 6.1 (sizes 128-1024, asso
iativity 4, randomrepla
ement, trivial
al
ulations stored in the Memo-Table). The hit-ratioswhen the PC is used as an index are invariant to the size of the Memo-Table,this is easily explained by looking at the
ode. All multipli
ations are exe
utedby one instru
tion, thus all multipli
ations are mapped to a single set, leavingthe rest of the Memo-Table unused.Fixing the Memo-Table size and varying the asso
iativity is shown in thebottom graph of �gure 6.1 (size 512, asso
iativity 1-512, random repla
ement,trivial
al
ulations stored in the Memo-Table). Only when using a fully-

54 CHAPTER 6. COMPARING IM TO OTHER TECHNIQUESasso
iative Memo-Table do the hit-ratios mat
h, this is again due to the fa
tthat all multipli
ations are mapped to the same set.
0

0.05

0.1

0.15

0.2

0.25

0.3

128 256 512 1024

H
it

R
at

io

Size

pc
value

0

0.05

0.1

0.15

0.2

1 2 4 8 16 32 64 128 256 512

H
it

R
at

io

Associativity

pc
value

Figure 6.1: Hit-ratios of the multipli
ation Memo-Table in matrix multipli
a-tion.When more
omplex algorithms su
h as loop unrolling, tiling, and sub-blo
king are used the PC indexed hit-ratios are even worse. The multipli
a-tion
al
ulations are performed by several instru
tions whi
h leads to a betterMemo-Table utilization but results in a lower hit-ratio. This is due to the fa
tthat the same
al
ulation might be performed by di�erent instru
tions and thusmapped to di�erent sets,
ausing Memo-Table misses instead of hits.Using IM a 48% hit-ratio is a
hieved on the SPEC CFP95 ben
hmarks forFP instru
tions. Sodani & Sohi report only a 6.6% hit ratio. This is due to aninferior mapping s
heme.6.3.2 Table OrganizationIR looks at all instru
tions as equal and uses a uni�ed RB whi
h
ontainsall instru
tions. Instru
tions with longer laten
ies and a higher potential forimproving performan
e are evi
ted from the RB by instru
tions whose reuse
ontributes mu
h less. In se
tion 5.2 we have shown that storing the single-
y
le

6.3. COMPARING IM TO IR 55instru
tions in the Integer Memo-Table (integer division and multipli
ation)results in the hit-ratio of the \original" o

upants of the Memo-Table beingsuppressed.On the other hand IM uses a set ofMemo-Tables ea
h
ontaining di�erentinstru
tion types. Se
tion 3.5 des
ribes the advantages and disadvantages ofusing several tables or a uni�ed one. In addition we have shown that the speedupattributed to single-
y
le instru
tions (se
tion 5.1) is due to
reating a \virtual"ALU out of the Memo-Table. In se
tion 5.1.1 we have shown that adding anALU is better than memoizing single-
y
le instru
tions. In this
ase due toour distributed table stru
ture we
an
hoose to memoize
hoi
e single-
y
leinstru
tions or not to memoize them at all.6.3.3 Lookup StageAn IR lookup is performed in the de
ode stage. This is possible for the Sn andSn+d s
hemes but not for the Sv s
heme whi
h must have the operand valuesavailable. As we have shown in se
tion 5.2 even if a lookup is possible, only asmall fra
tion of instru
tions have their operands ready at this stage.Thus it is more likely that the lookup is performed in the issue stage. Inthis
ase due to the uniformity in whi
h all instru
tions are treated in IR theinstru
tion isn't issued to a unit until a lookup has been performed. But in this
ase a penalty of one
y
le is paid if the lookup has failed.Our tests have shown that IM in the issue stage results in an average speedupof only 1.05
ompared to a speedup of 1.11 for performing IM in the issue stageonly if a FU isn't available. If a FU is available, IM is performed in parallel tothe FU exe
ution, redu
ing the overhead of a miss to zero
y
les. But there is nouse in memoizing a single-
y
le instru
tion in the exe
ute stage. The distributednature of IM whi
h uses di�erent Memo-Tables for di�erent instru
tions en-ables us to treat single-
y
le and multi-
y
le instru
tions di�erently.6.3.4 Design Simpli
ityIM uses tables that store only values and operations. The entries in the tablesare always valid (ex
ept on startup) even a
ross
ontext swit
hes. In the
aseof a FP appli
ation sharing a pro
essor with integer appli
ations IM has ahuge advantage, the FP Memo-Tables will remain untou
hed by the otherappli
ations.IR must invalidate the RB a
ross
ontext swit
hes as it is indexed by thePC. Even the �rst s
heme of IR whi
h stores operand values must keep tra
kof memory referen
es as it memoizes loads and stores. A write to a memoryaddress invalidates other referen
es to the same address. The other two s
hemesare mu
h more
ompli
ated as every instru
tion exe
uted may invalidate RBentries and links between instru
tions must be maintained at all times.

Chapter 7Summary and Con
lusionsThis thesis explored the
on
ept named memoization: saving the input(s) andoutput(s) of previously
al
ulated (side-e�e
t-free) fun
tions, and using the out-put if the input is en
ountered again. However our fo
us was on very shortfun
tions: instru
tions. By saving the operands and results of previous invo-
ations of exe
uted instru
tions in dedi
ated tables (named Memo-Tables byus) implemented in the pro
essor, it is possible to redu
e the laten
ies of in-stru
tions from multiple
y
les to one
y
le. This is used to improve exe
ution.We named this te
hnique Instru
tion Memoization (IM).A simulator (based on the SimpleS
alar [17℄ simulator) of a RISC super-s
alar pro
essor with IM integrated in its datapath has been
onstru
ted. On itwe have run two sets of
ommonly used ben
hmarks (SPEC95 [18℄, MediaBen
h[19℄). The simulations have been performed in three major stages:1. The organization of the Memo-Tables has been explored in sear
h foran \optimal" design that will maximize hit-ratio and minimize
ost. Theinstru
tions memoized are multi-
y
le instru
tions, instru
tions with la-ten
ies larger than one (
hapter 3).2. The integration of Memo-Tables in a RISC pro
essor has been simu-lated and explored in order to quantify the speedup a
hieved by using IM(
hapter 4).3. The s
ope of IM was widened to in
lude single-
y
le instru
tions as well(
hapter 5).The following se
tions will summarize the stages and present our
on
lusions.We want to stress that this thesis deals with the ar
hite
tural aspe
ts of IM.The positive or negative in
uen
es of
ompilers, for super-s
alar or EPIC1 pro-
essors, on IM hasn't been ta
kled in this resear
h. Nor has the
ost of IM in1An Expli
itly Parallel Instru
tion Computing (EPIC) a.k.a Very Long Instru
tion Word(VLIW)
omputer, s
hedules during
ompile time several operations to several FUs. Redu
ingthe laten
ies of instru
tions might not improve
omputation if instru
tion s
heduling is stati
.56

