“Instruction Memoization:
Exploiting Previously Performed
Calculations to Enhance
Performance”

A dissertation submitted in fulfillment of the
requirements for the degree of Doctor of Philosophy

by

Daniel Citron

Submitted to the senate of the Hebrew University in
the year 2000

“Instruction Memoization:
Exploiting Previously Performed
Calculations to Enhance
Performance”

A dissertation submitted in fulfillment of the
requirements for the degree of Doctor of Philosophy

by

Daniel Citron

Submitted to the senate of the Hebrew University in
the year 2000

This dissertation was compiled under the supervision of
Dr. Dror G. Feitelson.

ii

Abstract

This thesis explores the concept named memoization: saving the input(s) and
output(s) of previously calculated (side-effect-free) functions, and using the out-
put if the input is encountered again. Our focus will be on the memoization of
instructions. The operands and results of previous invocations of multi-cycle
instructions are saved in dedicated tables named MEMO-TABLES. Successful
lookups in these tables, before or parallel to instruction execution, make it pos-
sible to improve execution by reducing the latencies of these instructions to one
cycle. We named this technique Instruction Memoization (IM).

To test this idea we used a detailed RISC processor simulator running the
SPEC and MediaBench benchmarks. We first explore the organization of the
MEMO-TABLES in search for an “optimal” design that will maximize hit-ratio
and minimize cost. A hit-ratio of over 50% is achieved for moderate sized tables.

Next we integrated IM into a RISC super-scalar processor’s datapath. We
discovered that 13% of the benchmarks’ execution time can be attributed to
multi-cycle instructions. With a 52% hit-ratio an average (harmonic mean)
speedup of 1.07 was obtained (1.10 for FP intensive applications). In our search
for greater performance improvement we decided to memoize single-cycle in-
structions as well.

The speedup rised by 50% to 1.11 (1.13 for FP applications). However the
new speedup is attributed not to instruction latency reduction but rather to
the artificial addition of more Functional Units (FUs). The MEMO-TABLES act
as “virtual” FUs. Adding more FUs to a processor nullifies the effect of single-
cycle IM. On the other hand multi-cycle IM yields a better speedup for faster
processors.

iii

Contents

Introduction

1.1 What is Memoization?

1.2 Instruction Memoization

1.3 Prior and Related Work
1.3.1 Early Use of Memoization
1.3.2 Instruction Reuse
1.3.3 Other Techniques

1.4 Thesis Outline

Instruction Memoization
2.1 The MEMO-TABLE v i i i it et
2.2 The Rationale Behind Instruction Memoization

The Organization of the Lookup Tables
3.1 Simulation Framework 0000
3.1.1 Simulations o
3.1.2 Benchmarks
3.1.3 The Instructions Memoized
3.2 MEMO-TABLE Structural Factors
3.3 Size and Associativity oL o
3.4 Trivial Calculations
3.5 Contents of MEMO-TABLES
3.5.1 Exploiting Inverse and Commutative Operations
3.6 Mapping Strategies L
3.7 Summary ...

Integrating IM in a Processor’s Datapath

4.1 A Basic Microprocessor Design
4.1.1 Pipeline Stages oL
4.1.2 Functional Units
4.1.3 Processor Characteristics
4.14 IntegratingIM

4.2 Basic Processor Speedup

4.3 Measuring Attributes of the Datapath

iv

= RN =

ot O

10
10
11
11
12
13
15
17
19
23
24
26

4.3.1 Hit-Ratio
4.3.2 Instructions Per Cycle (IPC)
4.3.3 Fraction Enhanced (FE)
434 Speedup
4.3.5 Correlation Between Measurements
4.4 Additional Measurements
4.4.1 Speedup as a Function of MEMO-TABLE Organization . .
4.5 Summary e e

Memoizing Single Cycle Instructions

5.1 Comparing Single and Multi-Cycle IM
5.1.1 scIM Compared to Other Enhancements

5.2 Lowering the cost of sCIM

Comparing IM to Other Techniques

6.1 Early Memoization

6.2 Value Prediction

6.3 ComparingIMtoIR
6.3.1 PCvs. Value Mapping
6.3.2 Table Organization
6.3.3 Lookup Stage
6.3.4 Design Simplicity o

Summary and Conclusions

7.1 MEMO-TABLE Organization
7.2 IMin thedatapath
7.3 Single-Cycle Instruction Memoization (scIM)
7.4 The Bottom Line,

IM on Real Processors

Memoization of Functions

B.1 Memoization of Mathematical Functions
B.1.1 Memoization of Software Implemented Functions
B.1.2 Overhead Considerations

B.2 Experiments and Results
B.2.1 Simulations
B.2.2 Speedups Obtained
B.2.3 MEMO-TABLE Configuration
B.2.4 Memoization of User Functions
B.2.5 Memoization of Functions and Instructions
B.2.6 Implementing the Functions in Hardware

B.3 The Rationale Behind Function Memoization

B.4 Related Work
B.4.1 Compiler-Directed Dynamic Computation Reuse
B.4.2 Value Profiling

45
45
47
48

50
50
51
52
53
54
39
35

56
o7
98
28
99

60

vi

B.5 Comparing Hardware to Software Memoization
B.6 Summary

Chapter 1

Introduction

In the field of Computer Architecture the end goal of almost all innovations and
enhancements is speed. We want our programs to run in less time. This can be
achieved in numerous and various ways: running the processor at higher speeds,
introducing changes to the design of the processor, changing the instruction set,
compiler enhancements, and finally by altering the programs themselves.

This thesis will focus mainly on enhancing the design of the datapath. the
datapath is by analogy the “blood system” of the processor. Through its stages
flow the instructions fetched from memory. The instructions are decoded, their
operands are obtained, they are executed, the results of the instructions are
written back to memory or the register file, and finally the instructions are
committed and exit the datapath. During each cycle, a tick of the processor’s
clock, instructions either flow through the datapath or are delayed in the data-
path until previous instructions have progressed through the stages.

The less cycles it takes instructions to traverse the datapath the faster the
program will execute. This thesis shows a technique that shortens the stay
of some of the instructons in the datapath. Just as memory caching exploits
the “Principal of Locality” in order to present the processor with a short and
almost uniform memory access time, we will exploit the concept of memoization
in order to shorten the execution time of many long latency instructions.

1.1 What is Memoization?

The concept of memoization is as follows: saving the input(s) and output(s)
of previously calculated (side-effect-free) functions, and using the output if the
input is encountered again.

Before a side-effect-free function is to be computed its input(s) are used to
access (usually with a hash function) a Look Up Table (LUT). If the inputs are
resident in the LUT the previously calculated output(s) is obtained from the
table and recalculation of the function is averted. If the input(s) aren’t in the
LUT the function is calculated and its input(s) and output(s) are stored in the

2 CHAPTER 1. INTRODUCTION

LUT for future reference.

This technique can result in faster recalculations if the storage and lookup
of formerly calculated functions is faster then recalculating the function again.
But in the general case the LUT is a software based table residing in main
memory. Thus the lookup and storage are time consuming. A successful lookup
must have a lower access time than calculating the function. Every unsuccessful
lookup results in a penalty. Thus a high successful lookup ratio is necessary in
order to benefit from memoization. Coupled with the fact that most software
based functions aren’t side-effect-free, the use of memoization seems limited.

But when looking “right under your code”, we find that almost all instruc-
tions are side-effect-free (except for memory accesses). And if the LUTs are
dedicated tables located on-chip the lookup and storage times are now very
short. Thus memoizing instructions seems a much better prospect than memo-
izing functions. This technique is named Instruction Memoization (IM) and is
the topic of this thesis.

1.2 Instruction Memoization

Instruction Memoization (IM) is a technique that shows great potential for
increasing processor performance. The technique exploits the redundancy of
instruction results by storing the operands and results of executed instructions
in a Lookup Table (LUT), which we will call a MEMO-TABLE. When the same
instruction type with matching operands is encountered again the result is ob-
tained from the MEMO-TABLE and instruction execution is avoided. The “ex-
ecution time” of the instruction is the access time of the MEMO-TABLE, which
is a single machine cycle for a small hardware based table. When the lookup is
unsuccessful the instruction must be executed in one to tens of cycles (depend-
ing on the instruction type). Thus for successful lookups the execution time of
these instructions is one cycle, which in turn minimizes their occupancy in the
datapath which leads to shorter execution times.

The performance improvement (speedup) obtained is dependent on four ma-
jor factors:

1. The percentage of instructions that can benefit from memoization. In-
structions that have a latency (number of cycles from execution start until
the result is ready) of a single-cycle and instructions that must be executed
(stores to memory) are examples of instructions that aren’t candidates for
memoization. This factor is decided by the application’s instruction mix
and by the implementation of the microprocessor (latencies of instruc-
tions).

2. The integration of MEMO-TABLES in the datapath of the processor: The
stage of the pipeline that MEMO-TABLES are accessed, multiple-issue of
instructions, long-latency instructions completing sooner than expected,
and the penalty of an unsuccessful lookup. All these issues affect the
usefulness of IM.

1.3. PRIOR AND RELATED WORK 3

3. The percentage of successful lookups, i.e. the hit-ratio of the MEMO-
TABLE. This is influenced by the nature of the program being executed,
how much redundancy it contains, and by the design of the MEMO-TABLE.

4. The physical integration of IM modules on the processor: The number
of transistors needed to implement IM, the added power consumption,
and the complexity of design all influence the Cost/Performance ratio
of implementing IM. This thesis is an architectural research, the physical
aspects of implementation are beyond the scope of this work. However the
issues will be addressed, tradeoffs compared (not always quantitatively)
and solutions given for the problems.

Y

In this thesis we will explore all four factors in order to understand the im-
pact of memoization on the processor and in order to obtain the best possible
performance enhancement when using IM.

1.3 Prior and Related Work

This section will survey prior and closely related work. At this point in the
thesis we won’t compare our technique to these works but just present them
as is. In chapter 6 after the technique of IM has been fully presented we will
compare it to several of the alternate and complementing approaches of reusing
previous computations.

1.3.1 Early Use of Memoization

The concept of memoing was introduced by Michie [1] in 1968. The idea is to
save the inputs and results of side-effect-free functions in a table and reuse the
results for matching inputs. Since then it has been used mainly in the context
of declarative languages like Prolog, Lisp, and ML [2, 3, 4].

In 1982 Harbison [5] proposed a stack-oriented architecture called the Tree
Machine (TM) which assumes the role of an optimizing compiler by detecting
and eliminating common subexpressions (CSEs) and invariant expressions in
loops. It performs this by using a value cache. Results of instructions are saved
in the value cache. If the same instruction is to be executed and its operands
haven’t been changed, the result is obtained from the value cache instead of
being performed again. Thus the scope of optimizations can be widened to
expressions that aren’t available at compile time.

The idea of exploiting redundant computation for off-the-shelf RISC archi-
tectures was introduced by Richardson [6] in 1992. The results of multiplication,
division, and square-root instructions are saved in dedicated tables. When the
instructions are to be executed a lookup in the table is performed and if the
lookup is successful the result is obtained from the table (this is in fact memo-
ization). This idea was further expanded by Flynn and Oberman [7] (1995) to
include storing the reciprocals of division instructions.

4 CHAPTER 1. INTRODUCTION

1.3.2 Instruction Reuse

In 1997 Sodani & Sohi [8] introduced the concept of Instruction Reuse (IR).
All instructions, even single-cycle instructions are candidates for reuse. The
instructions are inserted in a table called the Reuse Buffer (RB). Instructions
in the RB are accessed using the Program Counter (PC). If the operand values
of the instruction match the operands values in the RB, the result is obtained
from the the RB. Variations of the scheme include matching the operand register
names (requires invalidation of entries if the registers were written into), and
matching instructions that supply the current instruction with its operands
(again requires invalidation). The technique of IR is closely related to IM and
in some cases overlaps it. In chapter 6 we will describe the differences in detail.

1.3.3 Other Techniques

Other techniques such as Value Prediction (VP) (Gabbay & Mendelson [9] ,
Lipasti, Wilkerson & Shen [10, 11], and Sazeides & Smith [12]), Compiler-
Directed Dynamic Computation Reuse (Connors and Hwu [13]), and Value
Profiling (Calder, Feller & Eustace [14]) will be presented in more detail in
chapter 6.

1.4 Thesis Outline

The rest of this thesis covers the following topics: Chapter 2 describes how IM
works and shows the rationale behind its success. Chapter 3 explores various
organizations of the MEMO-TABLE. Chapter 4 describes the integration of IM
into the processor’s datapath. Chapter 5 shows how single-cycle instructions can
use IM. Chapter 6 compares IM to other similar research efforts and chapter
7 concludes this thesis. Two appendices at the end of the thesis show how IM
performs on real world processors (appendix A) and appendix B widens the
scope of IM to include function memoization.

Chapter 2

Instruction Memoization

In this chapter we will describe in detail how Instruction Memoization (IM)
works and the basic structure of the MEMO-TABLE. The idea is to mitigate the
effect of multi-cycle instructions (instructions with a latency of more than one
cycle) by reducing their latency via IM. The input (operands) and output (re-
sult) of particular instruction types are stored in a cache-like lookup table (the
MEwmO-TABLE). The MEMO-TABLE is accessed in parallel to the conventional
computation. A successful lookup gives the result of a multi-cycle computation
in a single cycle, and a failed lookup doesn’t necessitate a penalty in computa-
tion time. Figure 2.1 shows a schematic layout of the idea. The operands are
forwarded in parallel both to a division unit and its adjacent MEMO-TABLE.

2.1 The MEMO-TABLE

A MEMO-TABLE is a cache-like Look Up Table (LUT), that is placed adjacent
to each Functional Unit (FU) that has a latency of multiple cycles. The likeness
to a cache is due to the fact that the values in the LUT change dynamically
over time with the most recently used values present in the MEMO-TABLE.

Just like in a conventional cache when a value is forwarded to the MEMO-
TABLE, a subset of its bits are used to form an index into the LUT. The remain-
ing bits are compared to the value stored in the indexed entry. If they match,
we say that we have a “hit” and the value stored in the entry is returned. If
they do not match, we say that we have a “miss”, no value is returned and the
table is updated with a new value (evicting an “older” entry). Which subset of
bits to use is one of the characteristics explored in section 3.6.

Unlike a conventional cache where each line contains more than one word
and a relatively small associated tag, the MEMO-TABLE contains a large tag and
just the one word result in each line. To emphasize this distinction, we shall
use entry instead of the traditional line or block. Figure 2.2 shows a MEMO-
TABLE with n entries. The shaded area contains the results, the unshaded areas
contains the operands and opcode (in the case where several instruction types

6 CHAPTER 2. INSTRUCTION MEMOIZATION

Operand 1
Operand 2

vovy

DIVISION MEMO
UNIT TABLE
‘ F
operation hit/missline
completed
line
L (———
Result

Figure 2.1: A division unit using a MEMO-TABLE

reside in the same MEMO-TABLE) which are compared to the operands and
opcode of the instruction being memoized. Note that no valid bit is necessary,
and data is valid at all times even across context switches due to the fact that
the instructions stored in MEMO-TABLES are context free, the result depends
only on the operands!. The only time invalid data is in a MEMO-TABLE is
during startup, initially loading the opcode fields with invalid opcode solves
this problem.

During execution the operands are forwarded to the appropriate computa-
tion unit and in parallel, to the corresponding MEMO-TABLE. If there is a hit
in the MEMO-TABLE, its value is forwarded to the next pipeline stage , the
computation in the FU is aborted and it signals it is free to receive the next
set of operands. If there is a miss in the MEMO-TABLE, the computation is
allowed to complete, and the result obtained is forwarded to the next stage and
in parallel entered into the MEMO-TABLE.

I Except if different IEEE 754 rounding modes are used.

2.2. THE RATIONALE BEHIND INSTRUCTION MEMOIZATION 7

Operand 1 Operand 2 Opcode Result

Entry O
Entry 1
Entry 2

Entry n-1

Figure 2.2: Layout of a n entry MEMO-TABLE.

2.2 The Rationale Behind Instruction Memoiza-
tion

After we have shown the basic IM technique we will explain why it should work.
To best understand the rationale a few examples will be presented:

vsqrt The application vsqrt takes the square-root of all pixels in an image.
We have previously shown [15] that neighboring pixels in an image tend
to have the same values, thus leading to a high hit-ratio in the MEMO-
TABLE.

vspatial Performs image enhancement based on local histograms. An examina-
tion of a sample image, a self portrait of Guya (figure 2.3), shows that out
of 256 possible pixel values only 161 are represented (figure 2.4). Zoom-
ing in to an 8x8 window surrounding Guya’s nose (figure 2.5) shows that
there are only 11 unique values. Building a histogram of this windows and
running the following loop:

n = N*N; /* N=8 */
for(i=0;i<L;i++) /* L = # of values */
e += (hist[i]/n) * log2(hist[i]/n);

results in a 94% hit-ratio when memoizing division. The same is true for
color images which are composed of three “bands” (red, green, and blue
images). Each band displays a similar amount of redundancy.

tomcatv In the following code excerpt 2:

A = 0.25 * (XY*XY+YY*YY)
B = 0.25 * (XX#XX+YX*YX)

2This excerpt was taken from Richardson’s paper [6].