7.1. MEMO-TABLE ORGANIZATION 57terms of number of transistors, power
onsumption, or design
omplexity beendis
ussed. We have performed several simulations that
ompare IM to otherar
hite
tural enhan
ements but not on a transistor to transistor basis, theseresults are presented later.7.1 Memo-Table OrganizationOur �rst task was to prove that instru
tion results are reusable. This wasperformed by
apturing the operands of all multi-
y
le instru
tions exe
uted inan \in�nitely" large \fully asso
iative"Memo-Table (in pra
ti
e 1M entries insets of 512). The simulations have shown that 60% of all dynami
 instru
tionappearan
es are repeatable, they are exe
uted with the same operand values.We then pro
eeded to
hara
terize the \optimal"Memo-Table stru
ture. AMemo-Table is \
a
he-like", it saves the last instru
tions exe
uted. Thus the
a
he-like traits: size, asso
iativity, repla
ement method, and mapping s
hemewere explored �rst. Then s
hemes like trivial
al
ulation dete
tion,
ommutativeand inverse operation dete
tion were tested. Finally the number of Memo-Tables and the
ontents of ea
h Memo-Table were investigated. The resultsand
on
lusions at this stage were:� A degree of set asso
iativity higher than four is unne
essary.� Enlarging a Memo-Table beyond a
ertain point results in diminishingreturns as the hit-time in
reases as well as the hit-ratio.� Using several Memo-Tables for di�erent instru
tion types enables a
-
essing them
on
urrently but not having to implement a Memo-Tablefor every instru
tion type.� Using the ProgramCounter (PC) as the index into aMemo-Table resultsin mu
h poorer hit-ratios than when the operand values are used as indi
es.� By dete
ting trivial
al
ulations, and not entering the operations into theMemo-Tables, a hit-ratio improvement is a
hieved that is
omparableto a four-fold size in
rease.Spe
i�
ally we re
ommended implementing IM with 5 Memo-Tables, ea
hholding several of the multi-
y
le instru
tion types. Ea
h Memo-Table
on-tains 256 entries in sets of 4 . Entries are repla
ed randomly and are indexedby the operand values XORed with the op
ode. Trivial
al
ulations involvingvalues of 0 or 1 aren't entered into the Memo-Tables but are dete
ted withdedi
ated
ir
uitry. This organization yields an average hit-ratio of 0.50, thisis over 80% of the hit-ratio obtained when using an in�nite fully-asso
iativeMemo-Table.

58 CHAPTER 7. SUMMARY AND CONCLUSIONS7.2 IM in the datapathThe proposed Memo-Table organization was integrated into a RISC super-s
alar pro
essor with
hara
teristi
s similar to the MIPS R10000 [24℄ and thePower PC 604e [25℄ pro
essors. We dis
overed that 13% of the ben
hmarks'exe
ution time
an be attributed to multi-
y
le instru
tions. With a 52% hit-ratio an average speedup of 1.07 was obtained. We then pro
eeded to alter theattributes of the datapath to
he
k their in
uen
e on IM and vi
e-versa. Ourresults and
on
lusions are:� The only datapath fa
tor that e�e
ts the hit-ratio is the bran
h predi
tionrate. Mispredi
ted bran
hes
ause instru
tions to be
ushed from thepipeline, many of these instru
tions may later be re-exe
uted
ausing hitsin the Memo-Tables.� The major
ontribution of IM is the redu
ed laten
y of su

essfully mem-oized instru
tions. Having instru
tions
omplete exe
ution earlier enablesdependent instru
tions to be issued earlier. The number of
y
les aninstru
tion spends in the pipeline is redu
ed, whi
h dire
tly redu
es exe-
ution time.� A minor
ontribution to enhan
ed exe
ution is the virtual addition of FUs.When a stru
tural hazard o

urs a Memo-Table lookup may be able toprovide the instru
tion's result,
ir
umventing the exe
ute stage of thepipeline.� Given a �xed laten
y for multi-
y
le instru
tions, IM works better forfaster pro
essors. A pro
essor with a wide pipeline, a near perfe
t memoryhierar
hy, a high rate of bran
h predi
tion, and enough FUs will en
ountera bottlene
k when waiting for long laten
y instru
tion to
omplete. IMrelieves this bottlene
k. The basi
 pro
essor has an IPC of 1.22, IM pro-vides a speedup of 1.07. On a pro
essor with an IPC of 3.65 the speedupof using IM is 1.09.� IM is a te
hnique that predominantly favors FP intensive appli
ations.The speedup for FP appli
ations is 1.10, for integer appli
ations it is only1.01 (for appli
ations whi
h heavily use integer division and multipli
a-tion). A way must be found to widen the s
ope of IM.7.3 Single-Cy
le Instru
tion Memoization (s
IM)In order to en
ompass more instru
tions in IM we added a Memo-Table that
ontains most integer single-
y
le instru
tions. 57% of these instru
tions arereused resulting in a 1.11 speedup. However the speedup is only the result ofredu
ing the stru
tural-hazard ratio. TheMemo-Table is used as an additionalFU, supplying results when no FU is available. We
ontinued to explore thisaspe
t of s
IM and arrived at the following
on
lusions:

7.4. THE BOTTOM LINE 59� Adding more FUs to a pro
essor minimizes the impa
t of s
IM. Whenthe stru
tural-hazard ratio rea
hes 0 the e�e
t of memoizing single-
y
leinstru
tions is non-existent.� Adding more FUs doesn't harm m
IM, in fa
t it performs even better.� Better performan
e is gained by adding just one ALU and implementings
IM, than implementing m
IM.� Using the area dedi
ated to the Memo-Tables to enlarge on-
hip
a
hesor improve bran
h predi
tion proves better than IM for integer appli
a-tions but not for FP appli
ations.7.4 The Bottom LineThe bottom line is that IM improves FP pro
essing. By reusing previous
al-
ulations the laten
y of multi-
y
le instru
tions is redu
ed 50% of the time toone
y
le. Thus, in pra
ti
e the laten
y of FP instru
tions is
ut in half.The more powerful the pro
essor is the better it
an utilize IM. The onlyenhan
ement that redu
es the e�e
tiveness of IM is redu
ing the laten
y (notthe throughput, IM works �ne with pipelined FUs), this doesn't seem to be thetrend in state of the art mi
ropro
essors.

Appendix AIM on Real Pro
essorsIn the body of this resear
h IM has been an a
ademi
 issue des
ribed and sim-ulated in the
ontext of an unexistent pro
essor. We will now des
ribe andquantify the e�e
t of IM on two real pro
essors: The MIPS R10000 [24℄ anf thePower PC 604e [25℄. Tables A.1 and A.2 list the
hara
teristi
s of both pro
es-sors. Both pro
essors are similar in their memory hierar
hy, bran
h predi
tion
apabilities, fun
tional units and instru
tion laten
ies (slightly shorter for theR10000). The main di�eren
e is in their super-s
alar
apabilities. While theR10000 has three instru
tion queues (Integer, FP, Memory) of 16 instru
tionsea
h, the 604e has only 2-instru
tion reservation stations for ea
h FU. Thislimits the out-of-order issue
apability of the 604e.SimpleS
alar was modi�ed to simulate both pro
essors as
lose to reality aspossible1. The ben
hmarks were then run on the simulators with and withoutIM (m
IM at this stage). The IM is performed at the exe
ute stage of thepipeline if a FU is available and at the issue stage if not. IM laten
y is one
y
le and the Memo-Table stru
ture de�ned in
hapter 3 is used. The resultsof both sets of simulations are
ompared to the basi
 pro
essor in table A.3.The results for m
IM are similar with the basi
 pro
essor having a slightedge. The 604e is a slightly slower pro
essor and as we have shown in se
tion4.4 bene�ts less from IM. The R10000 is almost as fast as the basi
 pro
essorbut has shorter instru
tion laten
ies for FP instru
tions whi
h leads to a lowerFE and speedup (se
tion 4.3).The main di�eren
e is in the results of s
IM. Single-
y
le instru
tions maybene�t from IM if at the issue stage they are ready to be issued but la
k a FUto exe
ute on. The Memo-Table is then utilized as an additional FU. For thebasi
 pro
essor 27% of all hits are performed in the issue stage. However for theR10000 and 604e the ratio of hits in the issue stage is mu
h lower being 17%and 8% respe
tively. This strengthens our
laim that s
IM is of limited use.1The instru
tion set of the R10000 is identi
al to the SimpleS
alar ISA. The 604e ISA isdi�erent whi
h might lead to slightly ina

urate results.60

61

L1 Instru
tion Ca
he 32-KBytes, 64-Byte blo
ks, 2-way asso
iativeL1 Data Ca
he 32-KBytes, 32-Byte blo
ks, 2-way asso
iativeL2 Uni�ed Ca
he 1-Mbytes, 64-Byte blo
ks, 2-way asso
iativeMemory Laten
ies (
y
les) L1 hit - 1, L2 hit - 6, L2 miss -18Bus Interfa
e 64-bit data, 32-bit addressBran
h Predi
tion 512-entry BHT, 2-bit
ountersRegisters 32 General Purpose, 32 Floating PointFun
tion Units 2 IALU�, 1 IMULT1 FADD unit, 1 FMULT, 1 MMU��Instru
tion Laten
ies Integer multipli
ation: 6,6& Throughputs Integer division: 35,35All other integer instru
tions: 1,1Floating point multipli
ation: 2,1Floating point division: 19,21 (sp: 12,14)Floating point Sqrt: 33,35 (sp:18,20)All other
oating point instru
tions: 2,1Pipeline attributes 4-instru
tions fet
hed, de
oded, issued,and
ommitted per
y
le; 32 instru
tions in A
tive List;16 instru
tion INT, FP, Address queues;out-of-order exe
ution; in-order retirement� One of the IALUs performs idiv.�� Has a dedi
ated ALU for EA
al
ulation.Table A.1: Chara
teristi
s of the MIPS R10000 mi
ropro
essor.