8 CHAPTER 2. INSTRUCTION MEMOIZATION

The number of unique pairs is 769. Using an “infinite” multiplication
MEMO-TABLE results in an almost perfect hit-ratio.

As we can see the nature of the programs and inputs causes instruction repeti-
tion. Most Multi-Media applications work on local areas of an image or signal
which may result in the same calculations being performed over and over again.
Of course not all programs that exhibit redundancy have source code excerpts
that pinpoint the cause, most don’t.

Figure 2.3: A self portrait of Guya.

Figure 2.4: Histogram of the Guya image.

Sodani and Sohi [16] have performed a detailed analysis of instruction rep-
etition for the SPEC 95 integer benchmarks and have found that most of the
repetition originates from internal values of the program (immediates) or from
global initialized data. Our conclusions are that for most Floating Point bench-
marks the redundancy originates from the input sets of the applications [15].

2.2. THE RATIONALE BEHIND INSTRUCTION MEMOIZATION

Figure 2.5: A blowup of Guya’s nose.

9

Chapter 3

The Organization of the
Lookup Tables

This chapter is dedicated to finding the near optimal design for MEMO-TABLES
that will enable us to receive the maximal hit-ratio possible (for finite MEMO-
TABLE sizes). In this chapter we memoize all instructions that have a latency
of more than one cycle!. The MEMO-TABLE we will explore is the same as
proposed in chapter 2. Each entry consists of two operands, a result, and an
opcode. The organization of the processor’s datapath is irrelevant at this stage
of the research and will be explored in chapter 4 after we fix the MEMO-TABLE
characteristics.

The characteristics of the MEMO-TABLES explored are its cache-like traits:
size, associativity, and replacement method, and characteristics that are unique
to memoization such as indexing methods (which bits of the values compose the
index into the MEMO-TABLE), contents (which instructions are in each MEMO-
TABLE), detection of trivial calculations that can be computed easily (z + 0,

y*1,..),and the relationships between instructions types (a+b =c¢ — ¢ =b—a,

).

3.1 Simulation Framework

To find the optimal design of a MEMO-TABLE we performed a series of exper-
iments with an architecturally detailed simulator: SimpleScalar [17], a RISC
instruction-level simulator based upon the MIPS ISA. SimpleScalar receives as
input a binary executable compiled for the simulator and executes it down to the
cycle level. All applications were compiled using gcc version 2.6.3 with the op-
timization flags -03 -finline-functions -funroll-loops. We tailored Sim-
pleScalar to incorporate MEMO-TABLES in it’s design and thus simulate IM.

The two indicators that measure the success of the memoization are:

I Except memory accesses which aren’t side-effect free (stores) or aren’t context free (loads).

10

3.1. SIMULATION FRAMEWORK 11

Hit-Ratio The hit-ratio of a MEMO-TABLE (number of successful lookups di-
vided by number of lookups) will show how many instruction executions
were avoided.

Speedup The end goal of using MEMO-TABLES is to accelerate processing; if
the enhancement has no impact on performance, the extra complexity of
adding it isn’t worth the effort.

The emphasis of the simulations in this chapter will be on enhancing the hit-
ratios of the MEMO-TABLES. The speedup achieved by using IM will be shown
in chapter 4.

3.1.1 Simulations

The simulations were performed using the SimpleScalar simulator. As we want
to negate the influence of the datapath the programs were run through the
sim-fast version of the simulator. This version simulates instruction execution
step-by-step but doesn’t simulate the memory hierarchy, pipelining, multiple-
issue, branch prediction, or any other architectural enhancements (except the
use of MEMO-TABLES, of course).

3.1.2 Benchmarks

The benchmarks were taken from several sources:

e SPEC CFP95 - the floating point component of the SPEC CPU95 suite
[18].

e SPEC CINTY5 - the integer component of the SPEC CPU95 suite [18].

¢ MediaBench - a suite of multi-media and communication applications
from UCLA [19].

The benchmark applications are either FP intensive or perform integer mul-
tiplication and/or division. Applications that don’t execute large amounts of
multiple-latency instructions can’t benefit from IM and aren’t simulated?.
Table 3.1 describes the specific applications, the number of instructions exe-
cuted, and the percentage of multiple-cycle instructions executed?. Even though
less than 1% of the instructions in integer intensive applications are multiple-
cycle instructions we simulate them and give them an equal standing to FP

2For this reason adpcm and pegwit from the MB suite and li and go from CINT95 aren’t
simulated. Jpeg from MB and ijpeg from CINT95 are similar so only jpeg is run. m88ksim
from CINT95 is invariant to any MEMO-TABLE changes, 99% of all integer multiplications are
reused in any configuration, thus this application was dropped from the simulations.

3In some cases the numbers are the sum of several applications that make up a benchmark
(eg. decode and encode for mpeg2). The SPEC benchmarks were run with the test or train
versions of the inputs in order to keep them relatively short, running them with the reference
inputs gives similar results.

12 CHAPTER 3. THE ORGANIZATION OF THE LOOKUP TABLES

suite application | description input # of insts %
MediaBench | rasta Speech recognition exb_cl.wav 23M | 10.4%
mesa 3D graphics library hardcoded 130M | 17.8%
mpeg?2 Video compression meil6v2.m2v 1282M 7.8%
epic Image compression lenna.pgm 60M | 15.5%
gsm Speech transcoding clinton.pcm 223M | 14.9%
ghostscript | Postscript interpreter tiger.ps 1294M 4.4%
g721 Voice compression clinton.pcm 529M 0.6%
pgp Cryptography pgptest.pgp 159M 2.3%
jpeg Image compression monalisa.jpg 161M 0.3%
CFP95 tomcatv Vectorized mesh generation train.in, ITACT=20 818M | 10.4%
swim Shallow water equations train.in 842M | 26.3%
su2cor Monte-Carlo method test.in 1050M | 12.8%
hydro2d Navier Stokes equations test.in 1124M | 16.4%
mgrid 3D potential field train.in, NTIMES=1 382M | 14.5%
applu Partial differential equations | train.in, itmax=20 1000M 7.7%
turb3d Turbulence modeling train.in, nsteps=1 398M 7.5%
apsi Weather prediction test.in 888M | 22.6%
fpppp Quantum chemistry train.in 344M | 32.8%
waved Maxwell’s equation test.in,nsteps=2 1389M | 31.7%
CINT95 gce C compiler 1stmt.i 119M 0.3%
compress Lempel-Ziv compression test.in 35M 0.5%
perl Perl interpreter scrabll.pl, train input 40M 0.4%

Table 3.1: Description of benchmark applications, inputs, number of instruc-
tions executed, and percentage of multiple-cycle instructions.

intensive applications*. We are exploring primarily MEMO-TABLE character-
istics not overall speedup, thus the impact of these applications which have a
different instruction mix than FP applications is important. The following sim-
ulation results are the average (harmonic mean) hit-ratios of the MEMO-TABLES

for all the above applications®.

3.1.3 The Instructions Memoized

All the instructions memoized have a latency of more than one cycle. These
include integer division and multiplication and all the floating point instruc-
tions. Table 3.2 lists the instructions memoized along with their latencies and
throughputs® on the R10000 and 604e”. For each instruction type there is a

4The integer intensive applications are g721, pgp, and jpeg from MediaBench and the
CINT benchmarks.

5The average is unweighed, every benchmark, short or long running, has an equal standing.
We didn’t want the SPEC benchmarks, which have a longer execution time, to dominate the
results.

61f an unit is pipelined it can complete an instruction every cycle, this is the throughput
of the instruction.

"The 604e doesn’t implement the fsqrt instruction listed in its instruction set, we decided
to do so in our simulator in order to compare the datapaths of both processors (a software

3.2. MEMO-TABLE STRUCTURAL FACTORS 13

MEMO-TABLE that stores the operands and results of the instances of the in-
struction, for a total of 19 such MEMO-TABLES in use.

instruction MIPS R10000 PPC 604e
type Ity thpt Ity thpt
Int Division 35 35 20 19
Int Multiplication 6 6 3 1
FP Add/Subtract 2 1 3 1
FP Comparison 2 1 3 1
FP+FP Conversion 2 1 3 1
FP—Int Conversion 2 1 3 1
Int—FP Conversion 4 1 3 1
FP Neg/Abs 2 1 3 1
FP Move 2 1 3 1
FP Multiplication 2 1 3 1
FP Division (sp/dp) || 12/19 | 14/21 || 18/31 | 18/31
FP Sqrt (sp/dp)* 18/33 | 20/35 || 50/60 | 50/60

* The 604e doesn’t implement the £sqrt instruction.

Table 3.2: Instruction latencies and throughputs for the MIPS R10000 and PPC
604e.

3.2 MEMO-TABLE Structural Factors

We first measured the effects of four factors related to the structure of the
MEMoO-TABLE rather than to its contents. The factors and their levels are:

e Size - the number of entries in each MEMO-TABLE, the levels are from 8
to 16K entries, and an infinite table size.

e Associativity - the number of entries in each set. The levels are from
direct-mapped (set size 1), to 8-way set associative (set size 8), and fully
associative (one set).

e Replacement Strategy - Which entry is evicted from the MEMO-TABLE in
the case of a miss. The levels are: replace randomly, First In First Out
(FIFO), pseudo Least Recently Used (where the LRU entry is approxi-
mated), Most Recently Used (MRU) and true LRU. As memoization isn’t
speculative we don’t explore any confidence schemes, once a value is in
the MEMO-TABLE it is valid.

e Mapping Strategy - How an entry is mapped to a set. The levels are to
hash the Program Counter (like [8] do) or hash the values. The values
can be hashed using various techniques, simple ones such as hashing the
Least Significant Bits (LSBs), to more complex techniques which hash the
exponent, mantissa or some bit mix of them.

implementation of the sqrt function can take over 1000 cycles).

14 CHAPTER 3. THE ORGANIZATION OF THE LOOKUP TABLES

The number of simulations needed to perform a full factorial design, simulating
every possible combination of all levels, would take: n = Hle n; simulations.
In our case it is (12 levels of size) x (5 levels of associativity)x (5 levels of replace-
ment schemes) x (6 levels of mapping strategies) = 1800 simulations for each and
every application. This number is daunting and beyond our processing power.

In such cases where a full factorial design is impossible, a 2* factorial design
is used. For each factor two levels or alternatives are chosen resulting in only
16 simulations in our case. These simulations can give us an indication which
factors have a higher impact on the hit-ratios and which factors have little or
no impact at all.

By using the Sign- Table [20] technique it is possible to compute the allocation
of variation of each factor and the interaction between factors. The importance
of a factor is measured by the proportion of the total variation in the result that
is explained by the factor.

The levels chosen for simulation are: Size - 32, 1024 entries; Associativity
- direct mapped, 8-way set associative; Replacement Strategy - random, LRU;
Mapping - PC, value (LSBs); The results (harmonic mean hit-ratios of all ap-
plications) are shown in table 3.3.

32 1 rand pc | 0.17 || 32 1 rand wval | 0.32
1024 1 rand pc | 022 || 1024 1 rand val | 0.39
32 8 rand pc | 0.30 || 32 8 rand wval | 0.39
1024 8 rand pc | 032 || 1024 8 rand wval | 0.51
32 1 Iru pc | 0.17 || 32 1 lIru val | 0.32
1024 1 Iru pc | 0.22 || 1024 1 Iru val | 0.39
32 8 Iru pc | 0.32 || 32 8 Iru val | 0.40
1024 8 Iru pc | 0.33 || 1024 8 Iru val | 0.51

Table 3.3: 2* factorial design and resulting hit-ratios. The factors and lev-
els are size (32, 1024), associativity (direct mapped, 8-way set associativity),
replacement strategy (random, Iru) and the hashing scheme (pc, value).

The results obtained are inserted into a Sign-Table. The sample variance
of the data is calculated by computing the Sum of Squares Total (SST), this
number can then be broken into its components. The main components of
variation are: Mapping scheme - 55%, Associativity - 31%, and Size - 10%. The
variation attributed to the replacement strategy is 0%. From these numbers
and a look at the table we can make two important observations:

1. The mapping scheme is of utmost importance. The left hand side of
the table which uses the PC as the index into the MEMO-TABLES shows
consistently poorer results than the right hand side which uses the operand
values as indices into the MEMO-TABLES. Thus in future simulations we
will use the operand values only as indices. Section 3.6 explains this
phenomena in greater detail.

2. The replacement strategy is of little importance. The top half of the table

3.3. SIZE AND ASSOCIATIVITY 15

which uses a random replacement strategy has the same results as the
bottom half which uses the LRU replacement strategy. This is consistent
with memory caches where the replacement method has little impact on
the hit-ratio [21]. The reason is that values that are highly reused will
be reentered into the MEMO-TABLE, even if they were randomly evicted.
Because of the simplicity of implementing a random replacement method
we use this method in future simulations.

The variation allocated to size and associativity and the results displayed
prohibit us from making clean cut decisions as with the mapping and replace-
ment method. We must investigate more levels of both size and associativity,
we will do this in the next section.

3.3 Size and Associativity

The next set of simulations are targeted at determining the highest hit-ratio
with the lowest MEMO-TABLE size and associativity. The levels of size are
from 16 to 16K entries per MEMO-TABLE (omitting 512, 2K, and 8K sizes) and
an infinitely large MEMO-TABLE (1MB entries), and the levels of associativity
are from direct-mapped to 8-way set associative and fully associative (for large
MEMO-TABLES an associativity of 512 was used).

Hit Ratio

0.7 -
0.6 -
0.5 -
0.4 -
0.3 -

0.2

fa -

8

Set Associativity infinity

T><5 ~64 256 Size

Figure 3.1: Hit-ratio as a factor of MEMO-TABLE size and set associativity.

16 CHAPTER 3. THE ORGANIZATION OF THE LOOKUP TABLES

A two-factor full factorial design is used [20] to determine which factor influ-
ences the hit-ratio more. The total variation can be divided into parts explained
by factors A (size) and B (associativity) and an unexplained part due to exper-
imental errors. The results show that 68% of the variation is attributed to
changes in the MEMO-TABLES size and 30% to changes in the associativity, 2%
of the variation is unexplained.

Size/Assoc 1 2 4 8 full
16 0.29 | 0.33 | 0.35 | 0.36 | 0.36
32 0.32 | 0.37 | 0.38 | 0.39 | 0.40
64 0.35 | 0.40 | 0.42 | 0.43 | 0.44
128 0.36 | 0.41 | 0.44 | 0.46 | 0.47
256 0.38 | 0.43 | 0.46 | 0.48 | 0.50
1K 0.40 | 0.45 | 0.49 | 0.51 | 0.55
4K 0.41 | 0.47 | 0.50 | 0.53 | 0.57
16K 0.43 | 0.48 | 0.52 | 0.54 | 0.58
infinite 0.46 | 0.51 | 0.54 | 0.56 | 0.60

Table 3.4: Tabular version of hit-ratio as a factor of MEMO-TABLE size and set
associativity.

Figure 3.1 is a 3-D plot of the hit-ratio (z-axis) as a function of size (x-axis),
and associativity (y-axis) (the actual results are in table 3.4). Looking at the
lesser factor of variation, associativity, shows that raising the associativity from
direct-mapped to 2-way gives a considerable hit-ratio enhancement and raising
the associativity beyond 4-way hardly changes the hit-ratio. This is fortunate as
implementing a 8-way set associative MEMO-TABLE is the cutting-edge [22] of
current on-chip memory cache technology which will be used in implementing
MEMO-TABLES. Current on-chip caches can perform a 4-way set associative
cache lookup in a single machine cycle so there is no reason not to set the
associativity of MEMO-TABLES to 4.

Looking at the plot again shows that for sizes 16 to 128 the curve rises
rapidly, from MEMO-TABLE size 256 the curve starts to flatten. Dividing the
hit-ratio of using 256 entry 4-way set associative MEMO-TABLES with the hit-
ratio of using infinite fully-associative MEMO-TABLES, shows that 76% of all
reusable multiple-cycle instructions can be reused with moderate size MEMO-
TABLES.

Figure 3.2 shows the breakdown of hit-ratios per instruction (associativity:
4; size: 32-1024). It is noticeable that the hit-ratios for the integer instructions
are amongst the highest and they continue to benefit from a larger MEMO-
TABLE after the hit-ratios for other instructions flatten out (as does single pre-
cision to double precision conversion). For the square-root, FP comparison, and
FP<INT conversion instructions the hit-ratio is invariant to MEMO-TABLE
sizes above 128 entries. For FP move a MEMO-TABLE of size 64 is sufficient.
Nevertheless, in order to work with a uniform MEMO-TABLE size we will use a
baseline size of 256 in future simulations.