62 APPENDIX A. IM ON REAL PROCESSORSL1 Instru
tion Ca
he 32-KBytes, 32-Byte blo
ks, 4-way asso
iativeL1 Data Ca
he 32-KBytes, 32-Byte blo
ks, 4-way asso
iativeL2 Uni�ed Ca
he 1-Mbytes, 64-Byte blo
ks, 2-way asso
iativeMemory Laten
ies (
y
les) L1 hit - 1, L2 hit - 6, L2 miss -18Bus Interfa
e 64-bit data, 32-bit addressBran
h Predi
tion 512-entry BHT, 2-bit
ountersRegisters 32 General Purpose, 32 Floating PointFun
tion Units 2 IALU, 1 IMULT1 FPU�, 1 BPU, 1 MMU��Instru
tion Laten
ies Integer multipli
ation: 3,1& Throughputs Integer division: 20,19All other integer instru
tions: 1,1Floating point multipli
ation: 3,1Floating point division: 31,31 (sp: 18,18)Floating point Sqrt���: 60,60 (sp: 50,50)All other
oating point instru
tions: 3,1Pipeline attributes 4-instru
tions fet
hed, de
oded, issued,and
ommitted per
y
le; 16 instru
tions in Reorder Bu�er;2-instru
tion reservation stations for ea
h FU;out-of-order exe
ution; in-order retirement� Performs all FP instru
tions.�� Has a dedi
ated ALU for EA
al
ulation.��� The 604e doesn't implement the fsqrt instru
tion.Table A.2: Chara
teristi
s of the PPC 604e mi
ropro
essor.
Pro
essor IPC hr FE Speedupm
IMBasi
 1.27 0.51 13% 1.07R10000 1.23 0.51 9% 1.06604e 1.06 0.51 11% 1.06s
IMBasi
 1.27 0.55 - 1.11R10000 1.23 0.55 - 1.08604e 1.06 0.54 - 1.06Table A.3: Comparison of R10000, 604e, and \basi
" pro
essors (m
IM ands
IM integrated into pipeline).

Appendix BMemoization of Fun
tionsWe have shown in the previous
hapters that IM works for instru
tions andenhan
es exe
ution. Thus, if the te
hnique works for instru
tions with laten
iesof several
y
les only, it should surely work for fun
tions with laten
ies of tensto hundreds of
y
les. Table B.1 shows the laten
ies in
y
les of several
ommonmathemati
al and trigonometri
 fun
tions in the Pentium II pro
essor [33℄,1 theonly pro
essor to date to in
lude these fun
tions in its instru
tion set, and thelaten
ies of the software implementations of the same fun
tions2. The numberslead us to believe that su

essful memoization will be produ
tive. The fa
t thatthese fun
tions are
ommon to most s
ienti�
, engineering, and Multi-Mediaappli
ations en
ouraged us to suggest a hardware based solution rather that asoftware one. We will
all this s
heme Fun
tion Memoization (FM).fun
tion Pentium II softwareSquare root 70 1,700Sine 16{126 250Cosine 18{124 230Tangent 17{173 320Logarithm 22{111 196Exponent 13{57 131Ceiling 9{20 15Floor 9{20 15Power - 473Table B.1: Laten
ies of mathemati
al fun
tions, in
y
lesFigure B.1 shows a s
hemati
 layout of the idea using a hardware-implemented1The instru
tions aren't exe
uted by dedi
ated fun
tional units, they use all the pro
essor'sunits and blo
k all other instru
tions from issuing until they
omplete. The laten
ies are inputdependent, usually inputs with longer mantissas entail a longer
y
le time in
omputing thefun
tion.2The
ode was taken from the gnu C library version 1.09 (glib
-1.09) and run through thesimple-s
alar simulator. The numbers are the average of measuring the
omputation time for10,000 random double pre
ision values. 63

64 APPENDIX B. MEMOIZATION OF FUNCTIONSsquare root unit as an example. The operands are forwarded in parallel both tothe square root unit and its adja
ent Memo-Table. Whi
hever
ompletes �rst| the Memo-Table lookup or the a
tual
omputation |
an
els the otherand produ
es the result. In the
ase of the a
tual
omputation the result is alsostored in the Memo-Table for future use.
Operand

SQRT

UNIT

MEMO

TABLE

MUX

hit/miss lineoperation

completed

line

ResultFigure B.1: A square root unit using a Memo-TableWhat di�erentiates this work from other works in the immediate �eld is thefa
t that aside from Intel all other mi
ropro
essor manufa
turers don't in
ludethese fun
tions (aside from square root taking) in their instru
tion sets anddon't have hardware units to implement them. Therefore the framework de-s
ribed above
annot be applied. Instead, we propose to modify the Instru
tionSet Ar
hite
ture (ISA) by adding two new instru
tions to lookup and updatea generi
 Memo-Table. These instru
tions provide a
ompletely general in-terfa
e to the Memo-Table, and allow the
ompiler to use it to memoize anyfun
tion it
hooses, be it a library fun
tion or a user fun
tion. Even inlinedfun
tions are supported. We assume that the fun
tions are side-e�e
t free, thisis noted by the developer and enfor
ed by the
ompiler. Fun
tions with side-e�e
ts will have to be exe
uted in any
ase.

B.1. MEMOIZATION OF MATHEMATICAL FUNCTIONS 65B.1 Memoization of Mathemati
al Fun
tionsThis se
tion des
ribes how using Memo-Tables a

elerates
omputing math-emati
al and trigonometri
 fun
tions. The Memo-Table used is identi
al tothe Memo-Table des
ribed in the previous
hapters. Ea
h entry
ontains twooperands, a result, and a �eld that identi�es the fun
tion. A des
ription ofhow a Memo-Table works in tandem with a FU was
overed in the previous
hapters and won't be
overed her. What we will show is how memoization isimplemented if the fun
tion is
al
ulated in software (se
tion B.1.1) and analyzethe overhead of FM (se
tion B.1.2).B.1.1 Memoization of Software Implemented Fun
tionsIn the
ommon
ase where most fun
tions are implemented in software severalISA
hanges must be made. Three main reasons motivated our design
hoi
e:1. De
ouple the memoization from the routine that exe
utes the fun
tion.Not in all
ases will the fun
tion
ode be available for
ompilation, thus wede
ided to perform the lookup and update outside the routine body insteadof altering the
alling and return instru
tions to perform the lookup andupdate the Memo-Table.2. Most RISC ISAs have instru
tion formats of three register operands and asmall (5-6 bit) immediate �eld (the MIPS R-format or the PPC A-Form).We will use these instru
tion formats for our new instru
tions.3. Most of the mathemati
al and trigonometri
 fun
tions have a single operandand single result, and a minority of them have two operands and a singleresult. Thus it is possible to use the sameMemo-Table stru
ture used tomemoize instru
tions. The new instru
tions introdu
ed support fun
tionswith one or two inputs and one output.The ISA we will add the new instru
tions to is SimpleS
alar [17℄ whi
h isbased on the MIPS instru
tion set. Only two new instru
tions (ea
h with twovariations) must be added:� LUPM2 (LookUP Memo2) - Look up a value in aMemo-Table. Theinstru
tion has three operands whi
h reside in registers and one immediateoperand.1. IN1 - fun
tion input 1 in a register2. IN2 - fun
tion input 2 in a register3. OUT - fun
tion result in a register4. FID - fun
tion identi�er, a 5 bit
ode.When exe
uted the instru
tion uses the values in IN1, IN2 and the fun
tionidenti�er to index a separate or uni�ed Memo-Table (separate tables:FID identi�es the Memo-Table and IN1 & IN2 index it, uni�ed table:

66 APPENDIX B. MEMOIZATION OF FUNCTIONSIN1, IN2 and FID index the table). If the lookup is su

essful the output ofthe fun
tion is loaded from the Memo-Table into OUT and the
oatingpoint
ag is set. A test instru
tion (su
h as b
1t)
an then bran
h to anaddress beyond the fun
tion
all.� UPDM2 (UPDate Memo2) - Update an entry in a Memo-Table.Like lupm2, this instru
tion has three operands whi
h reside in registersand one immediate operand.1. IN1 - fun
tion input 1 in a register2. IN2 - fun
tion input 2 in a register3. IN3 - fun
tion result in a register4. FID - fun
tion identi�er, a 5 bit
ode.When exe
uted the instru
tion uses the values in IN1, IN2 and FID toindex a Memo-Table, and stores the value in IN3 in it.Ea
h of these instru
tions has an one operand version (lupm1, updm1) where these
ond input register (IN2) is an impli
it 0.Table B.2 shows a
omplete assembly
ode ex
erpt whi
h uses the new in-stru
tions. The assembly is for the SimpleS
alar ISA (f* are fp registers, L* arelabels, sin is the address of the Sine routine, and NSIN is its 5-bit mnemoni
).The
ode demonstrates the memoization of a single operand fun
tion. The
om-piler loads f20 with the input to the sin() fun
tion and exe
utes lupm1with f22as the OUT register. If the lookup is su

essful the result in the Memo-Tablewill overwrite f22 and set the
oating point
ag,
ausing the next instru
tionto bran
h and skip the fun
tion
all. If the lookup is unsu

essful the fun
tion
all will be performed and the instru
tion updm1 updates the Memo-Tablewith the value in f0 (the result of the fun
tion
all).C
ode Assembly Remarksa = 1.1; l.d f20,LC The input (1.1) is loaded into f20lupm1 f20,f22,NSIN is 1.1 in the table?b
1t L1 if lookup su

eed skip routine
allmov.d f12,f20 f20) f12 (input reg)b = sin(a); jal sin
all routinemov.d f22, f0 f0 (output reg)) f22updm1 f12,f0,NSIN update table with sin(1.1)
 = b + a; L1: add.d f24,f22,f20
ontinue exe
utionTable B.2: Assembly
ode implementing memoization of sin fun
tion. Newinstru
tions are bold fa
ed (lupm1), added instru
tions are in sans serif (b
1t)(the $ sign before registers and variables is omitted).

B.2. EXPERIMENTS AND RESULTS 67B.1.2 Overhead ConsiderationsIf lupm1 is unsu

essful no bran
h is performed, the routine is setup, jumpedto,
leaned up (the output is moved from f0, the fun
tion's output register, intof22), the Memo-Table is updated with the
omputed value, and exe
ution
ontinues at L1. Thus the overhead of a miss is three instru
tions: lupm1,updm1, and b
1t (for the
ase of two operand fun
tions the penalty is thesame). Of
ourse a hit eliminates the fun
tion's setup, exe
ution and
leanupsaving tens to hundreds of ma
hine
y
les.When the hit ratios are high the
ost of the extra instru
tions is insigni�
antin
omparison to the elimination of tens to hundreds of instru
tions due tosu

essful memoization. When the hit ratios are low or nonexistent (see se
tionB.2.1), a penalty of three instru
tions per fun
tion
all might seem high.The following table shows how a pro
essor
apable of exe
uting 4 instru
tionsper
y
le (su
h as the MIPS R10000) will exe
ute the
ode. The pro
essor has aFloating Point Unit, and an Integer Unit whi
h exe
utes the bran
hes. lupm1and updm1 are exe
uted by the FP Unit.
y
le FP Unit Integer Unit0 lupm1 f20,f22,NSIN1 mov.d f12,f20 b
1t L12 jal sin3{253 exe
uting sin254 mov.d f22,f0255 updm1 f12,f0,NSINDue to the dependen
ies between lupm1 and b
1t and the use of the FU byboth updm1 and mov.d the overhead of a miss is two
y
les. This penalty
anbe redu
ed by adding a unit that
an exe
ute a lupm1 or updm1 in parallelto other FP instru
tions (a dedi
ated Memo-Table Unit (MTU) or anotherFPU), enabling the Memo-Table update to be performed in parallel to thefun
tion's
leanup. This redu
es the miss penalty to a single
y
le.As mentioned above the new instru
tions are written in MIPS style assembly
ode. For other ar
hite
tures the instru
tions would take on
hara
teristi
s ofthe relevant ISA. For instan
e for the Power PC ISA the lupm1 instru
tionwill set a Condition Register (CR) based on the su

ess of the lookup and thefollowing instru
tion will be a
onditional bran
h based on the value inserted intoit. For the Intel 80x86 ISA the lupm1 instru
tion will pop it's operands fromthe
oating point sta
k and set the appropriate
ag in the EFLAGS register.B.2 Experiments and ResultsTo verify the usefulness of memoization of mathemati
al and trigonometri
 fun
-tions, we performed a series of experiments with SimpleS
alar [17℄ (the samesimulator used for the simulations in
hapter 3) , we tailored SimpleS
alar toin
orporateMemo-Tables in it's design and thus simulate the memoization ofmathemati
al and trigonometri
 fun
tions. The new instru
tions were addedby inserting
ompiler dire
tives in the fun
tions to be memoized. The
ompiler

68 APPENDIX B. MEMOIZATION OF FUNCTIONSthen repla
ed these dire
tives with the new instru
tions. The simulator wasaltered to re
ognize these instru
tions and a
t upon them.The two indi
ators that measure the su

ess of the memoization are the hit-ratio and speedup. Naturally, they depend on the spe
i�
 design of the Memo-Table. The size, asso
iativity and
ontents of the Memo-Table, impa
t theexpe
ted hit-ratio and speedup.B.2.1 SimulationsThe hit-ratio is a fun
tion of the size of theMemo-Table, its asso
iativity, andits
ontents (single fun
tion results or all fun
tion results) as we have seen in
hapter 3. We have simulated a Memo-Table with its size varying from 16to 1K entries and the spe
trum of asso
iativity from dire
t mapped to 16-wayasso
iativity. In addition we have simulated using several Memo-Tables, onefor ea
h fun
tion, and using a single uni�ed Memo-Table for all fun
tions.We have also run the ben
hmarks through an \in�nitely" large fully asso
iativeMemo-Table for
omparison. In se
tion B.2.4 we explore memoization of userde�ned fun
tions, in se
tion B.2.5 we
ompare fun
tion memoization to instru
-tion memoization, and in se
tion B.2.6 we
ompare fun
tion memoization tousing the same hardware to implement the fun
tions in hardware on-
hip.The overhead of memoization in our simulations is two ma
hine
y
les, thestri
ter of the two options shown in se
tion B.1.2. The simulated system isbuilt upon the MIPS R10000 pro
essor [24℄. The fun
tions are assumed to beimplemented in software ex
ept square root taking whi
h is implemented inhardware on
hip. This is the
urrent state for most modern mi
ropro
essors.Ea
h fun
tion has its ownMemo-Table or they share a uni�ed Memo-Table.The ben
hmarks were taken from several sour
es:� SPEC CFP95 - the
oating point
omponent of the SPEC CPU95 suite[18℄.� MediaBen
h - a suite of multi-media and
ommuni
ation appli
ationsfrom UCLA [19℄.� Khoros - Khoros Pro 2000 [34℄ is a development environment that
onsistsof a suite of Image Pro
essing (IP) and Digital Signal Pro
essing (DSP)appli
ations.Only ben
hmarks whi
h have a nontrivial (thousands) number of mathemati
aland trigonometri
 fun
tion
alls were sele
ted for simulation. Appli
ations thatdon't
all the above fun
tions aren't in
uen
ed by our enhan
ements to thepro
essor.Table B.3 des
ribes the spe
i�
 appli
ations, and table B.4 shows how manyinstru
tion and
y
les ea
h appli
ation exe
uted, and how many fun
tion
allswere made by it (at least 1,000
alls)3. It
an be seen that in most
ases only two3In some
ases the numbers are the sum of several appli
ations that make up a ben
hmark(eg. de
ode and en
ode for mpeg2) or the sum of several runs with di�erent inputs (theKhoros appli
ations).