Another consideration to take into account is the hit-time (the time to

Hit Ratio

3.4. TRIVIAL CALCULATIONS

0.9
0.8 +

All instructions —+—
F2F conversion ---x---
I2F conversion ------
F2I conversion -

FP move -
FP subtraction ---o-

FP addition e
FP negation =~ — & —

17

All instructions ~——
FP multiplication ---x---

FP division K-
Square root e
Int multiplication ---m--
Int division - o
FP comparison -

0.1

32

128 256 1K 32

Size

Figure 3.2: Breakdown of hit-ratio by instruction type (4-way set associativity,
random replacement, mapping by value).

access a MEMO-TABLE, check if the entry is resident in the MEMO-TABLE,
and return the result) of a MEMO-TABLE. This time must be a single machine
cycle, with most FP instructions having latencies of 2-3 cycles, a longer hit-time
will reduce the effectiveness of IM. Thus the size of a MEMO-TABLE should be
comparable to the size of small on-chip caches, which have a hit-time of one
cycle. A 256 entry MEMO-TABLE holds 256 x 3 = 768 double precision values
which is 768 x 8 = 6144 = 6K bytes. This is considerably less than the on-chip
caches of the MIPS R10000 (32KB), Power PC 604e (32KB) and other leading
microprocessors. Thus in any case the upper limit on the size of MEMO-TABLES
will be 1024 entries (24KBytes) with a set associativity of 4.

3.4 Trivial Calculations

The result of a trivial calculation is immediately obtained from the operands of
the calculation itself. No calculation is performed, just a input check is needed to
detect the occurrence of triviality. In all previous simulations trivial calculations
were treated as regular calculations and forwarded to the MEMO-TABLES. In
this section trivial calculations will be detected in parallel to the MEMO-TABLE
lookup. Thus only non-trivial calculations will be stored in the MEMO-TABLES.
Table 3.5 shows the trivial calculations detected. Figure 3.3 shows the layout of
a MEMO-TABLE, division unit, and trivial test unit. The calculation is tested
for triviality in parallel to the MEMO-TABLE lookup and FU execution. If
the calculation is trivial the result will be obtained from the Trivial Test Unit
(TTU),and the MEMO-TABLE lookup and FU execution will be terminated. If

18 CHAPTER 3. THE ORGANIZATION OF THE LOOKUP TABLES

Addition a+0,0+a a
Subtraction a—0 a
a—a 0
Multiplication ax0,0xa 0
ax1l,1xa a
Division a/l a
0/a 0

a/0 Inf

0/0 NaN
ala 1
Sqrt V1 1
V0 0

a<0 NaN
Conversions 0 0
Negation 0 0
Absolute Value 0 0

Table 3.5: Operation, trivial calculation, and result.

the calculation isn’t trivial the MEMO-TABLE lookup or FU execution supplies
the result (for clarity each control line is drawn using a different line style).

The TTU is composed of a set of 4 comparators, a FP negative bit test, and
combinational logic to detect triviality (figure 3.4). This design covers all the
triviality tests defined in table 3.5 and enables building a uniform TTU®.

Table 3.6 shows the hit-ratios for 256 entry (4-way sets) MEMO-TABLES
with and without trivial calculation detection, and the percentage of trivial
calculations out of all memoized instructions. An average 3% enhancement
is possible by just adding circuits to perform trivial calculation detection, as
opposed to quadrupling the MEMO-TABLES size in order to achieve the same
enhancement as shown by figure 3.5. For FP applications, MEMO-TABLES of
size 128 with trivial calculation detection have higher hit-ratios than 1K entry
MEMO-TABLES without trivial calculation detection.

Table 3.7 shows the main trivial operation contributers. For each instruction
type: the trivial operation ratio, the percentage out of all trivial instructions,
and the breakdown of trivial values detected is displayed. The tables shows
that 93% of all trivial instructions contain the values one or zero. Thus we can
simplify the triviality check by just testing for zero and one. We can further
narrow down the scope of the triviality test by just checking triviality for the
top contributers (multiplication, addition, subtraction, and division) but for the
sake of uniformity we will check triviality (zero and one only) for all relevant
instructions. Thus our conclusions are straightforward: each MEMO-TABLE will
have a TTU integrated into it, this achieves a hit-ratio enhancement comparable
to a size increase of one order of magnitude.

8 Just as an integer MEMO-TABLE is different than a FP MEMO-TABLE so is an integer TTU
different than a FP TTU.

3.5. CONTENTS OF MEMO-TABLES 19

Operand 1
Operand 2

v vV vy o
L

DIVISION |- MEMO | .. TRIVIAL

UNIT ; TABLE TEST
e :
I 3 ;

operation 1|
completed :
line :

,,,,,,,,,,

trivial/nontrivial line

Figure 3.3: Layout of a Trivial Test Unit adjacent to a MEMO-TABLE and
Division Unit.

3.5 Contents of MEMO-TABLES

Our previous simulations used a MEMO-TABLE for each instruction type. It is
possible that for different applications some MEMO-TABLES won’t be utilized at
all, while others will suffer from capacity misses. Microprocessors have separate
Instruction and Data caches to make it possible to access them at the same
cycle, not because this enhances the hit-ratio (it doesn’t [21]). On the other
hand one centralized MEMO-TABLE will suffer from a longer hit-time, might
have to be multi-ported, might suffer from non-uniform access due to line delays,
and disallows different mapping schemes for integer and floating point values.

Our previous simulations show that the average number of MEMO-TABLES
used per application is 11.7 (out of 19). When counting the number of accesses
per MEMO-TABLE we discovered that the mean is lower than the standard
deviation for all applications. This shows that there are many tables that are
accessed relatively little and a few which are highly accessed, leading us to
assume that using a unified MEMO-TABLE might enhance the hit-ratio.

Due to the problems in using a unified table mentioned earlier we suggest
adding a level between MEMO-TABLE per instruction to a unified MEMO-TABLE.

20

CHAPTER 3. THE ORGANIZATION OF THE LOOKUP TABLES

a a 0 b 1 b 0 a
Compar ator Comparator Compar ator Comparator Neg
0 1 2 3 Test
equal/not equal equal/nat equal equal/not equal equal/nat equal neg/not neg
Opcode
' 1 InfNaN

o

Triviality

Detection

trivial/nontrivial line

Result Source

Py 4

b 0
A

UXx

|/

Result

Figure 3.4: Layout of a Trivial Test Unit, the opcode of the instruction deter-
mines which comparisons are used.

The motivations for a specific setup are the utilization per table, the functional
units that process each instruction, and the effect of the MEMO-TABLES’ size on
the hit-ratio. Each MEMO-TABLE will contain one heavily executed instruction
and one or more under utilized instructions. Thus are choice of tables is:

1. Integer - integer multiplication (heavily used) and division (lightly used).
Both use the same unit (604e) or adjacent units (R10000). This table will
be the largest (double size) as the hit-ratio constantly rises for a larger
MEMO-TABLE size (section 3.3). Total dynamic instruction count:
35%.

2. Long Latency - floating point multiplication (heavily used), division,
and square root taking. Usually share circuitry in most microprocessors.

Total dynamic instruction count: 24%.

3. Addition - floating point addition. Total dynamic instruction count:
18%.

4. Subtraction - floating point subtraction (moderately used), negation,

3.5. CONTENTS OF MEMO-TABLES 21

application org hr | new hr | trivial ratio
mesa 0.42 0.51 23%
epic 0.15 0.18 4%
rasta 0.32 0.37 9%
mpeg?2 0.58 0.65 51%
gsm 0.05 0.08 3%
ghostscript 0.96 0.97 57%
jpeg 0.82 0.84 54%
gr21 0.49 0.51 22%
pgp 0.07 0.07 0%
tomcatv 0.19 0.28 13%
swim 0.19 0.22 %
su2cor 0.25 0.26 5%
hydro2d 0.90 0.93 46%
mgrid 0.69 0.71 6%
applu 0.40 0.43 %
turb3d 0.75 0.83 62%
apsi 0.35 0.40 16%
fpppp 0.40 0.44 8%
waveh 0.11 0.12 1%
gce 0.94 0.96 2%
compress 0.13 0.13 8%
perl 0.96 0.97 1%
| harmonic mean | 0.46 | 0.49 | 22% |

Table 3.6: Hit-ratios for 256 entry (4 entries to a set) MEMO-TABLES with and
without trivial calculation detection, and the percentage of trivial calculations
out of all memoized instructions.

instruction tr/ac | inst/all | value breakdown (%)
0 1 = -
Int Multiplication 0.38 0.31 45 | 55 | O 0
FP Multiplication 0.23 0.25 86 | 14 | 0 0
FP Addition 0.26 0.22 100 | O 0
FP Subtraction 0.24 0.11 42 0 | 52 0
Int Division 0.25 0.3 46 | 29 | 24 0
FP Division 0.13 0.2 56 | 30 | 14
Int—FP Conversion 0.8 0.2 100 | O 0
|| All Instructions 022] 100 [72]21] 7] 0 |

Table 3.7: Breakdown of triviality per instruction type. Column 2 is the trivial
ratio out of all MEMO-TABLE accesses, column 3 is the ratio between the in-
structions’ trivial operations to all trivial operations, and the last columns show
the breakdown of the trivial values.

absolute value and move. Using MEMO-TABLES both for addition and
subtraction, although they use the same circuitry, makes it possible to

22 CHAPTER 3. THE ORGANIZATION OF THE LOOKUP TABLES

6% I
3% m fp applications
Hit] []
Ratio o,
ch o Z=
ange 304 = all applications
6% - o
3% integer applications
— ||
128 128 256 256 1024
trivial trivial

Figure 3.5: Changes in hit-ratio of MEMO-TABLES with and without trivial
calculation detection (base MEMO-TABLE of size 128/4).

access both in the same cycle.

11%.

Total dynamic instruction count:

5. Comparison & Conversion - floating point comparisons and conver-
sions from single precision to double precision to integer formats. This
table will be smaller (half size) due to the fact that the hit ratios of com-
parisons and conversions hardly grow with increases in MEMO-TABLE size
(section 3.3). Total dynamic instruction count: 12%

Table 3.8 compares using single instruction MEMO-TABLES, multiple instruction
MEMO-TABLES and a unified MEMO-TABLE. Using multiple MEMO-TABLES,
has the same benefits of using single MEMO-TABLES with a better utilization.
Using a unified MEMO-TABLE has a better utilization but can have a higher
hit-time which offsets the possible hit-ratio enhancement.

trait

single

multiple

unified

lookup time

small table,
low lookup time

small table,
low lookup time

larger table,
higher lookup time

table access | close to FU, close to FU, distant from some FUs,
uniform access uniform access nonuniform access

ports read/write read/write 1 opcode, read/write 1 opcode, 2 operands,
2 operands, 1 result 2 operands, 1 result 1 result, per FU

mapping different mapping different mapping same mapping scheme

schemes schemes for different data types
utilization low, some tables moderate, 2-5 instruction | high, all instructions
aren’t used types per table use 1 table
contention low, only one moderate, several high, all instructions
instruction per table instructions per table compete for entries
hardware high, needs comparators moderate, comparators very low, one set
complexity and TTU per instruction | and TTU per table of comparators and TTU

Table 3.8: Comparison of the three MEMO-TABLES contents schemes.

3.5. CONTENTS OF MEMO-TABLES 23

D fp applications

0.60
Hit
=z
Ratio == all applications
0.50
D integer lications
0.40 eger app

single(64) multiple(256) unified(1024)
single(128) multiple(512) unified(2048)

Figure 3.6: hit-ratio of single, multiple, and unified contents scheme. FEach
MEeMO-TABLE is 4-way set associative, uses random replacement, uses the LSBs
of the operands (and opcodes) as indices to MEMO-TABLE entries, and performs
trivial calculation detection.

Figure 3.6 shows the hit-ratios of 19 single instruction 64 and 128-entry
MEeMO-TABLES, 5 multiple instruction 256 and 512-entry MEMO-TABLES, and
a unified 1024 and 2048-entry MEMO-TABLE. Each level uses approximately
the same amount of storage. The rest of the characteristics of the the MEMO-
TABLES are 4-way set associativity, random replacement, indexing using the
LSBs of the values and opcodes, and trivial calculation detection.

The figure shows the multiple table approach is better than the single table
approach and comparable to the unified approach. Given that using multi-
ple MEMO-TABLES is a good compromise between single MEMO-TABLES and a
unified MEMO-TABLE (table 3.8), and that the difference in hit-ratios is negli-
gible (figure 3.6) our decision is to use multiple MEMO-TABLES each containing
several instruction types.

Using multiple MEMO-TABLES also answers the question: “How does adding
MEMO-TABLES impact the die size of the processor?”. It is obvious that adding
MEMO-TABLES requires additional transistors and wires to bring the operands
and results from the FUs to the MEMO-TABLES. However, the size of 5x6KB
MEMO-TABLES is 30KB. Modern microprocessors are already integrating L2
caches with sizes in the 256KB range (Intel Pentium-III, AMD Athlon) with
future processors projecting onchip caches in the excess of 1IMB. In fact, micro-
processor designers are looking for beter uses of their transistors than just using
them as caches. IM fits this role perfectly. The wire problem is solved by using
multiple MEMO-TABLES located adjacent to the FUs that use them, no long,
cross chip, wires are needed.

3.5.1 Exploiting Inverse and Commutative Operations

The multiplication, addition, and equality operations are commutative, for ex-
ample: a*xb =c¢ — bxa = c. It might be possible to exploit this trait by
performing a commutative lookup in the MEMO-TABLE. The index created by
hashing the bits of a, b are the same as for b, a. All we have to do now is compare
the entries in the set to a, b and to b, a. Thus if a previous instruction calculated

24 CHAPTER 3. THE ORGANIZATION OF THE LOOKUP TABLES

bxa we will receive a hit for an instruction calculating a*b. The disadvantage of
this technique is that we now need twice the amount of comparators as before.
4-way set associativity becomes 8-way.

Another mathematical rule we can exploit is the properties of inverse opera-
tions. If a + b = ¢ were executed and inserted into the Addition MEMO-TABLE,
the information to execute operations a = ¢ —b and b = ¢ — a are residing in the
MEMO-TABLE. The question is could we exploit this information and memoize
instructions that weren’t executed even once yet? The same is true for FP mul-
tiplication and division. We can’t implement the same idea for integers because
¢/b = a doesn’t necessarily imply that a x b = ¢ (100/3 = 33, 3 x 33 = 99). The
same problem exists for conversions. Converting a FP number to an integer
or converting a double precision FP number to a single precision FP number
results in loss of accuracy. Therefore trying to perform an inverse lookup can
lead to wrong results (1.3 — 1 but 1 — 1.0). We built an elaborate mechanism
to enable inverse lookup and simulated it.

In addition we composed a MEMO-TABLE which we will call the Comparison
MEMO-TABLE, which contains the equal, less-then, equal or less-then instruc-
tions. In order to have comparisons benefit from previous comparisons between
the same two numbers we altered the MEMO-TABLE to store the relationships
between two numbers in the result field. It is either -1 (a < b), 0 (a = b), or 1
(a>b)°.

We ran the benchmarks on this new organization which performs commuta-
tive and inverse lookups and stores the relationships between pairs of numbers.
The results were disappointing, no increase in the hit-ratio was measured. These
new ideas were abandoned in future simulations.

3.6 Mapping Strategies

Until this point in our research we have indexed the MEMO-TABLES using the
operand values and specifically the least-significant-bits (LSBs) of the value(s)
(XORed them together if a two operand operation is memoized) and used them
as an index into a MEMO-TABLE. The benefit of this scheme is it’s simplicity
and the fact that integer values and FP values can be dealt with in a similar
manner. Mapping using the PC was shown to be inferior.

For integer values this mapping strategy is optimal as the LSBs show the
highest entropy [23]. For FP numbers this isn’t necessarily true. Due to the
IEEE 754 representation scheme for FP numbers, where the numbers are nor-
malized, the most-significant-bits (MSBs) of the mantissa or the LSBs of the
exponent would seem to be likely candidates for index bits. Another reason not
to use the LSBs for FP numbers is in the case where integers are the inputs.
In this case the LSBs are all zero, leading to all numbers being mapped to the
same entry.

9We are assuming that any compare instruction can provide this information, this might
not be true for all architectures.

3.6. MAPPING STRATEGIES 25

Using these assumptions we devised four additional mapping schemes (as-
suming the number of sets in a MEMO-TABLE is n):

o Least Significant Bits (Isb) - The log, n LSBs of the mantissa.
e Mantissa (mant) - The log, n most-significant-bits of the mantissa.

e Mixture 1 (mix1) - The LSB of the exponent and the log, n — 1 MSBs of
the mantissa.

e Mixture 2 (mix2) - The 2 LSBs of the exponent and the log, n — 2 MSBs
of the mantissa.

e Exponent (exp) - The log, n least-significant-bits of the exponent.

Figure 3.7 shows the schemes.

exponent mantissa
mix
1

r
1
|
I [
I
T 1

exp mant

Figure 3.7: The index bits are taken from the LSB of the exponent and MSB
of the mantissa.