B.2. EXPERIMENTS AND RESULTS 69suite appli
ation des
riptionMediaBen
h rasta Spee
h re
ognitionmesa 3D graphi
s librarympeg2 Video
ompressionSPEC swim Shallow water equationssu2
or Monte-Carlo methodhydro2d Navier Stokes equationsturb3d Turbulen
e modelingapsi Weather predi
tionfpppp Quantum
hemistrywave5 Maxwell's equationKhoros k�t Fast Fourier Transformkgsin Generate sinusoidal datakhisto Compute image histogramklogexp Image logarithm takingvgbox Parallelogram
reationvpml Fra
tal dim. estimationvmarr Edge dete
tionTable B.3: Des
ription of ben
hmark appli
ationsor three fun
tions are used heavily in ea
h appli
ation. This in
uen
es the
hoi
eof whether to use separateMemo-Tables for ea
h Fun
tion-Instru
tion orto have a uni�ed Memo-Table for all fun
tions.B.2.2 Speedups ObtainedThe basi

on�guration of a Memo-Table that we have
hosen is one with256 entries arranged in 64 sets (set asso
iativity of 4), ea
h fun
tion has it'sown Memo-Table. Table B.5 shows the results. We
ompare the results ofusing \in�nitely" large fully asso
iativeMemo-Tables to the results of using 9256 entry 4-way asso
iative Memo-Tables. In addition we show the results ofusing a single 512 entry uni�ed Memo-Table (4-way asso
iative) whi
h holdsall fun
tion values. What is shown in the table is:� FE - Fra
tion Enhan
ed, the fra
tion of
omputation time in the originalma
hine that
an use the enhan
ement. This is shown in terms of dynami
instru
tion
ount and number of
y
les.� HR - the hit ratios of the Memo-Tables (for the in�nite, separate anduni�ed
ases).� SP - the a
tual speedup attained (for the in�nite, separate and uni�ed
ases).The results show that for most appli
ations the hit ratio is high with an av-erage of 57% for separateMemo-Tables and 58% for a uni�ed Memo-Table.

70 APPENDIX B. MEMOIZATION OF FUNCTIONSappli
ation insts
y
les sqrt sin
os tan log exp
oor
eil powrasta 53 58 13K 12K 12K 11K 5K 15Kmesa 107 129 27K 4K 4K 77K 119K 29K 13Kmpeg2 2411 2159 4.1M 1.4Mswim 2674 3021 526K 526Ksu2
or 5234 5462 2.0Mhydro2d 3740 4879 1.54M 96Kturb3d 6836 5996 531K 531Kapsi 3605 5179 1.0M 49K 1.3Mfpppp 4957 6300 1.3M 856K 315K 87Kwave5 7918 8372 9.0M 750K 1.5M 1.5Mk�t 483 582 2K 103K 103K 2K 2Kkgsin 135 135 288K 7Kkhisto 107 142 1.2M 6K 3Kklogexp 52 54 80K 2Kvgbox 128 134 5K 5K 5Kvpml 1129 726 48K 50Kvmarr 21 25 84k 2kTable B.4: Number of instru
tions, Number of
y
les (in millions) and break-down of fun
tion
alls (in thousands) in the ben
hmark appli
ations. Entries ofless then 1K are ignoredThe more signi�
ant number is the speedup. An average speedup of 10% (har-moni
 mean) is attained (11% for a uni�ed Memo-Table).While the average hit ratios and speedup are good we �nd a la
k of
or-relation between them, as is the
ase for IM (se
tions 4.2 and 4.3). FigureB.2 shows that for the SPEC and Khoros appli
ations the hit ratios are higherthan for the MediaBen
h ben
hmarks. On the other hand �gure B.3 showsthe breakdown of the speedup a

ording to suite. From this �gure it
an beseen that the Multi-Media ben
hmarks attain higher speedups than the SPECben
hmarks. This
an be attributed to the higher per
entage of exe
ution timespent
omputing the fun
tions (FE). While the Multi-Media ben
hmarks spend19% (MediaBen
h) to 20% (Khoros) of their exe
ution time in mathemati
al andtrigonometri
 fun
tions the SPEC ben
hmarks only spend 8% of their exe
utiontime in these fun
tions.B.2.3 Memo-Table Con�gurationThe next three experiments performed test the attributes of the LUT itself,its size, asso
iativity and
ontents (uni�ed Memo-Table or separate Memo-Tables for ea
h fun
tion). For these tests we used only 114 out of 17 appli
ationused in the previous tests. Figure B.4 shows the average hit-ratios of the
hosenappli
ations when the size of the LUT ranges from 16 to 1024 entries, and itsasso
iativity is 4.4We have omitted the ben
hmarks su2
or, turb3d, wave5, vpml and vgbox where the hit-ratios are almost the same regardless of the Memo-Table size. And fpppp was omitted dueto its long run time.

B.2. EXPERIMENTS AND RESULTS 71appli
ation FE Hit Ratio Speedupinst
y
le inf sep unif inf sep unifrasta .27 .31 .72 .67 .45 1.24 1.25 1.13mesa .18 .20 .69 .26 .20 1.20 1.06 1.04mpeg2 .04 .05 .32 .17 .22 1.03 1.02 1.02harmoni
 mean .16 .19 .56 .37 .29 1.15 1.12 1.06swim .07 .06 .99 .50 .49 1.07 1.03 1.03su2
or .20 .22 .99 .99 .99 1.29 1.29 1.29hydro2d .01 .02 .99 .70 .77 1.03 1.02 1.02turb3d .03 .03 .99 .99 .99 1.03 1.03 1.03apsi .01 .02 .89 .69 .65 1.02 1.01 1.01fpppp .04 .08 .62 .39 .34 1.09 1.08 1.07wave5 .10 .10 .00 .00 .00 0.98 0.98 0.98harmoni
 mean .07 .08 .78 .61 .59 1.07 1.06 1.06k�t .10 .09 .99 .75 .60 1.10 1.07 1.06kgsin .54 .50 .99 .06 .13 2.02 1.13 1.20khisto .21 .13 .99 .63 .83 1.14 1.05 1.08klogexp .41 .40 .99 .85 .92 1.66 1.53 1.60vgbox .02 .02 .99 .99 .99 1.02 1.02 1.02vpml .01 .01 .92 .86 .88 1.02 1.01 1.01vmarr .40 .26 .90 .26 .41 1.33 1.11 1.19harmoni
 mean .24 .20 .96 .62 .68 1.32 1.13 1.16harmoni
 mean .16 .15 .82 .57 .58 1.19 1.10 1.11Table B.5: Performan
e enhan
ement with memoization of mathemati
al andtrigonometri
 fun
tions. Memo-Tables are either in�nitely large, of size 256for ea
h fun
tion or a 512-entry uni�ed for all fun
tions.The �gure
ompares a uni�edMemo-Table (dashed line) to separateMemo-Tables for ea
h fun
tion (solid line). We see that performan
e improves up toabout 1024 entries after whi
h the line starts to
atten towards in�nity. The�gure shows that almost the same hit-ratios are obtained for a uni�ed table ofsize n and separate tables of size n=2. In our
ase, where 9 separate Memo-Tables are implemented, using a uni�ed Memo-Table gives the same resultsat less than 1=4 of the area
ost. Table B.5
orroborates this by showing thatthe average speedup a
hieved using a uni�ed Memo-Table of size 512 (11%)is slightly greater than the average speedup a
hieved when using 9 separateMemo-Tables of size 256 (10%). This is due to the fa
t that most appli
a-tions heavily use only two or three fun
tions (table B.4).Figure B.5 shows the hit-ratios as a fun
tion of set asso
iativity. For separateMemo-Tables any set asso
iativity higher than one (dire
t-mapped) hardly in-
uen
es the hit-ratio. For a uni�edMemo-Table the
urve starts straighteningout only for a set size of 4. These results
an be explained by the
ontents of theMemo-Tables. The separate tables are only mapped by the input value(s),leading to a greater spread of values throughout the entries in the table. Ina uni�ed Memo-Table the mapping is by the input value(s) and the fun
tion