The 5 schemes (and PC indexing) were run on the recommended MEMO-
TABLES of section 3.5: multiple MEMO-TABLES of size 256 and 512 and set-
associativity of 4. An associativity of 1 and 2 was simulated as well, as a good
mapping scheme may result in having to use a lesser degree of associativity.
Figure 3.8 shows the hit-ratios of the FP applications (as 4 of the 6 schemes
aren’t relevant to integer applications).

The graph shows that for a lower associativity the “middle” schemes (mant,
mix1, mix2) result in noticeable better hit-ratios. When the associativity is 4
the differences are much smaller with exp, mix1, and mix2 having a slight edge
on the Isb and exp schemes. This is due to the flexibility of replacing entries in
a set. In a direct-mapped MEMO-TABLE mapping two instructions to the same
set results in conflict misses, a better mapping scheme avoids this. If the degree
of associativity is higher, instructions mapped to the same set can continue to
reside together in the MEMO-TABLE, thus the mapping scheme has less impact.

For any degree of associativity and any size (the results for 512 entry MEMO-
TABLES add one percent of hit-ratio to the 256 entry results) using the operand
values as indices results in considerable higher hit-ratios than using the PC as
an index. The conclusion of this section is that using a mix of bits from the
mantissas and exponents of the operand values results in slightly better hit-
ratios than the other operand value schemes and much better hit-ratios than
the PC based scheme.

26 CHAPTER 3. THE ORGANIZATION OF THE LOOKUP TABLES

D direct-mapped

0.50
2-way associativit
H A
Hit 45 y y
Ratio
,—%T D 4-way associativity
0.40

mant mix1 mix2

Figure 3.8: hit-ratios of a 256 entry MEMO-TABLE (set associativity 1/2/4)
using the 6 mapping schemes

3.7 Summary

This chapter investigated the structure of the MEMO-TABLES used in Instruction
Memoization (IM). The characteristics of the MEMO-TABLES explored were its
size, associativity, replacement method, indexing methods, contents (instruction
mix in the MEMO-TABLES) and the detection of trivial calculations.

Our main conclusions from the simulations regarding the organization of
MEMO-TABLES are:

e The replacement method is irrelevant, random is as good as LRU.
e A degree of set associativity higher than four is unnecessary.

e Enlarging a MEMO-TABLE beyond a certain point results in diminishing
returns as the hit-time increases as well as the hit-ratio.

e Using several MEMO-TABLES for different instruction types enables ac-
cessing them concurrently but not having to implement a MEMO-TABLE
for every instruction type.

e Inverse and commutative operation lookup is hardly successful and isn’t
worth the added MEMO-TABLE complexity.

e Using the Program Counter (PC) as the index into a MEMO-TABLE results
in much poorer hit-ratios than when the operand values are used as indices.

e By detecting trivial calculations, and not entering the operations into the
MEMO-TABLES, a hit-ratio improvement is achieved that is comparable
to a four-fold size increase.

Specifically we recommend implementing IM with 5 MEMO-TABLES: (i) for
long-latency instructions (FP div, mult, sqrt), (ii) integer instructions (INT div
and mult), (iii) FP comparisons and FP<INT conversions, (iv) FP addition, (v)
and all other FP instructions (sub, neg, ...). Each MEMO-TABLE contains 256
entries in sets of 4 (the Integer MEMO-TABLE’s size is 512 and the Comp_Conv
MEMO-TABLE’s size is 128) . Entries are replaced randomly and are indexed
by the 2 LSBs of the exponent and the 6 MSBs of the mantissa XORed with

3.7. SUMMARY 27

the opcode. Trivial calculations aren’t entered into the MEMO-TABLES but are
detected with dedicated circuitry. This organization yields an average hit-ratio
of 0.50, this is over 80% of the hit-ratio obtained when using an infinite fully-
associative MEMO-TABLE (0.60 hit-ratio).

Chapter 4

Integrating IM in a
Processor’s Datapath

This chapter is where we show how IM is integrated into a processor’s dat-
apath and enhances execution. We will first integrate multi-cycle instruction
memoization (MCIM) in a microprocessor’s datapath (section 4.1.4), show the
speedup attained (section 4.2), and explore the influence of several datapath
characteristics on IM (section 4.3). In the next chapter we will widen the scope
of IM to include single-cycle instructions.

4.1 A Basic Microprocessor Design

4.1.1 Pipeline Stages

The SimpleScalar simulator, which is modeled after the MIPS series processors,
possesses a five stage pipeline for all non Load/Store instructions (figure 4.1):

1. Fetch: Instructions are fetched from the Instruction Cache and stored in
the Instruction Fetch Queue (IFQ).

2. Decode: Instructions are read from the IFQ and decoded. Their operand
sources are defined: either from the Register File (RF) or from instructions
that are already in the pipeline. The instructions are entered into the
Register Update Unit (RUU) (named also the Active List (R10000) or
Reorder Buffer (604e)) where they will reside until committed.

3. Issue: When an instruction’s operands are available it is issued to a free
Functional Unit (FU) to be executed, instructions are issued out-of-order.
An instruction can be delayed in this stage until it’s operand dependencies
are satisfied and a FU is available.

4. Execute: The instruction is executed by one of the FUs (there might be
several types and more than one of each type). For multi-cycle instructions

28

4.1. A BASIC MICROPROCESSOR DESIGN

Fet ch Decode

I nstruction
Cache

IFQ

4—#7

| ssue ____,

RUU

Register
File

IALU

FMULT

Figure 4.1: Datapath of basic microprocessor.

29

Execut e

this stage takes several cycles. Results are written back into the RUU,
where instructions wait to be committed.

5. Commit: The instruction is committed by having its result written into
the RF and it is removed from the RUU. Instructions are committed in
program order, thus even though an instruction has been executed it can’t
be committed until all previous instructions have been committed.

4.1.2 Functional Units

The processor simulated has five different FU types that execute the processor’s
instruction set:

1. Integer ALU (IALU): Executes all integer instructions (addition, sub-
traction, logical operations, shifts, comparisons, and branches) with the
exception of multiplication and division. All instructions have a latency

of one

cycle.

2. Integer Multiply Unit (IMULT): Executes integer division and mul-
tiplication. The unit may be pipelined for multiplication, division isn’t

30 CHAPTER 4. INTEGRATING IM IN A PROCESSOR’S DATAPATH

pipelined.
3. Memory Unit (MMU): Executes Load/Stores from the L1 cache.

4. Float Add Unit (FADD): Executes floating point addition, subtrac-
tion, comparisons, conversions, negations, and absolute value. The unit is
pipelined.

5. Float Multiplication Unit (FMULT): Executes floating point multi-
plication, division, and square-root taking. The unit is pipelined only for
multiplication.

4.1.3 Processor Characteristics

L1 Instruction Cache 16-KBytes, 32-Byte blocks, direct-mapped
L1 Data Cache 16-KBytes, 32-Byte blocks, 4-way associative
L2 Unified Cache 256-Kbytes, 64-Byte blocks, 4-way associative
Memory Latencies (cycles) | L1 hit - 1, L2 hit - 6, L2 miss -18
Bus Interface 64-bit data, 32-bit address
Branch Prediction 2048-entry BTB, 2-bit counters
Registers 32 General Purpose, 32 Floating Point
Function Units 2 TALU, 1 IMULT

1 FADD unit, 1 FMULT, 2 MMU
Instruction Latencies Integer multiplication: 4,1
& Throughputs Integer division: 20,19

All other integer instructions: 1,1

Floating point multiplication: 3,1

Floating point division: 20,20

Floating point Sqrt: 35,35

All other floating point instructions: 2,1

Pipeline attributes 4-instructions fetched, decoded, issued,

and committed per cycle; 16 instructions in RUU,
out-of-order execution, in-order retirement

Table 4.1: Characteristics of basic microprocessor.

The characteristics of the basic datapath we used in our first set of simu-
lations is listed in table 4.1. This processor is called the basic processor. It’s
characteristic values where taken from two popular RISC processors, the MIPS
R10000 [24] and PPC 604e [25], and from the default values of the SimpleScalar
simulator.

4.1.4 Integrating IM

The 5 MEMO-TABLES described in the previous chapter are integrated adjacent
to the relevant FUs (figure 4.2). The questions we are confronted with are: At
what stage in the pipeline is memoization performed? What is the latency of

4.1. A BASIC MICROPROCESSOR DESIGN 31

i |

Integer

i |

MMU
-, Subtract
l
Addition] _ LM
MT [™|FADD
L \:omp-Con\
MT
I_ I |
| Long-Lat
: EMULT™ MT

Figure 4.2: Integration of IM in the datapath.

a MEMO-TABLE lookup? How many lookups per cycle can a MEMO-TABLE
sustain? We will answer the questions in the following sections.

Pipeline Stage

As the instruction’s operands must be ready before memoization may commence
there are three alternatives:

¢ Execute stage: After the instruction is allocated to a FU the MEMO-
TABLE lookup and instruction execution are performed in parallel. A hit
terminates the execution, a miss results in the completion of execution and
updating the MEMO-TABLE with the result. Successful lookups complete
in 1 cycle, unsuccessful lookups complete in the latency of the instruction.

32

CHAPTER 4. INTEGRATING IM IN A PROCESSOR’S DATAPATH
Save multiple
cycles, the
instruction’slatency
Fet ch —=Decode|—= | ssue —={Execut e—Conmi t
Overhead A
| free
MT lookup
Lookup
e Issue stage: When the operands are ready we perform a MEMO-TABLE
lookup, whether a FU is ready or not. A hit results in the instruction
bypassing the execute stage, a miss results in the instruction waiting for a
FU, executing, and updating the MEMO-TABLE. Successful lookups com-
plete in 1 cycle and may gain cycles if a FU isn’t available. Unsuccessful
lookups lose one cycle due to the lookup, wait for a FU to be available,
and then complete in the latency of the instruction. Thus an instruction
may spend extra cycles in this stage due to the MEMO-TABLE lookup.
Save multiple Save multiple
cyclesif FU cycles, the
isn't free instruction’slatency
Fet ch —=Decode— | ssue —{Execut e— Conmi t
Misses pay a A
| penalty if a FU
MT isfree

Lookup

Decode stage: If during the decode stage it can be determined that the
operands are available, and if they can be read, and if a MEMO-TABLE
lookup can be performed then memoization is possible in this stage. For
high-speed processors such as the Alpha [26], which requires a pipeline
stage just to access the register file, this is impossible. For other proces-
sors with longer pipeline stages this might be possible with small MEMO-
TABLES (with lower lookup times). A hit completely bypasses the issue
and execute stage in one cycle. A miss continues normal execution.

4.1. A BASIC MICROPROCESSOR DESIGN 33

Savel Save multiple Save multiple
cycle cyclesif FU cycles, the
isn't free instruction’s latency

Fetch —»{Decode}—»| | ssue —»{Execut e—»
Only 12% of hits ready
at this stage, need very
MT long stage in order to complete lookup

Comm t

Lookup

Memoization in the decode stage has the most potential for speedup but only
12% of all hits have their operands ready at this stage and we would need a very
aggressive design to enable a MEMO-TABLE lookup at this stage. Memoization
in the issue stage eliminates the need to wait for a FU and can conserve power
[27] if instruction execution isn’t started, however in the case of a miss there is an
overhead of the lookup time if a FU was available but wasn’t used. Memoization
in the execute stage is overhead free but the potential gain is the lowest and
limited to the instruction’s latency (less one cycle for the lookup).

A hybrid solution which results in a win-win situation is to perform memo-
ization in the execute stage if a FU is available and to perform it in the issue
stage if not. This way instructions that can’t issue due to a structural hazard
can still benefit from memoization without paying the lookup penalty. Future
references will call this scheme: memoization in the issue stage.

Accesses to a MEMO-TABLE in this stage are counted as issues even if the
lookup failed and the instruction must wait in the issue stage until a FU is avail-
able. The alternative, not to count MEMO-TABLE lookups as issues, assumes
that the processor can handle more than four instructions (the issue width) per
cycle. This demands resources that aren’t available to the processor. We de-

cided not to make this assumption.
If an FU isavailable:

instruction progressesto
execute stage

Fet ch —»|Decode}—| | ssue —»|Execut e—»{Conmm t

If an FU isn’t ¢
available: perform
memoization Mr

— ™Lookup

34 CHAPTER 4. INTEGRATING IM IN A PROCESSOR’S DATAPATH

MEMO-TABLE Latency and Parallelism

Our assumption is that a MEMO-TABLE lookup has a latency of one cycle. This
is based on the access time of on-chip caches which can perform several tag
compares (in the case of a set associative cache) and retrieve the cached data
in a single-cycle. Thus it should be possible to compare the operands of an
instruction with a MEMO-TABLE entry and retrieve the result in a single cycle.

The only difference between the lookups is the size of data to compare.
The data cache tag is at the most 64-bits wide (32-bits for most processors),
the MEMO-TABLE tag may contain 2 FP numbers and an opcode (133 bits).
However the comparison is a bitwise equality test so the added gate delay due
to the wider tags shouldn’t be much very big.

The same comparison to caches can be made in order to determine the
maximum number of lookups per cycle. Most L1 caches can sustain two lookups
per cycle, so we will assume that each MEMO-TABLE is limited to two accesses
per cycle (both lookup or update).

4.2 Basic Processor Speedup

Our first set of experiments simulates the basic microprocessor with IM per-
formed in the issue stage only if an FU isn’t available. For all benchmarks
simulated the dynamic Fraction Enhanced (FE)! , hit-ratio, and speedup are
shown in table 4.2. The FE was measured by simulating a processor where all
multi-cycle instructions have a latency of one cycle and execute without the
need of a FU. The difference between this run and a regular run is the FE.

The table shows that there is a certain correlation between the FE to the
speedup, while there is a lesser correlation between hit-ratio and speedup. Fig-
ure 4.3 which shows the actual points and the best-fit lines (nonlinear least
squares fitting using the Marquardt-Levenberg algorithm), depicts this fact.
For example, the integer benchmarks (g721, jpeg, pgp, gce, perl, and compress,
which are circled in figure 4.3), show a very low speedup, even though they
have relatively high hit-ratios, due to their low FEs. Floating Point intensive
benchmarks show a much higher speedup due to a higher FE. Figure 4.4 shows
the breakdown of speedup by suite (SPEC, MB) and data type (Int, FP). This
shows that we must widen the scope of memoization to encompass more in-
structions and thus enhance more applications. Chapter 5 is devoted to this
task.

T Amdahl’s law [21] states that the speedup obtained by using an enhancement is
Thew = To1q * ((1 — FE) + FE/SE)
Fraction Enhanced (FE) is the fraction of computation time in the original machine that

can use the enhancement. Speedup Enhanced (SE) is the improvement gained if only the
enhancement mode could be used.

4.3. MEASURING ATTRIBUTES OF THE DATAPATH 35

application FE hr spdp
mesa 20% 0.51 1.09
epic 23% 0.20 1.05
rasta 12% | 0.40 | 1.06
mpeg2 8% | 0.64 | 1.07
gsm 13% | 0.09 | 1.02
ghostscript 25% | 0.97 | 1.33
ipeg 1% | 0.75 | 1.00
g721 1% | 0.54 | 1.01
pgp 4% 0.12 | 1.01
harmonic mean 12% | 0.47 | 1.07
tomcatv 10% | 0.30 | 1.04
swim 24% 0.28 1.08
su2cor 14% | 0.12 | 1.02
hydro2d 20% 0.92 1.21
mgrid 24% | 0.70 | 1.27
applu 6% 0.58 | 1.04
turb3d 10% 0.46 1.04
apsi 38% | 0.39 | 1.16
fpppp 6% 0.44 | 1.02
waved 16% 0.34 1.05
gce 1% 0.96 | 1.01
perl 0% 0.97 1.00
compress 3% 0.27 | 1.01
harmonic mean 13% | 0.55 | 1.07

|| harmonic mean | 13% | 0.52 | 1.07

Table 4.2: FE, hit-ratios, and speedups on the basic processor when IM is
implemented.

4.3 Measuring Attributes of the Datapath

In order to gauge the impact of different datapath attributes on the effectiveness
of IM we will change attributes of the datapath and the memoization process and
explore their impact on the hit-ratio, processor performance (measured in IPC),
fraction enhanced, and speedup. We chose eight attributes of the datapath and
MEMO-TABLES to variate:

1. Pipeline Width: The maximal number of instructions that can be
fetched, decoded, executed, and committed each cycle. Can vary from
a width of 1 (no multiple-issue at all) and upwards.

2. Instruction Window: The maximal number of instructions the pro-
cessors “sees” in any given cycle. Only these instructions can be issued
out-of-order to the FUs. Must be at least the width of the pipeline.

3. Branch Prediction: The scheme used to predict the outcome of branches
and thus avoid control hazards. Can vary from simple taken/nottaken

36 CHAPTER 4. INTEGRATING IM IN A PROCESSOR’S DATAPATH
1.4 ~
N
1.3 A
n
o e
8 12 - *
& L - +
11 . T +
e +
‘j"j /:/; + +
16800 7 . . .
10% 20% 30% 40%
Fraction Enhanced (FE)
1.4 ~
4
1.3 A
4
S
8 12 - "
Q.
%] + —
1.1 A . +
N v /jr_/_A-—/'///‘ +
o +
1 /—j;é—/_/l O T - T ® T —&O— T 9 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Hit Ratio

Figure 4.3: Correlation between FE to speedup and between hit-ratio to speedup

(integer applications are circled).
Levenberg algorithm.

schemes to a “perfect” prediction scheme.

Lines are best fit using the Marquardt-

4. Functional Units: The number of FUs of each type available, must be
at least one of each type.

5. Instruction Latencies: The number of cycles it takes to complete the
Execute stage of each multi-cycle instruction.

6. Memory Hierarchy: The capacity, line size, associativity, hit/miss time
of the caches, can vary from a perfect cache to no cache at all.

7. Memoization Latency: The latency of a MEMO-TABLE lookup.

8. Memoization Stage: Could be either at the issue (hybrid solution) or

execute stages.

4.3. MEASURING ATTRIBUTES OF THE DATAPATH 37

1.10 7

1.08 SPEC applications

1.06 MB applications
S)eedlu; . all applications

1.02 integer applications

1.00 - fp applications

By Suite By Data Type

Figure 4.4: Breakdown of speedup by application suite (SPEC, MediaBench)
and by data type (FP, Int) .

In order to perform a full factorial design we would have to perform thousands
of simulations, even a 2* factorial design (as performed in the previous chapter)
would take 256 simulations. However performing a 2¥~P factorial design with
p = 4, necessitates only 16 simulations but provides almost the same level of
accuracy. The levels of each of the above 8 factors used are:

Factor Low Level High Level

Instruction Window 8 32

Pipeline Width 2 8

Branch Prediction Predict taken Perfect prediction

Functional Units 2 TALU, 1 IMULT, 2 MMU | 4 IALU, 2 IMULT, 2 MMU
1 FADD, 1 FMULT 2 FADD, 2 FMULT

Instruction Latencies

int multiplication 6,6 3,1

int division 35,35 20,20

fp multiplication 3,1 2,1

fp division 31,31 20,20

fp sqrt 50,50 35,35

Memory Hierarchy Basic Perfect memory access

Memoization Latency | 2 cycles 1 cycle

Memoization Stage Execute stage Issue stage

We measured the hit-ratio, speedup, FE, and IPC (Instructions Per Cycle)
for each simulation. The following sub-sections present and explain the results
for each of the measurements.

4.3.1 Hit-Ratio

The minimal and maximal values of the hit-ratio are 0.51 and 0.63. Using the
Sign Table method [20] to allocate the variation between factors shows that 47%

38 CHAPTER 4. INTEGRATING IM IN A PROCESSOR’S DATAPATH

of the allocation is attributed to the branch prediction mechanism, 27% to the
pipeline width, window size and their combination and an additional 24% to the
combinations of branch prediction with pipeline width and window size. The
memory hierarchy, number of FUs and their latencies and the stage and latency
of memoization have no impact on the hit-ratio.

The allocation of variation is consistent with the results that show that for
the runs in which the branch prediction rate is perfect the hit-ratio is the lowest.
This is explained by the fact that instructions are re-executed when the branch
prediction rate is low. The following code excerpt explains the phenomena:

/¥ 1 x/ if (a < b)

/x 2 x/ c=a+ 2.5;
/* 3 */ else

/* 4 *x/ c=b + 2.5;
/* 5 x/ d = axb;

The instruction at line 5 isn’t dependent on the result of the comparison at
line 1. If the comparison is predicted as being taken lines 2 and 5 are executed,
if later the prediction turns out to have been incorrect the pipeline is flushed
and lines 4 and 5 are executed. Thus the calculation at line 5 resides in one of
the MEMO-TABLES and a lookup results in a hit. This case was the primary
reason Sodani and Sohi [8] started exploring instruction reuse, they named it
“squash reuse”.

A wider pipeline and larger instruction window raise the IPC, thus more
executed but not yet committed instructions are flushed during a branch mis-
prediction, which in turns raises the MEMO-TABLES hit-ratio. The highest hit-
ratio, 0.63, is achieved when the branch prediction rate is low (a predict taken
scheme is used) and the pipeline width (8) and window size (32) are large. This
shows that the “true” hit-ratio attributed to program and data characteristics is
around 50%. Any additional hit-ratio percentage is due to branch misprediction.

4.3.2 Instructions Per Cycle (IPC)

We will use the IPC, which is the number of committed instructions divided by
the number of cycles, as our performance metric. The higher the IPC the better
the processor’s performance. We measured both the IPC for a run without IM
and for a run with IM. The allocations of variations are almost identical. The
values measured range from 0.65 to 2.63. The allocation of variation is: Branch
Prediction - 58%; Window Size - 16%; Memory Hierarchy - 12%; Pipeline Width
- 7%; Instruction Latency - 4%;

The results indicate that branch prediction plays a very important role in
improving performance. The IPC for the basic processor is 1.19 with a BP
rate of 0.94, when altering only the branch prediction scheme the IPC is 1.26
(perfect, BP rate of 1.00) and 0.82 (taken, BP rate of 0.26). This shows that
standard branch prediction techniques are very close to the perfect scheme.

4.3. MEASURING ATTRIBUTES OF THE DATAPATH 39

4.3.3 Fraction Enhanced (FE)

The part of the program that is susceptible to IM is called the Fraction Enhanced
(FE). This is the part of the program that benefits from IM. The larger the FE
is the larger the potential for speedup is. The minimal and maximal FE values
are 3% and 28%. The allocation of variation is: Instruction Latency - 31%;
Pipeline Width - 23%; Windows Size - 13%; Branch Prediction - 11%; Memory
Hierarchy - 6%;

That the instruction latency is a contributing factor is obvious. A long
latency instruction consumes more processor cycles, raising the fraction of the
program spent executing multi-cycle instructions. However the combined effects
of pipeline width and window size have an even larger part in the variation. A
wide pipeline can issue more instructions per cycle, that can execute in parallel
to the multi-cycle instruction “stuck” in the execute stage. Our intuition says
that the wider the pipeline is the less the FE is.

However the results are counter intuitive and show exactly the opposite: If
the datapath can’t process more instructions due to a low pipeline width, small
instruction window size, and/or a low branch prediction rate, the long latency
instructions stall only a small number of instructions. Thus the IPC is lower
but so is the FE, slower processors have less potential for exploiting IM. On
the other hand if the processor can execute multiple instructions per cycle the
long latency instructions delay the commitment of many more instructions. So
although the IPC is higher the FE is as well, which lead to a higher potential
for improvement using IM.

4.3.4 Speedup

Finally we arrive at the most important measurement from our point of view:
speedup. A high speedup proves the viability of implementing IM in the data-
path. The speedups range from 1.01 which isn’t very promising to 1.18 which
shows great potential. The allocation of variation is: Instruction Latency -
42%; Pipeline Width - 20%; Memoization Latency 9%; Memory Hierarchy -
7%; Branch Prediction - 6%; Windows Size - 4%; Again we see that instruction
latency is, obviously, the leading speedup factor, successfully memoizing these
instructions leads to considerable savings. Of the other factors pipeline width is
the dominant, this is consistent with the FE factors and strengthens the relation
between FE and speedup.

The memoization stage doesn’t impact the results at all. Neither do the
number of FUs. Both these facts are related. When simulating the basic pro-
cessor the number of structural hazards caused by multi-cycle instructions are
relatively low, only 10% of issue requests to multi-cycle FUs are stalled due to
the lack of an appropriate unit, this is opposed to 31% for all instructions?. In
addition only 9% of all successful memoizations occur in the Issue stage. Com-
paring memoization in the issue stage to memoization in the execute stage shows
that the average number of cycles an instruction is resident in the RUU (RUU

2Multi-cycle instruction structural hazards are 8% of all structural hazards.

Speedup

IPC

1.2

1.15

11

1.05

25

15

0.5

40 CHAPTER 4. INTEGRATING IM IN A PROCESSOR’S DATAPATH

latency) is the same. This leads to both runs having the same IPC. The apriori
advantage of memoization in the issue stage isn’t used, section 4.4 elaborates
this point. Another surprise is that the memoization latency contributes only
9%, we will explore this phenomena in section 4.4 as well.

0.15 0.2 0.25 0.3
Fraction Enhanced

5 0.6 0.65 0.7

Hit Ratio

0.5 0.

1.2 ~

1.15

15 2
Instructions Per Cycle

0.6
Hit Ratio

Figure 4.5: Correlations between FE and speedup (upper-left), hit-ratio and
speedup (upper-right), hit-ratio and IPC (lower-left), IPC and speedup (lower-
right).

4.3.5 Correlation Between Measurements

In order to verify the usefulness of IM we must correlate the four measurements
recorded above. A high hit-ratio combined with a low speedup is useless, as is
a high speedup on a slow machine. Figure 4.5 show the correlation between all
four measurements. Our observations and conclusions are:

¢ As mentioned above there is a direct correlation between FE and speedup.
The more potential there is for memoization the better the speedup is.

4.4. ADDITIONAL MEASUREMENTS 41

e There is no correlation between hit-ratio and any other measurements.
This doesn’t mean that a higher hit-ratio doesn’t influence the speedup,
it does as will be shown in section 4.4.1. It means that given a fixed
MEMO-TABLE structure the FE or IPC of a processor don’t alter the hit-
ratio. The only influence the datapath has on the hit-ratio is through
branch prediction. A poor prediction rate leads to a higer hit-ratio, but
this “gain” is offset by the low performance (low IPC) of the processor.

e There is no direct correlation between IPC and speedup. This fact is
encouraging, our preliminary assumption was that for powerful processors
(high TPC) the speedups would be low. This isn’t true, in fact the speedup
on the most powerful processor is 1.11, which is higher than the speedup
on the basic processor (1.07), although the powerful processor is more
than twice as fast (1.19 vs. 2.63 IPC). We will explore this correlation
further in section 4.4

4.4 Additional Measurements

After examining the previous results we decided to refine the simulations and
concentrate on three of the eight previously simulated factors, factors for which
we couldn’t make any clear cut decisions. The factors and levels are:

1. Pipeline size: This factor condenses 3 factors (pipeline width, window
size, and number of FUs) into one factor. All 3 factors are enlarged or
shrunken together, a wide pipeline needs a large instruction window and
a large number of FUs. In our previous simulations we saw that their
combined influence surpassed their individual influences. The low level is
a small pipeline with a width of 2, instruction window of 8, and 1 unit of
each type. The high level is a large pipeline with a width of 8, instruction
window of 64, and 4 units of each type.

2. Memoization Stage: In the previous simulations we couldn’t discern
any differences between them. The levels are memoization in the execute
or issue stages.

3. Memoization Latency: Memoization latency contributed only 9% to
the variation. The levels are 2 or 1 machine cycles for a MEMO-TABLE
lookup.

For the remaining three factors we chose to target faster processors by im-
plementing low latency instructions, perfect branch prediction and a perfect
memory hierarchy. As we have only 3 factors we performed a 2* factorial design
which consists of 8 runs. The results are in table 4.3. We chose to display the
results for the FP intensive applications only in order to magnify the effects of
the IM stage and IM latency on the results.

The allocation of variation of the IPC (100% pipeline size) and hit-ratio
(equal distribution) is trivial. The allocation of variation of the speedup is:

42 CHAPTER 4. INTEGRATING IM IN A PROCESSOR’S DATAPATH

Factor Levels IPC | hr | Spdp Factor Levels IPC | hr | Spdp

small execute 1.02 | 047 | 1.04 small issue 1.02 | 047 | 1.04

small execute 1.03 | 0.47 | 1.06 small issue 1.03 | 0.47 | 1.06

large execute 3.54 | 047 | 1.09 || large issue 3.54 | 0.47 | 1.09

Ll SV Rl [l W]
Ll SV Nl [l W]

large execute 3.65 | 047 | 1.13 || large issue 3.65 | 0.47 | 1.13

Table 4.3: 23 factorial design and resulting IPCs, hit-ratios, and speedups. The
factors and levels are pipeline size (small, large), IM stage (execute, issue), and
IM latency (2 or 1 cycles).

1.25 q
Issue stage
Execute stage ————-
1.2 A
o
p=}
=}
@
1]
o
%)
1.15
1.1 T T T T 1

0 0.1 0.2 0.3 0.4 0.5
Structural hazard ratio

Figure 4.6: Comparison of IM in the issue and execute stages. On a large
pipeline machine the number of FUs is raised until the structural hazard ratio
is 0. Speedup is shown as a function of the structural hazard ratio.

Pipeline size - 78%; IM latency - 20%; IM stage - 0%; To understand why the
results are neutral to the memoization stage we measured the structural hazard
ratio (number of successful issues divided by number of issue attempts) and
found it to be under 0.02. Reducing the number of FUs raises the structural
hazard ratio. When this happens the differences between memoization in the
issue and execute stage become apparent as displayed in figure 4.6. Following
this set of experiments we can conclude:

e The most important conclusion is that IM favors fast processors. A higher
IPC usually results in a higher speedup. A processor with short latency
instructions, perfect memory hierarchy, perfect branch prediction, and
multiple-issue capabilities still has it’s performance hampered by the la-
tencies of multi-cycle instructions. Using IM reduces this impediment and
accelerates processing.

e The hit-ratio is orthogonal to the datapath design and is dependent upon
the application’s inherent locality and the MEMO-TABLE design.

e The memoization stage has little to no influence (as can be seen by com-

4.5. SUMMARY 43

paring the right and left hand sides of table 4.3). Most instructions find a
FU and progress to the execute stage, this limits the effect of performing
a lookup in the issue stage. Figure 4.6 shows that only when the struc-
tural hazard ratio (number of successful issues divided by number of issue
attempts) is high (due to less FUs) IM in the issue stage is better.

¢ A memoization latency of 2 cycles isn’t “fatal” to IM, even though in our
model most FP instructions have a latency of 2 cycles. This indicates
that a large amount of the speedup can be attributed to long latency
instructions such as division and sqrt.

4.4.1 Speedup as a Function of MEMO-TABLE Organization

The previous simulations all used a fixed MEMO-TABLE organization. In this
section we shall observe the impact of varying the MEMO-TABLE organization on
the hit-ratio and speedup (over the basic processor). We will use the multiple
MEMO-TABLE design and vary the size, associativity, and trivial calculation
detection of the MEMO-TABLES. The replacement method will be random and
the mapping scheme will use the mix2 scheme (section 3.6).

Table 4.4 shows the MEMO-TABLE organizations, hit-ratios, and speedups.
The hit-ratio increase rises swiftly until a size of 512 entries and then tapers
out, no matter what MEMO-TABLE enhancements are introduced. This directly
affects the speedup which also flattens out. The results strengthen our choice
of MEMO-TABLE organization. Investing more hardware resources in MEMO-
TABLES isn’t worth the small improvements achieved. These results mirror the
results observed in chapter 3

Size | Assoc | Triv hr spdp
32 1 no 0.34 1.04
64 2 no 0.41 1.05
128 | 2 yes || 0.48 | 1.06
256 4 yes 0.51 | 1.07
512 8 yes 0.54 | 1.08
1024 | 8 yes 0.56 | 1.08
2048 | 16 yes 0.57 | 1.08

Table 4.4: Different MEMO-TABLE organizations and the resulting hit-ratios
and speedups (on the basic processor).

4.5 Summary

In this chapter we investigated the integration of IM into the processors’s datap-
ath, the performance enhancement gained by exploiting IM, and the influence of
the datapath structure on IM and vice-versa. On a basic processor whose design
is similar to the MIPS R10000 and PPC 604e, two ubiquitous RISC processors,

44 CHAPTER 4. INTEGRATING IM IN A PROCESSOR’S DATAPATH

13% of the execution time can be attributed to multi-cycle instructions. 52%
of those instructions are repeated with the same operands. By implementing
IM an average (harmonic mean) speedup of 1.07 is attained. This speedup is as
high as 1.32 for highly intensive FP applications, and as low as 1.003 for integer
applications which hardly use multi-cycle instructions.

The influence of the datapath on IM is minimal. The only datapath factor
that effects the hit-ratio is the branch prediction rate. Mispredicted branches
cause instructions to be flushed from the pipeline, many of these instructions
may later be re-executed causing hits in the MEMO-TABLES. Thus the hit-ratio
is raised , together with the total execution time.

On the other hand the influence IM has on the datapath is large. The
major contribution is the reduced latency of successfully memoized instructions.
Having instructions complete execution earlier enables dependent instructions
to be issued earlier. The number of cycles an instruction spends, from being
fetched until it is committed (RUU latency) is reduced, which directly reduces
execution time. A minor contribution to enhanced execution is the virtual
addition of FUs. When a structural hazard occurs a MEMO-TABLE lookup may
be able to provide the instruction’s result, thus the execute stage of the pipeline
is circumvented.

Instruction memoization is best utilized when it reduces the latency of “criti-
cal” instructions, instructions that are prohibiting many other instructions from
advancing through the pipeline. It is hard to say in what datapath design an
instruction is critical and in what design it isn’t. However it is clear that faster
processors that can execute more instructions per cycle benefit greatly from IM.
A processor with a wide pipeline, a near perfect memory hierarchy, a high rate
of branch prediction, and enough FUs will encounter a bottleneck when waiting
for long latency instruction to complete. IM relieves this bottleneck.