72 APPENDIX B. MEMOIZATION OF FUNCTIONS

0.10

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��Hit

Ratio

0.30

0.50

0.70

0.90

Infinite

Separate (256/4)

Unified (512/4)

KhorosSPECMediaBenchFigure B.2: Breakdown of hit ratios by suiteidenti�er. In some appli
ations (k�t, swim) the same values are being
omputedfor several fun
tions. This leads to
on
i
t misses in the
ase of a dire
t mappedor even 2-set asso
iative table. A set asso
iativity of 4 alleviates this problemand enhan
es the hit-ratios.B.2.4 Memoization of User Fun
tionsIt is possible to memoize user de�ned, appli
ation spe
i�
, fun
tions in additionto the
ommon mathemati
al fun
tions. In the ben
hmarks we used we foundonly two appli
ations that heavily use side-e�e
t free fun
tions, apsi (fun
tionOVL) and wave5 (fun
tions VAVG, ERF, DENSX, and DENSY). The fun
tionsmemoized have one or two arguments and one return value. As su
h they areperfe
t
andidates for memoization in our proposed infrastru
ture, and the re-sults of memoizing them are en
ouraging. Table B.6 shows the hit ratios andspeedups of memoizing user de�ned instru
tions (in addition to the mathemat-i
al instru
tions)
ompared with only memoizing mathemati
al fun
tions.The table
learly shows that there is an advantage to memoizing user de�nedfun
tions as well (when possible). The hit ratio for user de�ned fun
tions islower (for apsi) due to the fa
t that a su

essful user fun
tion lookup avoidsmany mathemati
al fun
tions. When the user fun
tion lookup is unsu

essfulthe mathemati
al fun
tions are
alled with new values,
ausing a lower hitratio. However the run-time is redu
ed due to many other instru
tions avoiding

B.2. EXPERIMENTS AND RESULTS 73

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

Speed
Up

1.05

1.10

1.15

1.20

1.25

MediaBench

Optimal

SPEC Khoros

1.33 1.321.26

Infinite

Separate (256/4)

Unified (512/4)

Figure B.3: Breakdown of speedups by suiteappli
ation math math + userhr spdp hr spdpapsi .69 1.01 .20 1.05wave5 .00 0.98 .55 1.02Table B.6: Memoization of user de�ned fun
tions (and math + trig fun
tions)
ompared with memoization of only math and trig fun
tions.exe
ution.B.2.5 Memoization of Fun
tions and Instru
tionsIn this se
tion we will integrate the te
hnique of IM proposed in the previous
hapters with the te
hnique of FU introdu
ed in this
hapter. We will
ompare3 implementations::1. The implementation explored in this
hapter where fun
tions are memo-ized.2. Multiple-
y
le instru
tions (without loads/stores) are memoized. Fun
-tions are implemented in software and bene�t from the memoized instru
-tions.3. A
ombined approa
h where both fun
tions and instru
tions are memo-ized.

74 APPENDIX B. MEMOIZATION OF FUNCTIONS

Number of LUT Entries

0.10

Hit
Ratio

0.30

0.50

0.70

0.90

2 25 642 27 28 29 210 infinity

Separate

Unified

Figure B.4: Hit ratios as a fun
tion of LUT size (set size is 4). Memo-Tableis uni�ed (dashed line) or separate Memo-Tables are used (solid line).The Memo-Tables used to memoize instru
tions are the tables re
ommendedat the end of
hapter 3. Figure B.6 shows the speedups per suite.The �gure shows that appli
ations that heavily use mathemati
al fun
tions(Multi-Media) bene�t more by memoizing fun
tions than by only memoizinginstru
tions. A large amount of the instru
tions memoized are in the memoizedfun
tions (this was veri�ed by analyzing the sour
e
ode of the appli
ations),leading to their exe
ution being avoided when the fun
tion is memoized. On theother hand appli
ations that use the mathemati
al fun
tions sparingly bene�tfrom instru
tion memoization whi
h
an
at
h instru
tions not in the mathe-mati
al fun
tions.Obviously the
ombined approa
h is superior with an average 15% speedup.In
hoosing between the fun
tion to instru
tion implementations we might bemislead to
hoose fun
tion memoization due to the higher speedup (10% vs.8%). However we must remember that instru
tion memoization is e�e
tive fora broader s
ope of appli
ations and is
ompiler transparent. As opposed tofun
tion memoization whi
h is limited in its s
ope to spe
i�
 appli
ations andneeds
ompiler support for most ar
hite
tures.B.2.6 Implementing the Fun
tions in HardwareIn this se
tion we will
ompare a pro
essor that implements the mathemati
aland trigonometri
 fun
tions on
hip (like the Pentium family does) to a pro
essorthat memoizes these fun
tions. In both
ases square-root taking is implementedon
hip. In addition we will
ombine both approa
hes and memoize the hardwareimplemented fun
tions. The laten
ies of the on
hip fun
tions are the average

B.3. THE RATIONALE BEHIND FUNCTION MEMOIZATION 75
Hit

0.40

0.60

0.70

1 2 4 8

0.50

Set Associativity Size

16

0.30

Separate

Unified

Ratio

Figure B.5: Hit ratios as a fun
tion of set asso
iativity size. Memo-Table isuni�ed (dashed line, 512-entry) or separateMemo-Tables are used (solid line,256-entry per Memo-Table).laten
ies shown in table B.1.Figure B.7
ompares the approa
hes. The hardware only approa
h yields theworst results. For the SPEC ben
hmarks whi
h use the math & trig fun
tionsmu
h less than the Multi-Media appli
ations the hardware approa
h barelysurpasses the base pro
essor. The
ombined approa
h is the fastest as it bene�tsfrom a lower laten
y for Memo-Table misses and from a laten
y of one
y
lefor Memo-Table hits.B.3 The Rationale Behind Fun
tion Memoiza-tionIt is important to understand why the te
hnique works. Why do ben
hmarkssu
h as vgbox, turb3d and klogexp display su
h high ben
hmarks. A look ata simpli�ed ex
erpt from the sour
e
ode of vgbox shows (table B.7) that it is
omputing in a loop the Sine and Cosine of a variable. Pro�ling showed thatthis variable doesn't
hange. However the
ompiler
an't perform CommonSubexpression Elimination (CSE) and move it out of the loop body due to a
ondition that might
hange the variable's values. The
ompiler
an't dete
t thefa
t that the value doesn't
hange. Using a Memo-Table solves the problemby saving the previous
omputations.The ben
hmark turb3d
ontains
ode that performs a
omplex Fast Fourier