On the other hand slower processors might have their bottleneck in the
memory hierarchy or issue rate. In this case IM will still speedup processing
but at a lower rate. Even in the case of an inorder processor, where every
instruction delays its successors, the effect of memoization is less than for an
out-of-order processor which can mask the effect of long latency instructions by
executing “around” them. The average speedup on an inorder basic processor
is 1.05 (over an IPC of 0.70) compared with 1.07 (over an IPC of 1.27) for the
same out-of-order processor.

All the above notwithstanding, the scope of multi-cycle IM is limited. Few
applications spend more than 20% of their execution time computing multi-
cycle instructions. Many more spend less than 1%. It is imperative that we
widen the scope of IM to encompass single-cycle instructions as well. Chapter
5 is dedicated to this issue.

Chapter 5

Memoizing Single Cycle
Instructions

In this research we have only memoized multi-cycle instructions. The rationale
behind this decision has been that single-cycle instructions can be executed in
the same cycle a MEMO-TABLE lookup is performed, thus no improvement is
gained. However if instructions are memoized in the issue stage their results can
be obtained even if a suitable FU isn’t available, thus many structural hazards
are avoided.

We added to our simulator the capability to memoize single-cycle instruc-
tions as well. The instructions memoized are integer addition and subtraction,
shifts, logical instructions, moves, and set less than (slt) instructions. The
mnemonic single-cycle IM (scIM) refers to the memoization of both multi-cycle
and single-cycle instructions.

We do not memoize conditional and unconditional branches, these instruc-
tions aren’t context free and their results are Program Counter (PC) dependent.
In any case the branch prediction mechanism is itself a MEMO-TABLE of sorts,
and performs very well. For the same reason we do not memoize loads or stores.
We would have to trace all memory references and invalidate MEMO-TABLE
entries that had their addresses updated. Moreover the L1 caches are them-
selves MEMO-TABLES which do a very good job of exploiting previous memory
references.

5.1 Comparing Single and Multi-Cycle IM

For our first set of simulations we have added a 512-entry MEMO-TABLE (the
Single-Cycle table) that holds the single-cycle instructions. Table 5.1 displays
the single-cycle hit-ratios, the accumulated hit-ratio and the speedups, for com-
parison the speedups for MCIM are included in parentheses. The table clearly
shows that memoizing single-cycle instructions results in a speedup that is 50%
better than the speedup obtained by memoizing only multi-cycle instructions.

45

46 CHAPTER 5. MEMOIZING SINGLE CYCLE INSTRUCTIONS

application sc hr hr spdp
mesa 0.72 0.64 1.12 (1.09)
epic 052 | 0.45 | 1.08 (1.05)
rasta 0.68 | 0.62 1.09 (1.06)
mpeg2 0.49 | 0.49 1.10 (1.07)
gsm 0.36 | 0.31 | 1.07 (1.02)
ghostscript 0.92 | 0.92 1.49 (1.33)
ipeg 0.45 | 0.45 | 1.07 (1.00)
g721 051 | 051 | 1.12 (1.01)
pgp 0.41 | 0.39 1.07 (1.01)
harmonic mean 0.56 | 0.53 1.13 (1.07)
tomcatv 0.57 | 0.48 1.06 (1.04)
swim 0.37 | 0.33 | 1.10 (1.08)
su2cor 0.55 | 0.42 1.03 (1.02)
hydro2d 032 | 051 | 1.22 (1.21)
mgrid 084 | 0.80 | 1.27 (1.27)
applu 0.93 | 0.89 1.04 (1.04)
turb3d 050 | 0.55 | 1.09 (1.04)
apsi 045 | 0.42 | 1.17 (1.16)
fpppp 0.65 0.46 1.02 (1.02)
waveb 0.33 | 0.33 1.07 (1.05)
gee 0.75 | 0.75 1.04 (1.01)
perl 0.75 | 0.75 | 1.02 (1.00)
compress 0.51 | 0.51 1.08 (1.01)
harmonic mean 0.58 | 0.56 1.09 (1.07)
harmonic mean | 0.57 | 0.55 | 1.11 (1.07)

Table 5.1: single-cycle hit-ratios, combined hit-ratios, and speedups on the basic
processor when single-cycle IM is implemented.

But what the table doesn’t show is from where this speedup originates. The
RUU latency is reduced but why? If a MEMO-TABLE lookup and the latency
of a single-cycle instruction are one cycle, where is the speedup coming from?
The answer is: by reducing the number of structural hazards. On the average
the ratio of structural hazards out of all requests for a FU is 31%. Almost every
3rd instruction in the issue stage can’t find a free FU.

Memoizing single-cycle instructions reduces the structural hazard ratio to
15%. Successful MEMO-TABLE lookups overcome the absence of enough FUs.
Thus when the number of FUs a processor possesses is such that no structural
hazards occur, single-cycle memoization will be useless. Figure 5.1 is similar to
figure 4.6, it shows the speedup of MCIM and SCIM as a function of structural
hazard ratio and IPC. When the structural hazard ratio drops the difference
between multi-cycle to single-cycle narrows and then disappears. MCIM speedup
is improved as the IPC of an application rises, on the other hand scIM speedup
decreases as the IPC rises. The impact of SCIM diminishes as more FUs are
available, scIM effectively becomes MCIM.

5.1. COMPARING SINGLE AND MULTI-CYCLE IM 47

multi-cycle IM

1.19 1 single-cycle IM -------
2 116 -
5
3
3 -
I g

1.13 A

1.1 T T T T
0 0.1 0.2 0.3 0.4
Structural hazard ratio
multi-cycle IM

1.19 1 single-cycle IM -------
2 1.16 -
=] - -~
@ T
@ Tl
Q Tl
U) - =<

1.13 - T

1.1 T T T 1
3.45 3.55 3.65 3.75 3.85

Instruction Per Cycle

Figure 5.1: Comparison of single to multi-cycle IM. On a large pipeline machine
the number of FUs is raised until the structural hazard ratio is 0. Speedup is
shown as a function of the structural hazard ratio and of IPC.

5.1.1 scIM Compared to Other Enhancements

It isn’t necessary to push ILP to its limit to see the futileness of single-cycle
execution. Table 5.2 shows the speedups of several configurations over the ba-
sic unmemoized processor. The configurations add TALUs, multi-cycle units,
implement MCIM and scIM, and combine all techniques. In addition we imple-
mented a processors with double the L1 cache size and a processor with perfect
branch prediction. The base we are comparing against is the basic processor
which has a performance of 1.0. The table shows that:

1. Adding MCUs hardly effects performance, due to the inherent low struc-
tural hazard ratio of MCUs.

2. Adding ALUs enhances integer application performance better than im-
plementing sCIM, however FP application performance isn’t improved as
well as using MCIM.

48 CHAPTER 5. MEMOIZING SINGLE CYCLE INSTRUCTIONS

3. Adding ALUs to McIMyields, across all applications, more than a 50%
improvement over SCIM.

4. Using the resources dedicated to IM in order to achieve a lower L1 miss
rate or a higher branch prediction rate improves integer applications more
than IM. However FP applications benefit from a higher speedup when
the resources are used to implement MCIM.

What we have now is a tradeoff problem. An ALU, which has a latency of 1
cycle and 100% hit-ratio (every calculation is correct), outperforms a 512-entry
(12K bytes and 4 comparators) MEMO-TABLE with a 57% hit-ratio. Which
uses less transistors? Which is simpler to design? Which consumes less power?
These questions are beyond the scope of this thesis. If adding an ALU is cheaper
then there is no contest: SCIM isn’t worthwhile. However in the next section
we will present several techniques that enable implementing SCIM with a lower
cost.

Name # ALU | # MCU M Int | FP | All
basic 2 1 no 1.00 | 1.00 | 1.00
basic + cache X 2 no 1.09 | 1.06 | 1.07
basic + perfect BP no 1.10 | 1.05 | 1.07
basic + McIM mcIM || 1.01 | 1.10 | 1.07
basic + scIM scIM 1.07 | 1.13 | 1.11
basic + 3 ALUs no 1.10 | 1.04 | 1.05
basic + 4 ALUs no 1.12 | 1.05 | 1.07
basic + 2 MCUs no 1.00 | 1.01 | 1.01
basic + 3 MCUs no 1.00 | 1.01 | 1.01
basic + 3 ALUs + mcIM mcIM || 1.12 | 1.16 | 1.15
basic + 4 ALUs + mcIM mcIM || 1.13 | 1.17 | 1.16

W W NN | WIN N NN
e PV e e e e e

Table 5.2: Comparison of adding FUs, integrating IM, and combining both on
the basic processor. MCU stands for Multi-Cycle Unit, any unit which executes
multi-cycle instructions.

5.2 Lowering the cost of scIM

In the previous section we suggested that sCIM isn’t “real” memoization, the
benefits we gain are due to using the MEMO-TABLE that contains single-cycle
instructions as an additional ALU. Adding an ALU instead of the MEMO-TABLE
results in greater performance. In order to make SCIM worthwhile we have to
reduce the cost of the single-cycle MEMO-TABLE or alternatively improve its
performance. We suggest three schemes:

o Use existing hardware. Specifically use the existing MEMO-TABLES. We
chose to use the Integer MEMO-TABLE which contains integer division and
multiplication instructions to hold all single-cycle instructions as well. A

5.2. LOWERING THE COST OF SCIM 49

variant of these scheme is to use LRU replacement and a victim cache that
only contains evicted division and multiplication instructions.

e Use a simpler MEMO-TABLE. A small (32-entry), direct mapped, with no
trivial detection MEMO-TABLE is used.

e Perform scIM in the decode stage. In section 4.1.4 we described how
this may be implemented. The problem is that a long machine cycle is
necessary in order to determine if the operands are ready, find them, and
perform a MEMO-TABLE lookup. Our solution is to speculatively perform
a lookup using the current data in the Register File (RF). If the RF has
valid data (no previous instructions are writing to the operand registers)
and the lookup was successful, the instruction can progress to the commit
stage, bypassing the issue and execute stages.

Scheme Int | FP | All
regular McIM 1.01 | 1.10 | 1.07
regular scIM 1.07 | 1.13 | 1.11
sc insts. in idiv/imult MEMO-TABLE | 1.05 | 1.12 | 1.10
above with Iru and victim cache 1.06 | 1.12 | 1.10
small sc MEMO-TABLE (32-entry) 1.02 | 1.11 | 1.08
sc memoization in decode stage 1.02 | 1.12 | 1.09

Table 5.3: Speedups of different schemes used to lower the overhead of SCIM.

Table 5.3 compares the 3 suggested alternatives with regular McIM and
scIM. The first alternative yields an average speedup of 1.10 as opposed to 1.11
when a dedicated MEMO-TABLE is used for the single-cycle instructions. The
speedup attributed to integer division and multiplication is around 1.01, mean-
ing that the single-cycle instructions swamped the Integer table and reduced the
hit-ratio of integer division and multiplication. Thus we converted the Integer
table to the Single-Cycle table. But this table itself is less productive than an
additional ALU. In the second alternative the hit-ratio of the Single-Cycle table
drops from 57% to 19% causing the speedup to drop to 1.08. The applications
that “suffer” the most are the integer applications, their average speedup is 1.02
compared to 1.10 for regular scIM.

The third alternative, memoizing single-cycle instructions in the decode
stage only doesn’t perform much better. Only 30% of the previously successful
lookups are detected now. Morever if IM can be performed in the decode stage
why not dedicate an ALU or two to speculatively perform calculations in the
decode stage. Thus we could conclude that SCIM reaps no real performance
gains. Nevertheless SCIM in all its variants enhances FP performance over only
using MCIM. If it isn’t possible to add an ALU any of the above techniques will
suffice to boost performance. In appendix A we will present how MCIM and
scIM work on real world processors.

Chapter 6

Comparing IM to Other
Techniques

In the introduction chapter of this thesis we surveyed previous occurrences of
memoization in the literature and other related techniques. In this chapter we
will compare our view of Instruction Memoization to other techniques proposed,
list the advantages and disadvantages of IM over these schemes and try to qualify
the differences. We won'’t quantify the differences as each research uses slightly
different benchmarks with slightly different simulators and in some cases uses
different units of measurement.

In this chapter we have not chosen to belittle the work of others. All research
is built upon previous successes and failures. We will show how IM expands
earlier work on memoization and differs from Value Prediction (VP). The work
of Sodani & Sohi on Instruction Reuse (IR) is monumental in exploring the
sources of instruction reuse and in laying out a framework that strives to reuse
all instructions. We will show how IM is different and complements IR.

6.1 Early Memoization

The earliest (1982) use of instruction reuse in hardware is by Harbison’s Tree
Machine (TM) [5]. The TM is a stack-oriented architecture which evaluates
instructions at the head of the stack. A wvalue cache is used in order to reuse
instructions that haven’t had their operands written to since the last evaluation
of the instruction. In this case the evaluation of the instruction is performed
by obtaining the result from the value cache. The technique is limited by two
factors: the instructions are identified by their PC and are invalidated by a
write to their operands, thus true value memoization isn’t possible. The same
operation might be performed by different instructions or the same instruction
will use the same values (but be invalidated by a write to one of the operands).
The technique is more suited to detecting CSEs during run-time and is almost
impossible to compare to due to the extraordinary machine architecture.

50

6.2. VALUE PREDICTION o1

In 1992 Richardson [6] proposed integrating memoizaton and trivial oper-
ation testing in multiplication, division, and sqrt instructions. This work is a
direct predecessor to ours and differs only in scope. Richardson used shade [28]
an instruction-level non-architecturally detailed simulator. The only architec-
tural details supplied are the latencies of the memoized instructions. His results
match ours in that longer latency instructions are more susceptible to memoiza-
tion than short latency instructions. Our research, of course, is richer in detail
and explores all aspects of a memoizing processor. Richardson [29] mentions
that functions and code areas can be memoized as well (as we do in appendix
B) but aside from a few simple examples he doesn’t explore the issue in depth.

Flynn & Oberman [7] expand the idea to include storing the reciprocals of
division instructions. In addition they perform a detailed analysis of the traits
of the division caches used (size, associativity) and of the cost/performance
tradeoffs (silicon area vs. CPI) associated with implementing them. As with
the work of Richardson our research is of a broader scope and more detailed.

Azam, Franzon & Liu [27] use memoization in order to reduce power con-
sumption rather than enhance performance. Thus almost every aspect of their
reuse technique is different from ours: The stage of memoization (only if a
lookup fails is the instruction executed), the instructions memoized (only multi-
plication), and the characteristics of the lookup table (small and direct-mapped
in order to save more power).

6.2 Value Prediction

In 1996 and 1997 a series of papers were published that introduced and discussed
the technique of Value Prediction (VP) (Gabbay & Mendelson [9], Lipasti, Wilk-
erson & Shen [10, 11], and Sazeides & Smith [12]). The idea is that the results
of an instruction can be obtained speculatively based on results of previous in-
vocations of the same instruction, exceeding the dataflow limit on extractable
ILP.

The values are saved in a table and if they are constant (the same value is re-
peatedly produced), are different by a constant stride (an increment instruction
will have a stride of 1), or follow some recurring pattern the result of the current
invocation can be predicted with a high-degree of accuracy. The instructions
are executed specuatively and aren’t committed until their dependencies are
satisfied. Of course a wrong prediction will cause the erroneous instruction and
all instructions dependent on it to be recalculated.

The main difference between the techniques is their reliability: VP is spec-
ulative and while it may capture redundancy that can break the ILP limit it
incurs a high overhead for mis-predictions. On the other hand IM is unspecu-
lative and can’t resolve data dependencies but it carries no overhead. Sodani
& Sohi perform a detailed analysis of the differences in [30]. Perhaps a hybrid
VP /IM implementation can exploit the advantages of both techniques.

Gabbay and Mendelson [31] have proposed to use program profiling in order
to mark instructions that have a tendency to be predicted correctly and only

52 CHAPTER 6. COMPARING IM TO OTHER TECHNIQUES

predict these instructions, thus lowering the mis-prediction rate. This is yet
another major difference between VP and IM. IM is software transparent and
may even be used across context switches.

6.3 Comparing IM to IR

The most comprehensive work in the field of reusing previous calculations was
performed by Sodani & Sohi [8] in the years 1997-2000. They introduced the
concept, of Instruction Reuse (IR). The instructions are inserted in a table called
the Reuse Buffer (RB). Three reuse schemes are presented:

S, Each entry contains the PC, operand values, and result of an instruction.
If the current instruction’s PC and operands match an entry the result is
used.

S, Each entry contains the PC, operand register names and the result. If the
current instruction’s PC and operand register names match the result
is used. If a register is written into, all entries using that register are
invalidated. Thus it is enough for the PC to match.

Sn+dq In addition to the information in the previous scheme each operand name
has a link to its source instruction (if it’s in the RB). By building these
links instructions may be kept in the RB even if their registers are written
upon (due to their links).

The first scheme is similar to IM, if the operands and operation match obtain
the result from the RB. However IR uses the Program Counter as the sole index
to the RB. Thus instructions at different locations can’t use each others previous
results. We will elaborate on this in section 6.3.1. This scheme is hampered
due to the fact that the reuse test can be performed only in the instruction
issue stage (the operands must be ready). For single-cycle instructions no cycle
reduction is made.

The second scheme is aimed at solving this problem by comparing the register
names of the fetched instruction to instructions in the RB. If the register names
match and the registers’ contents haven’t been altered since storage in the RB,
the result can be obtained from the RB as early as the fetch stage. This is a
significant gain, unfortunately only the last appearance of an instruction can
be used. Previous invocations with different operand values will have been
invalidated.

Molina, Gonzdlez & Tubella [32] have recognized this and try to create links
between instructions that produced the same result, resulting in instructions
with different PCs accessing the same entry. Their conclusion is that a hybrid
scheme which maps an entry both by its PC and by its operand values (doubling
the size of the table) is necessary in order to boost performance. In the fetch
stage the PC is used to index the table, if the lookup is unsuccessful the operand
values are used in the issue stage.

6.3. COMPARING IM TO IR 93

The third scheme suggested by Sodani & Sohi is targeted at exploiting de-
pendent instructions fetched together, these instructions are called dependence
chains. If dependence can be determined it is enough to detect reuse of the
first instruction in the chain, the linked instructions can be reused as well. This
scheme performs better than the second one as all instructions are chains of
one. However only 25% of all dependence chains are of a length of more than
one. Thus the use of this scheme is limited.

The conclusion of Sodani & Sohi is that their first scheme is the best as
it uncovers the most reuse. However the potential for speedup is diminished
as most instructions can be executed during the time it takes to perform a
RB lookup. For this reason IM which is streamlined to use only the operand
values can outperform the S, scheme of IR. The reasons are due to the different
mapping schemes, organization of the tables, the stage at which IM is performed,
and the simplicity of IM.

6.3.1 PC vs. Value Mapping

. In section 3.2 we have shown that mapping MEMO-TABLE entries using the
operand values is superior to using the PC (table 3.3 displays this clearly).
The differences between mapping using the PC vs. mapping using the operand
values can be understood by examining a simple yet widely used application:
matrix multiplication.

for (i=0;i<N;i++){
for (j=0;j<N;j++){
c[il[j] = 0.0;
for (k=0;k<N;k++)
c[il[j]1 += alil [k]1*b[k][j];

Table 6.1: Naive matrix multiplication.

The most naive scheme (table 6.1) performs N3 multiplications when multi-
plying two N x N matrices. To ensure that we will have redundant multiplica-
tions we used N different coefficients which result in N2 different multiplications.
The hit-ratios (of FP multiplication only) for multiplying two 100 x 100 matrices
are shown in the top graph of figure 6.1 (sizes 128-1024, associativity 4, random
replacement, trivial calculations stored in the MEMO-TABLE). The hit-ratios
when the PC is used as an index are invariant to the size of the MEMO-TABLE,
this is easily explained by looking at the code. All multiplications are executed
by one instruction, thus all multiplications are mapped to a single set, leaving
the rest of the MEMO-TABLE unused.

Fixing the MEMO-TABLE size and varying the associativity is shown in the
bottom graph of figure 6.1 (size 512, associativity 1-512, random replacement,
trivial calculations stored in the MEMO-TABLE). Only when using a fully-

54 CHAPTER 6. COMPARING IM TO OTHER TECHNIQUES

associative MEMO-TABLE do the hit-ratios match, this is again due to the fact
that all multiplications are mapped to the same set.

0.3 1

0.25 o

0.2

Hit Ratio
o
[
o
1

Size

0.2 q

014

Hit Ratio

0.05

0 T T T T T T T T 1
1 2 4 8 16 32 64 128 256 512
Associativity

Figure 6.1: Hit-ratios of the multiplication MEMO-TABLE in matrix multiplica-
tion.

When more complex algorithms such as loop unrolling, tiling, and sub-
blocking are used the PC indexed hit-ratios are even worse. The multiplica-
tion calculations are performed by several instructions which leads to a better
MEMO-TABLE utilization but results in a lower hit-ratio. This is due to the fact
that the same calculation might be performed by different instructions and thus
mapped to different sets, causing MEMO-TABLE misses instead of hits.

Using IM a 48% hit-ratio is achieved on the SPEC CFP95 benchmarks for
FP instructions. Sodani & Sohi report only a 6.6% hit ratio. This is due to an
inferior mapping scheme.

6.3.2 Table Organization

IR looks at all instructions as equal and uses a unified RB which contains
all instructions. Instructions with longer latencies and a higher potential for
improving performance are evicted from the RB by instructions whose reuse
contributes much less. In section 5.2 we have shown that storing the single-cycle

6.3. COMPARING IM TO IR 99

instructions in the Integer MEMO-TABLE (integer division and multiplication)
results in the hit-ratio of the “original” occupants of the MEMO-TABLE being
suppressed.

On the other hand IM uses a set of MEMO-TABLES each containing different
instruction types. Section 3.5 describes the advantages and disadvantages of
using several tables or a unified one. In addition we have shown that the speedup
attributed to single-cycle instructions (section 5.1) is due to creating a “virtual”
ALU out of the MEMO-TABLE. In section 5.1.1 we have shown that adding an
ALU is better than memoizing single-cycle instructions. In this case due to
our distributed table structure we can choose to memoize choice single-cycle
instructions or not to memoize them at all.

6.3.3 Lookup Stage

An IR lookup is performed in the decode stage. This is possible for the S,, and
Sn+d schemes but not for the S, scheme which must have the operand values
available. As we have shown in section 5.2 even if a lookup is possible, only a
small fraction of instructions have their operands ready at this stage.

Thus it is more likely that the lookup is performed in the issue stage. In
this case due to the uniformity in which all instructions are treated in IR the
instruction isn’t issued to a unit until a lookup has been performed. But in this
case a penalty of one cycle is paid if the lookup has failed.

Our tests have shown that IM in the issue stage results in an average speedup
of only 1.05 compared to a speedup of 1.11 for performing IM in the issue stage
only if a FU isn’t available. If a FU is available, IM is performed in parallel to
the FU execution, reducing the overhead of a miss to zero cycles. But there is no
use in memoizing a single-cycle instruction in the execute stage. The distributed
nature of IM which uses different MEMO-TABLES for different instructions en-
ables us to treat single-cycle and multi-cycle instructions differently.

6.3.4 Design Simplicity

IM uses tables that store only values and operations. The entries in the tables
are always valid (except on startup) even across context switches. In the case
of a FP application sharing a processor with integer applications IM has a
huge advantage, the FP MEMO-TABLES will remain untouched by the other
applications.

IR must invalidate the RB across context switches as it is indexed by the
PC. Even the first scheme of IR which stores operand values must keep track
of memory references as it memoizes loads and stores. A write to a memory
address invalidates other references to the same address. The other two schemes
are much more complicated as every instruction executed may invalidate RB
entries and links between instructions must be maintained at all times.

Chapter 7

Summary and Conclusions

This thesis explored the concept named memoization: saving the input(s) and
output(s) of previously calculated (side-effect-free) functions, and using the out-
put if the input is encountered again. However our focus was on very short
functions: instructions. By saving the operands and results of previous invo-
cations of executed instructions in dedicated tables (named MEMO-TABLES by
us) implemented in the processor, it is possible to reduce the latencies of in-
structions from multiple cycles to one cycle. This is used to improve execution.
We named this technique Instruction Memoization (IM).

A simulator (based on the SimpleScalar [17] simulator) of a RISC super-
scalar processor with IM integrated in its datapath has been constructed. On it
we have run two sets of commonly used benchmarks (SPEC95 [18], MediaBench
[19]). The simulations have been performed in three major stages:

1. The organization of the MEMO-TABLES has been explored in search for
an “optimal” design that will maximize hit-ratio and minimize cost. The
instructions memoized are multi-cycle instructions, instructions with la-
tencies larger than one (chapter 3).

2. The integration of MEMO-TABLES in a RISC processor has been simu-
lated and explored in order to quantify the speedup achieved by using IM
(chapter 4).

3. The scope of IM was widened to include single-cycle instructions as well
(chapter 5).

The following sections will summarize the stages and present our conclusions.
We want to stress that this thesis deals with the architectural aspects of IM.
The positive or negative influences of compilers, for super-scalar or EPIC' pro-
cessors, on IM hasn’t been tackled in this research. Nor has the cost of IM in

LAn Explicitly Parallel Instruction Computing (EPIC) a.k.a Very Long Instruction Word
(VLIW) computer, schedules during compile time several operations to several FUs. Reducing
the latencies of instructions might not improve computation if instruction scheduling is static.

o6

7.1. MEMO-TABLE ORGANIZATION o7

terms of number of transistors, power consumption, or design complexity been
discussed. We have performed several simulations that compare IM to other
architectural enhancements but not on a transistor to transistor basis, these
results are presented later.

7.1 MEMO-TABLE Organization

Our first task was to prove that instruction results are reusable. This was
performed by capturing the operands of all multi-cycle instructions executed in
an “infinitely” large “fully associative” MEMO-TABLE (in practice 1M entries in
sets of 512). The simulations have shown that 60% of all dynamic instruction
appearances are repeatable, they are executed with the same operand values.

We then proceeded to characterize the “optimal” MEMO-TABLE structure. A
MEMO-TABLE is “cache-like”, it saves the last instructions executed. Thus the
cache-like traits: size, associativity, replacement method, and mapping scheme
were explored first. Then schemes like trivial calculation detection, commutative
and inverse operation detection were tested. Finally the number of MEMO-
TABLES and the contents of each MEMO-TABLE were investigated. The results
and conclusions at this stage were:

e A degree of set associativity higher than four is unnecessary.

e Enlarging a MEMO-TABLE beyond a certain point results in diminishing
returns as the hit-time increases as well as the hit-ratio.

e Using several MEMO-TABLES for different instruction types enables ac-
cessing them concurrently but not having to implement a MEMO-TABLE
for every instruction type.

e Using the Program Counter (PC) as the index into a MEMO-TABLE results
in much poorer hit-ratios than when the operand values are used as indices.

e By detecting trivial calculations, and not entering the operations into the
MEMO-TABLES, a hit-ratio improvement is achieved that is comparable
to a four-fold size increase.

Specifically we recommended implementing IM with 5 MEMO-TABLES, each
holding several of the multi-cycle instruction types. Each MEMO-TABLE con-
tains 256 entries in sets of 4 . Entries are replaced randomly and are indexed
by the operand values XORed with the opcode. Trivial calculations involving
values of 0 or 1 aren’t entered into the MEMO-TABLES but are detected with
dedicated circuitry. This organization yields an average hit-ratio of 0.50, this
is over 80% of the hit-ratio obtained when using an infinite fully-associative
MEeMO-TABLE.

o8 CHAPTER 7. SUMMARY AND CONCLUSIONS

7.2 IM in the datapath

The proposed MEMO-TABLE organization was integrated into a RISC super-
scalar processor with characteristics similar to the MIPS R10000 [24] and the
Power PC 604e [25] processors. We discovered that 13% of the benchmarks’
execution time can be attributed to multi-cycle instructions. With a 52% hit-
ratio an average speedup of 1.07 was obtained. We then proceeded to alter the
attributes of the datapath to check their influence on IM and vice-versa. Our
results and conclusions are:

e The only datapath factor that effects the hit-ratio is the branch prediction
rate. Mispredicted branches cause instructions to be flushed from the
pipeline, many of these instructions may later be re-executed causing hits
in the MEMO-TABLES.

e The major contribution of IM is the reduced latency of successfully mem-
oized instructions. Having instructions complete execution earlier enables
dependent instructions to be issued earlier. The number of cycles an
instruction spends in the pipeline is reduced, which directly reduces exe-
cution time.

¢ A minor contribution to enhanced execution is the virtual addition of FUs.
When a structural hazard occurs a MEMO-TABLE lookup may be able to
provide the instruction’s result, circumventing the execute stage of the
pipeline.

e Given a fixed latency for multi-cycle instructions, IM works better for
faster processors. A processor with a wide pipeline, a near perfect memory
hierarchy, a high rate of branch prediction, and enough FUs will encounter
a bottleneck when waiting for long latency instruction to complete. IM
relieves this bottleneck. The basic processor has an IPC of 1.22, IM pro-
vides a speedup of 1.07. On a processor with an IPC of 3.65 the speedup
of using IM is 1.09.

e IM is a technique that predominantly favors FP intensive applications.
The speedup for FP applications is 1.10, for integer applications it is only
1.01 (for applications which heavily use integer division and multiplica-
tion). A way must be found to widen the scope of IM.

7.3 Single-Cycle Instruction Memoization (ScIM)

In order to encompass more instructions in IM we added a MEMO-TABLE that
contains most integer single-cycle instructions. 57% of these instructions are
reused resulting in a 1.11 speedup. However the speedup is only the result of
reducing the structural-hazard ratio. The MEMO-TABLE is used as an additional
FU, supplying results when no FU is available. We continued to explore this
aspect of SCIM and arrived at the following conclusions:

7.4. THE BOTTOM LINE 59

e Adding more FUs to a processor minimizes the impact of scIM. When
the structural-hazard ratio reaches 0 the effect of memoizing single-cycle
instructions is non-existent.

e Adding more FUs doesn’t harm MCIM, in fact it performs even better.

e Better performance is gained by adding just one ALU and implementing
scIM, than implementing MCIM.

e Using the area dedicated to the MEMO-TABLES to enlarge on-chip caches
or improve branch prediction proves better than IM for integer applica-
tions but not for FP applications.

7.4 The Bottom Line

The bottom line is that IM improves FP processing. By reusing previous cal-
culations the latency of multi-cycle instructions is reduced 50% of the time to
one cycle. Thus, in practice the latency of FP instructions is cut in half.

The more powerful the processor is the better it can utilize IM. The only
enhancement that reduces the effectiveness of IM is reducing the latency (not
the throughput, IM works fine with pipelined FUs), this doesn’t seem to be the
trend in state of the art microprocessors.

Appendix A

IM on Real Processors

In the body of this research IM has been an academic issue described and sim-
ulated in the context of an unexistent processor. We will now describe and
quantify the effect of IM on two real processors: The MIPS R10000 [24] anf the
Power PC 604e [25]. Tables A.1 and A.2 list the characteristics of both proces-
sors. Both processors are similar in their memory hierarchy, branch prediction
capabilities, functional units and instruction latencies (slightly shorter for the
R10000). The main difference is in their super-scalar capabilities. While the
R10000 has three instruction queues (Integer, FP, Memory) of 16 instructions
each, the 604e has only 2-instruction reservation stations for each FU. This
limits the out-of-order issue capability of the 604e.

SimpleScalar was modified to simulate both processors as close to reality as
possible!. The benchmarks were then run on the simulators with and without
IM (McIM at this stage). The IM is performed at the execute stage of the
pipeline if a FU is available and at the issue stage if not. IM latency is one
cycle and the MEMO-TABLE structure defined in chapter 3 is used. The results
of both sets of simulations are compared to the basic processor in table A.3.

The results for MCIM are similar with the basic processor having a slight
edge. The 604e is a slightly slower processor and as we have shown in section
4.4 benefits less from IM. The R10000 is almost as fast as the basic processor
but has shorter instruction latencies for FP instructions which leads to a lower
FE and speedup (section 4.3).

The main difference is in the results of SCIM. Single-cycle instructions may
benefit from IM if at the issue stage they are ready to be issued but lack a FU
to execute on. The MEMO-TABLE is then utilized as an additional FU. For the
basic processor 27% of all hits are performed in the issue stage. However for the
R10000 and 604e the ratio of hits in the issue stage is much lower being 17%
and 8% respectively. This strengthens our claim that scIM is of limited use.

IThe instruction set of the R10000 is identical to the SimpleScalar ISA. The 604e ISA is
different which might lead to slightly inaccurate results.

60

61

L1 Instruction Cache

32-KBytes, 64-Byte blocks, 2-way associative

L1 Data Cache

32-KBytes, 32-Byte blocks, 2-way associative

L2 Unified Cache

1-Mbytes, 64-Byte blocks, 2-way associative

Memory Latencies (cycles)

L1 hit - 1, L2 hit - 6, L2 miss -18

Bus Interface

64-bit data, 32-bit address

Branch Prediction

512-entry BHT, 2-bit counters

Registers

32 General Purpose, 32 Floating Point

Function Units

2 TALU*, 1 IMULT
1 FADD unit, 1 FMULT, 1 MMU**

Instruction Latencies
& Throughputs

Integer multiplication: 6,6

Integer division: 35,35

All other integer instructions: 1,1
Floating point multiplication: 2,1
Floating point division: 19,21 (sp: 12,14)
Floating point Sqrt: 33,35 (sp:18,20)

All other floating point instructions: 2,1

Pipeline attributes

4-instructions fetched, decoded, issued,

and committed per cycle; 32 instructions in Active List;
16 instruction INT, FP, Address queues;

out-of-order execution; in-order retirement

* One of the IALUs performs idiv.
** Has a dedicated ALU for EA calculation.