76 APPENDIX B. MEMOIZATION OF FUNCTIONS

Average

Functions

Instructions

Combined

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

Speed
Up

1.05

1.10

1.15

1.20

1.25

MediaBench SPEC Khoros

��
��
��
��

��
��
��
��

Figure B.6: Breakdown of fun
tion, instru
tion, and
ombined memoizationspeedups by suite.Transformation (FFT). The main loop of the fortran subroutine is shown intable B.8. In the inner loop half the values of TI are the same as from theprevious iteration of the outer loop. The Memo-Table easily takes advantageof this.The appli
ation klogexp takes the logarithm of all pixels in an image. Se
tion2.2 has shown that neighboring pixels in an image tend to have the same valuesleading to a high hit-ratio in the Memo-Table.for(i=0;i<N;i++){xp = i/px;std[i℄ = xp*
os(teta)/sin(teta);if(std[i℄ >= KPI - EPS && std[i℄ <= KPI + EPS)teta += KPI;} Table B.7: Simpli�ed vgbox
ode.
B.4 Related WorkTwo te
hniques are
omparable to FM. The �rst is a hardware implementationwith extensive software support. The other is a pure software approa
h.

B.4. RELATED WORK 77

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��

��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

Speed
Up

MediaBench SPEC Khoros Average

Memoized Software Functions

Hardware Functions

Memoized Hardware Functions1.05

1.10

1.15

1.20

1.25

Figure B.7: Breakdown of software memoization, hardware implemented fun
-tions, and
ombined hardware memoization speedups by suite.DO 110 J = 1, MT = PI / LNDO 100 I = 0, LN - 1TI = I * TU(I+KU) = COS (TI)U(I+KN) = SIN (TI)100 CONTINUEKU = KU + LNKN = KU + NULN = 2 * LN110 CONTINUE Table B.8: FFT routine from turb3d.B.4.1 Compiler-Dire
ted Dynami
 Computation ReuseConnors & Hwu [13℄ propose a general te
hnique for reusing large regions of
odewhi
h have distin
t entry and exit points. They named it: Compiler-Dire
tedDynami
 Computation Reuse. If the values at the entry points mat
h the val-ues stored in a lookup table the results stored
an be used, thus avoiding theneed to re
ompute the region. Changes in the registers and memory lo
ationsa

essed in the region invalidate the stored results. The regions are dete
ted bya pro�ling-
ompiler whi
h inserts new instru
tions that test reuse, update thetable, and invalidate stored entries.While our te
hnique
an be seen as a subset of theirs it ne
essitates smaller
hanges to the existing
ompiler and hardware and doesn't
all for extensivepro�ling. Both works are limited by the number of fun
tion arguments and

78 APPENDIX B. MEMOIZATION OF FUNCTIONSreturn values they
an support.B.4.2 Value Pro�lingA software approa
h suggested by Calder, Feller & Eusta
e [14℄ uses value pro�l-ing to identify instru
tions that have invariant or predi
table values at run-time.By inserting spe
ialized
ode they
an
ompare the inputs of fun
tions or
odesegments to the values that have been found to be most
ommon. If they mat
hthe results are obtained immediately, if not the fun
tion or
ode segment isexe
uted.The only advantage this te
hnique has over hardware memoization is thatno hardware and instru
tion set
hanges are needed. On the other hand ourte
hnique has the following advantages:� It doesn't need the extensive pro�ling ne
essary for value pro�ling.� It
an
apture reuse that value pro�ling doesn't dete
t su
h as a largenumber of data values ea
h used only a few times, or data that is inputvariant.� If there are even two values to
ompare to, the overhead of a software missis greater than the overhead of a hardware miss.B.5 Comparing Hardware to Software Memo-izationA fundamental question about memoization is: \Why
an't it be done in soft-ware?" At the instru
tion level it is obvious that software memoization is of noavail. The overhead of a lookup would be tens of instru
tions. Nevertheless thequestion is valid in the s
ope of fun
tion memoization.Memoization is, of
ourse, possible to implement in software but there areseveral reasons why a hardware-based approa
h is superior:� the most
ompelling reason for using hardware-basedMemo-Table is thepenalty of an unsu

essful lookup. For terminal
ases where the hit-ratioon the Memo-Table is low, the penalty for a software test and updateis several memory a

esses and tens of extra instru
tions. The penaltyof a hardware-based Memo-Table miss is one or two ma
hine
y
les asshown in se
tion B.1.2.� Initializing, a

essing and updating the software based Memo-Table
ompli
ates programming and
ompiler design. Global Memo-Tableswill have to be re
ognized by
ode that was written by di�erent teams ofdevelopers or by a third party
ompany. A hardware-basedMemo-Tablea

ess is simple (lupm1 and updm1) and all modules of an appli
ation

B.5. COMPARING HARDWARE TO SOFTWARE MEMOIZATION 79a

ess the same table. A developer need not know of the existen
e of mem-oization and the
ompiler writer needs to add only three extra instru
tionsfor ea
h memoized fun
tion
all.� Amemory basedMemo-Table demands resour
es su
h as registers,
a
helines, and memory ports. These resour
es are dedu
ted from the originalappli
ation. A hardware-basedMemo-Table uses none of the above.Table B.9
ompares hardware based to software based memoization. Shownare the average speedups per suite when using separateMemo-Tables for ea
hfun
tion. The size of ea
h Memo-Table is 256 entries and the asso
iativityis either dire
t-mapped or 4-way set asso
iativity. In addition to the speedupswe show the table size needed in order to a
hieve the same speedup of usinga hardware 256/4 Memo-Table, or the maximal speedup if it is impossibleto obtain the same speedup. This happens when the miss ratio is so highthat the miss penalty is larger than the number of
y
les avoided by su

essfulmemoization, or the software tables are so large that they dominate the L1 data
a
he and degrade exe
ution.The results were that only 5 out of 17 appli
ations a
hieve any speedup(with software-memoing & 256-entry tables). The average speedup is -11% (-7% for a dire
t-mapped table), in other words a slowdown. It is interesting topoint out that while the hardware based s
heme favors the higher asso
iativity(10%
ompared to 8%), the software favors the dire
t-mapped approa
h. Thisis due to serialization of the 4-way lookup in software. Further simulations haveshown that for software a 2-way lookup is the best tradeo� between hit-ratioand lookup overhead.When trying to �nd the software based table that yields the best results weobserved that a table larger than 2K entries will always
ause a degradation inperforman
e. This is
aused by the doubling of the miss ratio of the L1 data
a
he over the
ase where a 1K entry table is used (for some appli
ations asmaller table size already
auses degradation). The average speedup obtained is1%, with only six appli
ations being slowed down, and 11 a
hieving some degreeof speedup. 256-entry tables best a
hievedsuite 4-way dire
t soft memoizationhard soft hard soft size/asso
 spdpMediaBen
h 1.12 0.86 1.10 0.90 1024/2 0.95SPEC 1.06 0.93 1.05 0.95 2048/2 1.01Khoros 1.13 0.88 1.12 0.92 1024/2 1.03Harmoni
 mean 1.10 0.89 1.08 0.93 1.01Table B.9: Speedup
omparison between hardware based to software basedmemoization. Hardware Memo-Tables are separate and of size 256/1 and256/4.

80 APPENDIX B. MEMOIZATION OF FUNCTIONSB.6 SummaryThis
hapter investigates the te
hnique of memoization in the framework ofthe mathemati
al and trigonometri
 fun
tions. The results of previous fun
tioninvo
ations are saved (along with their inputs) in lookup tables. If the result of afun
tion
all already resides in a table, it is obtained in a single
y
le as opposedto the tens to hundreds of
y
les it would take to
ompute the fun
tion. Ourtests have shown that an average su

ess rate of 58% is a
hieved for appli
ationsthat utilize the mathemati
al and trigonometri
 fun
tions.Our main
on
lusion is that with hardware support in the form of a small andsimple to design lookup table (a uni�ed, 512-entry, 4-way asso
iative Memo-Table's size is 16KBytes) it is possible to attain an average (harmoni
 mean)speedup of 11% for appli
ations whi
h utilize the aforementioned fun
tions. Thisis 60% of the maximal speedup a
hievable whi
h would require using Memo-Tables with millions of entries.The overhead for unsu

essful lookups is one or two
y
les for ea
h fun
tion
all, thus an almost negligible penalty is paid for appli
ations that don't displaya large degree of \value lo
ality". Su
h a low overhead is impossible to dupli
ateusing software memoization te
hniques.As most mathemati
al and trigonometri
 fun
tions aren't in
luded in theinstru
tion sets of most mi
ropro
essors (square root taking being the ex
ep-tion) we suggest adding two new instru
tions to the ISA. lupm1 (lupm2) andupdm1 (updm2), whi
h lookup and update a generi
 Memo-Table.In
omparing FM with IM we saw that for appli
ations whi
h heavily utilizemathemati
al and trigonometri
 fun
tions, fun
tion memoization yields betterresults. For almost all appli
ations both approa
hes
omplement ea
h otherleading to a 14% speedup using a
ombined implementation. We
ompareda pro
essor that implements the mathemati
al and trigonometri
 fun
tions inhardware on
hip, to a pro
essor that memoizes these fun
tions on
hip, butexe
utes them in software. The results showed that the latter pro
essor was7% faster than the former one. Combining both approa
hes yields a speedup of15% over the base pro
essor.

Bibliography[1℄ Mi
hie D., \Memo Fun
tions and Ma
hine Learning," Nature 218, pp. 19{22, 1968.[2℄ L. Sterling and E. Shapiro, \The Art of Prolog, 2nd Ed.", MIT Press Cam-bridge MA, 1992.[3℄ Abelson, H. and Sussman, G.J. Stru
ture and Interpretation of ComputerPrograms. MIT Press, Cambridge, Mass. 1985.[4℄ R. Milner, M. Tofte, R. Harper, and D. Ma
Queen, The De�nition of Stan-dard ML (Revised) .MIT Press, Cambridge, Mass. 1997.[5℄ S. Harbision, \An Ar
hite
tural Alternative to Optimizing Compil-ers",Pro
. of the 1st Int. Conf. on Ar
hite
tural Support for ProgrammingLanguages and Operationg Systems, pp. 57{65, Mar
h 1982.[6℄ S. Ri
hardson, \Exploiting Trivial and Redundant Computation", Pro
. ofthe 11th Symp. on Computer Arithmeti
, pp. 220{227, July 1993.[7℄ S. Oberman and M. Flynn, \Redu
ing Division Laten
y with Re
ipro
alCa
hes", Reliable Computing, Vol 2, no. 2, pp. 147{153, April 1996.[8℄ A. Sodani and G. Sohi, \Dynami
 Instru
tion Reuse", Pro
. of the 24thInt. Symp. on Computer Ar
hite
ture, pp. 194{205, June 1997.[9℄ F. Gabbay and A. Mendelson, \Spe
ulative Exe
ution based on Value Pre-di
tion", EE Department TR #1080, Te
hnion - Israel Institute of Te
h-nology, November 1996.[10℄ M. Lipasti, C. Wilkerson and J. Shen, \Value Lo
ality and Load ValuePredi
tion", Pro
. of the 7th Int. Conf. on Ar
hite
tural Support for Pro-gramming Languages and Operationg Systems, pp. 138{147, O
tober 1996.[11℄ M. Lipasti and J. Shen, \Ex
eeding the Data
ow Limit via Value Predi
-tion", Pro
. of the 29th Int. Symp. on Mi
roar
hite
ture, De
ember 1996.[12℄ Y. Sazeides and J. Smith, \The Predi
tability of Data Values", Pro
. ofthe 30th Int. Symp. on Mi
roar
hite
ture, pp. 138{148, De
ember 1997.81

82 BIBLIOGRAPHY[13℄ D. Connors and W. Hwu, \Compiler-Dire
ted Dynami
 ComputationReuse: Rationale and Initial Results",Pro
. of 32nd Int. Symp. on Mi-
roar
hite
ture, pp. 158{169, November 1999.[14℄ B. Calder, P. Feller, A. Eusta
e, \Value Pro�ling and Optimization", Jour-nal of Instru
tion-Level Parallelism, Vol. 1, 1-6 1999.[15℄ D. Citron, D. Feitelson and L. Rudolph, \A

elerating Multi-Media Pro-
essing by Implementing Memoing in Multipli
ation and Division Units",Pro
. of the 8th Int. Conf. on Ar
hite
tural Support for Programming Lan-guages and Operationg Systems, pp. 252{261, O
tober 1998.[16℄ A. Sodani and G. Sohi, \An Empiri
al Analysis of Instru
tion Repetition",Pro
. of the 8th Int. Conf. on Ar
hite
tural Support for Programming Lan-guages and Operationg Systems, pp. 35{45, O
tober 1998.[17℄ D. Burger and T. Austin, \The SimpleS
alar Tool Set, Version 2.0", Te
h-ni
al Report TR-CS-97-1342, University of Wis
onsin-Madison, June 1997.[18℄ http://www.spe
ben
h.org[19℄ C. Lee, M. Potkonjak, and W. H. Mangione-Smith, \MediaBen
h: A Toolfor Evaluating and Synthesizing Multimedia and Communi
ations Sys-tems", Pro
. of 30th Int. Symp. on Mi
roar
hite
ture, De
ember 1997.[20℄ Jain R., \The Art of Computer Systems Performan
e Analysis", John Wi-ley & Sons, 1991.[21℄ Hennessy J. L. and Patterson D. A., \Computer Ar
hite
ture: A Quanti-tative Approa
h", Morgan Kaufmann Publishers, San Mateo CA, 1990.[22℄ http://www.mot.
om/SPS/PowerPC/produ
ts/semi
ondu
tor/
pu/750.html[23℄ D. Citron and L. Rudolph, \Creating a Wider Bus Using Ca
hing Te
h-niques", Pro
. of 1st Int. Symp. on High Performan
e Computer Ar
hite
-ture (HPCA), January 1995.[24℄ http://www.sgi.
om/MIPS/produ
ts/r10k[25℄ http://www.mot.
om/SPS/PowerPC/produ
ts/semi
ondu
tor/
pu/604.html[26℄ http://www.support.
ompaq.
om/alpha-tools/do
umentation/
urrent/
hip-do
s.html[27℄ M. Azam, P. Franzon, and W. Liu, \Low Power Data Pro
essing by Elimination of Redundant Computations", 7th Int. Symp. on Low PowerEle
troni
s and Design, August 1997.[28℄ Cmelik R. and Keppel D., Shade: A Fast Instru
tion-Set Simulator forExe
ution Pro�ling, Sun Mi
rosystems Laboratories.

BIBLIOGRAPHY 83[29℄ S. Ri
hardson, \Ca
hing Fun
tion Results: Faster Arithmeti
 b y Avoid-ing Unne
essary Computation", Sun Mi
rosystems Laboratories,Te
hni
alReport TR-92-1, September 1992.[30℄ A. Sodani and G. Sohi, \Understanding the Di�eren
es Between ValuePredi
tion and Instru
tion Reuse", Pro
. of 31st Int. Symp. on Mi
roar-
hite
ture, November 1998.[31℄ F. Gabbay and A. Mendelson, \Can Program Pro�ling Support Value Pre-di
tion?", Pro
. of the 30th Int. Symp. on Mi
roar
hite
ture, pp. 138{148,De
ember 1997.[32℄ C. Molina, A. Gonz�alez, and J. Tubella, \Dynami
 Removal of RedundantComputations", Pro
. of the ACM Int. Conf on Super
omputing, June 1999.[33℄ http://www.intel.
om/design/[34℄ http://www.khoral.
om