Table A.1: Characteristics of the MIPS R10000 microprocessor.

62

APPENDIX A. IM ON REAL PROCESSORS

L1 Instruction Cache

32-KBytes, 32-Byte blocks, 4-way associative

L1 Data Cache

32-KBytes, 32-Byte blocks, 4-way associative

L2 Unified Cache

1-Mbytes, 64-Byte blocks, 2-way associative

Memory Latencies (cycles)

L1 hit - 1, L2 hit - 6, L2 miss -18

Bus Interface

64-bit data, 32-bit address

Branch Prediction

512-entry BHT, 2-bit counters

Registers

32 General Purpose, 32 Floating Point

Function Units

2 TALU, 1 IMULT
1 FPU*, 1 BPU, 1 MMU**

Instruction Latencies
& Throughputs

Integer multiplication: 3,1

Integer division: 20,19

All other integer instructions: 1,1
Floating point multiplication: 3,1
Floating point division: 31,31 (sp: 18,18)
Floating point Sqrt***: 60,60 (sp: 50,50)
All other floating point instructions: 3,1

Pipeline attributes

4-instructions fetched, decoded, issued,

and committed per cycle; 16 instructions in Reorder Buffer;
2-instruction reservation stations for each FU;

out-of-order execution; in-order retirement

* Performs all FP instructions.

** Has a dedicated ALU for EA calculation.
*** The 604e doesn’t implement the fsqrt instruction.

Table A.2: Characteristics of the PPC 604e microprocessor.

Processor | IPC | hr | FE | Speedup
McIM

Basic 1.27 | 0.51 | 13% 1.07

R10000 1.23 | 0.51 | 9% 1.06

604e 1.06 | 0.51 | 11% 1.06
scIM

Basic 1.27 | 0.55 | - 1.11

R10000 1.23 | 0.55 | - 1.08

604e 1.06 | 0.54 | - 1.06

Table A.3: Comparison of R10000, 604e, and “basic” processors (MCIM and
scIM integrated into pipeline).

Appendix B

Memoization of Functions

We have shown in the previous chapters that IM works for instructions and
enhances execution. Thus, if the technique works for instructions with latencies
of several cycles only, it should surely work for functions with latencies of tens
to hundreds of cycles. Table B.1 shows the latencies in cycles of several common
mathematical and trigonometric functions in the Pentium II processor [33],! the
only processor to date to include these functions in its instruction set, and the
latencies of the software implementations of the same functions?. The numbers
lead us to believe that successful memoization will be productive. The fact that
these functions are common to most scientific, engineering, and Multi-Media
applications encouraged us to suggest a hardware based solution rather that a
software one. We will call this scheme Function Memoization (FM).

function Pentium II | software
Square root 70 1,700
Sine 16-126 250
Cosine 18-124 230
Tangent 17-173 320
Logarithm 22-111 196
Exponent 13-57 131
Ceiling 9-20 15
Floor 9-20 15
Power - 473

Table B.1: Latencies of mathematical functions, in cycles

Figure B.1 shows a schematic layout of the idea using a hardware-implemented

IThe instructions aren’t executed by dedicated functional units, they use all the processor’s
units and block all other instructions from issuing until they complete. The latencies are input
dependent, usually inputs with longer mantissas entail a longer cycle time in computing the
function.

2The code was taken from the gnu C library version 1.09 (glibc-1.09) and run through the
simple-scalar simulator. The numbers are the average of measuring the computation time for
10,000 random double precision values.

63

64 APPENDIX B. MEMOIZATION OF FUNCTIONS

square root unit as an example. The operands are forwarded in parallel both to
the square root unit and its adjacent MEMO-TABLE. Whichever completes first
— the MEMO-TABLE lookup or the actual computation — cancels the other
and produces the result. In the case of the actual computation the result is also
stored in the MEMO-TABLE for future use.

Operand

SORT MEMO
UNIT TABLE
A
operation hit/missline
completed
line
Result

Figure B.1: A square root unit using a MEMO-TABLE

What differentiates this work from other works in the immediate field is the
fact that aside from Intel all other microprocessor manufacturers don’t include
these functions (aside from square root taking) in their instruction sets and
don’t have hardware units to implement them. Therefore the framework de-
scribed above cannot be applied. Instead, we propose to modify the Instruction
Set Architecture (ISA) by adding two new instructions to lookup and update
a generic MEMO-TABLE. These instructions provide a completely general in-
terface to the MEMO-TABLE, and allow the compiler to use it to memoize any
function it chooses, be it a library function or a user function. Even inlined
functions are supported. We assume that the functions are side-effect free, this
is noted by the developer and enforced by the compiler. Functions with side-
effects will have to be executed in any case.

B.1. MEMOIZATION OF MATHEMATICAL FUNCTIONS 65

B.1 Memoization of Mathematical Functions

This section describes how using MEMO-TABLES accelerates computing math-
ematical and trigonometric functions. The MEMO-TABLE used is identical to
the MEMO-TABLE described in the previous chapters. Each entry contains two
operands, a result, and a field that identifies the function. A description of
how a MEMO-TABLE works in tandem with a FU was covered in the previous
chapters and won’t be covered her. What we will show is how memoization is
implemented if the function is calculated in software (section B.1.1) and analyze
the overhead of FM (section B.1.2).

B.1.1 Memoization of Software Implemented Functions

In the common case where most functions are implemented in software several
ISA changes must be made. Three main reasons motivated our design choice:

1. Decouple the memoization from the routine that executes the function.
Not in all cases will the function code be available for compilation, thus we
decided to perform the lookup and update outside the routine body instead
of altering the calling and return instructions to perform the lookup and
update the MEMO-TABLE.

2. Most RISC ISAs have instruction formats of three register operands and a
small (5-6 bit) immediate field (the MIPS R-format or the PPC A-Form).
We will use these instruction formats for our new instructions.

3. Most of the mathematical and trigonometric functions have a single operand
and single result, and a minority of them have two operands and a single
result. Thus it is possible to use the same MEMO-TABLE structure used to
memoize instructions. The new instructions introduced support functions
with one or two inputs and one output.

The ISA we will add the new instructions to is SimpleScalar [17] which is
based on the MIPS instruction set. Only two new instructions (each with two
variations) must be added:

e LUPM2 (LookUP_Memo2) - Look up a value in a MEMO-TABLE. The
instruction has three operands which reside in registers and one immediate
operand.

1. IN1 - function input 1 in a register
2. IN2 - function input 2 in a register
3. OUT - function result in a register
4. FID - function identifier, a 5 bit code.
When executed the instruction uses the values in IN1, IN2 and the function

identifier to index a separate or unified MEMO-TABLE (separate tables:
FID identifies the MEMO-TABLE and IN1 & IN2 index it, unified table:

66 APPENDIX B. MEMOIZATION OF FUNCTIONS

IN1, IN2 and FID index the table). If the lookup is successful the output of
the function is loaded from the MEMO-TABLE into OUT and the floating
point flag is set. A test instruction (such as bc1t) can then branch to an
address beyond the function call.

¢ UPDM2 (UPDate_Memo2) - Update an entry in a MEMO-TABLE.
Like lupm2, this instruction has three operands which reside in registers
and one immediate operand.

—

. IN1 - function input 1 in a register
. IN2 - function input 2 in a register

. IN3 - function result in a register

= W N

. FID - function identifier, a 5 bit code.

When executed the instruction uses the values in IN1, IN2 and FID to
index a MEMO-TABLE, and stores the value in IN3 in it.

Each of these instructions has an one operand version (lupm1, updm1) where the
second input register (IN2) is an implicit 0.

Table B.2 shows a complete assembly code excerpt which uses the new in-
structions. The assembly is for the SimpleScalar ISA (f* are fp registers, L* are
labels, sin is the address of the Sine routine, and NSIN is its 5-bit mnemonic).
The code demonstrates the memoization of a single operand function. The com-
piler loads 20 with the input to the sin() function and executes lupm1 with 22
as the OUT register. If the lookup is successful the result in the MEMO-TABLE
will overwrite 22 and set the floating point flag, causing the next instruction
to branch and skip the function call. If the lookup is unsuccessful the function
call will be performed and the instruction updml updates the MEMO-TABLE
with the value in {0 (the result of the function call).

C code Assembly Remarks

a=1.1; 1d 20,LC The input (1.1) is loaded into 20
lupml f20,f22,NSIN | is 1.1 in the table?
bclt L1 if lookup succeed skip routine call
mov.d 12,20 20 = f12 (input reg)

b = sin(a); jal sin call routine
mov.d 22, 0 f0 (output reg) = 22
updml f12,f0,NSIN update table with sin(1.1)

c=b+a; | L1: add.d 24,122 120 continue execution

Table B.2: Assembly code implementing memoization of sin function. New
instructions are bold faced (lupm1), added instructions are in sans serif (bclt)
(the $ sign before registers and variables is omitted).

B.2. EXPERIMENTS AND RESULTS 67

B.1.2 Overhead Considerations

If lupm1 is unsuccessful no branch is performed, the routine is setup, jumped
to, cleaned up (the output is moved from f0, the function’s output register, into
22), the MEMO-TABLE is updated with the computed value, and execution
continues at L1. Thus the overhead of a miss is three instructions: lupml,
updml, and bclt (for the case of two operand functions the penalty is the
same). Of course a hit eliminates the function’s setup, execution and cleanup
saving tens to hundreds of machine cycles.

When the hit ratios are high the cost of the extra instructions is insignificant
in comparison to the elimination of tens to hundreds of instructions due to
successful memoization. When the hit ratios are low or nonexistent (see section
B.2.1), a penalty of three instructions per function call might seem high.

The following table shows how a processor capable of executing 4 instructions
per cycle (such as the MIPS R10000) will execute the code. The processor has a
Floating Point Unit, and an Integer Unit which executes the branches. lupm1
and updm1 are executed by the FP Unit.

cycle FP Unit Integer Unit
0 lupm1 f20,f22,NSIN
1 mov.d 12,120 bclt L1
2 jal sin
3-253 executing sin
254 mov.d 22,10
255 updml f12,f0,NSIN

Due to the dependencies between lupm1 and bclt and the use of the FU by
both updm1 and mov.d the overhead of a miss is two cycles. This penalty can
be reduced by adding a unit that can execute a lupm1 or updm1l in parallel
to other FP instructions (a dedicated MEMO-TABLE Unit (MTU) or another
FPU), enabling the MEMO-TABLE update to be performed in parallel to the
function’s cleanup. This reduces the miss penalty to a single cycle.

As mentioned above the new instructions are written in MIPS style assembly
code. For other architectures the instructions would take on characteristics of
the relevant ISA. For instance for the Power PC ISA the lupm1 instruction
will set a Condition Register (CR) based on the success of the lookup and the
following instruction will be a conditional branch based on the value inserted into
it. For the Intel 80x86 ISA the lupm]l instruction will pop it’s operands from
the floating point stack and set the appropriate flag in the EFLAGS register.

B.2 Experiments and Results

To verify the usefulness of memoization of mathematical and trigonometric func-
tions, we performed a series of experiments with SimpleScalar [17] (the same
simulator used for the simulations in chapter 3) , we tailored SimpleScalar to
incorporate MEMO-TABLES in it’s design and thus simulate the memoization of
mathematical and trigonometric functions. The new instructions were added
by inserting compiler directives in the functions to be memoized. The compiler

68 APPENDIX B. MEMOIZATION OF FUNCTIONS

then replaced these directives with the new instructions. The simulator was
altered to recognize these instructions and act upon them.

The two indicators that measure the success of the memoization are the hit-
ratio and speedup. Naturally, they depend on the specific design of the MEMO-
TABLE. The size, associativity and contents of the MEMO-TABLE, impact the
expected hit-ratio and speedup.

B.2.1 Simulations

The hit-ratio is a function of the size of the MEMO-TABLE, its associativity, and
its contents (single function results or all function results) as we have seen in
chapter 3. We have simulated a MEMO-TABLE with its size varying from 16
to 1K entries and the spectrum of associativity from direct mapped to 16-way
associativity. In addition we have simulated using several MEMO-TABLES, one
for each function, and using a single unified MEMO-TABLE for all functions.
We have also run the benchmarks through an “infinitely” large fully associative
MEMO-TABLE for comparison. In section B.2.4 we explore memoization of user
defined functions, in section B.2.5 we compare function memoization to instruc-
tion memoization, and in section B.2.6 we compare function memoization to
using the same hardware to implement the functions in hardware on-chip.

The overhead of memoization in our simulations is two machine cycles, the
stricter of the two options shown in section B.1.2. The simulated system is
built upon the MIPS R10000 processor [24]. The functions are assumed to be
implemented in software except square root taking which is implemented in
hardware on chip. This is the current state for most modern microprocessors.
Each function has its own MEMO-TABLE or they share a unified MEMO-TABLE.
The benchmarks were taken from several sources:

e SPEC CFP95 - the floating point component of the SPEC CPU95 suite
[18].

¢ MediaBench - a suite of multi-media and communication applications
from UCLA [19].

e Khoros - Khoros Pro 2000 [34] is a development environment that consists
of a suite of Image Processing (IP) and Digital Signal Processing (DSP)
applications.

Only benchmarks which have a nontrivial (thousands) number of mathematical
and trigonometric function calls were selected for simulation. Applications that
don’t call the above functions aren’t influenced by our enhancements to the
processor.

Table B.3 describes the specific applications, and table B.4 shows how many
instruction and cycles each application executed, and how many function calls
were made by it (at least 1,000 calls)®. Tt can be seen that in most cases only two

3In some cases the numbers are the sum of several applications that make up a benchmark
(eg. decode and encode for mpeg2) or the sum of several runs with different inputs (the
Khoros applications).

B.2. EXPERIMENTS AND RESULTS 69

suite application | description

MediaBench | rasta Speech recognition
mesa 3D graphics library
mpeg2 Video compression

SPEC swim Shallow water equations
su2cor Monte-Carlo method
hydro2d Navier Stokes equations
turb3d Turbulence modeling
apsi Weather prediction
fpppp Quantum chemistry
waved Maxwell’s equation

Khoros kfft Fast Fourier Transform
kgsin Generate sinusoidal data
khisto Compute image histogram
klogexp Image logarithm taking
vgbox Parallelogram creation
vpml Fractal dim. estimation
vmarr Edge detection

Table B.3: Description of benchmark applications

or three functions are used heavily in each application. This influences the choice
of whether to use separate MEMO-TABLES for each FUNCTION-INSTRUCTION or
to have a unified MEMO-TABLE for all functions.

B.2.2 Speedups Obtained

The basic configuration of a MEMO-TABLE that we have chosen is one with
256 entries arranged in 64 sets (set associativity of 4), each function has it’s
own MEMO-TABLE. Table B.5 shows the results. We compare the results of
using “infinitely” large fully associative MEMO-TABLES to the results of using 9
256 entry 4-way associative MEMO-TABLES. In addition we show the results of
using a single 512 entry unified MEMO-TABLE (4-way associative) which holds

all function values. What is shown in the table is:

e FE - Fraction Enhanced, the fraction of computation time in the original
machine that can use the enhancement. This is shown in terms of dynamic
instruction count and number of cycles.

e HR - the hit ratios of the MEMO-TABLES (for the infinite, separate and
unified cases).

e SP - the actual speedup attained (for the infinite, separate and unified
cases).

The results show that for most applications the hit ratio is high with an av-
erage of 57% for separate MEMO-TABLES and 58% for a unified MEMO-TABLE.

70 APPENDIX B. MEMOIZATION OF FUNCTIONS

application | insts | cycles sqrt sin cos tan log exp | floor ceil pow
rasta 53 58 13K 12K 12K 11K 5K 15K
mesa 107 129 27K 4K 4K 77K 119K 29K 13K
mpeg?2 2411 2159 4.1M 1.4M

swim 2674 3021 526K | 526K

su2cor 5234 5462 2.0M
hydro2d 3740 4879 1.54M 96K
turb3d 6836 5996 531K | 531K

apsi 3605 5179 1.0M 49K 1.3M
fpppp 4957 6300 1.3M 856K | 315K | 87K
waved 7918 8372 9.0M 750K 1.5M 1.5M

kfft 483 582 2K 103K 103K 2K 2K

kgsin 135 135 288K 7K

khisto 107 142 1.2M 6K 3K

klogexp 52 54 80K 2K

vgbox 128 134 5K 5K 5K

vpml 1129 726 48K 50K
vmarr 21 25 84k 2k

Table B.4: Number of instructions, Number of cycles (in millions) and break-
down of function calls (in thousands) in the benchmark applications. Entries of
less then 1K are ignored

The more significant number is the speedup. An average speedup of 10% (har-
monic mean) is attained (11% for a unified MEMO-TABLE).

While the average hit ratios and speedup are good we find a lack of cor-
relation between them, as is the case for IM (sections 4.2 and 4.3). Figure
B.2 shows that for the SPEC and Khoros applications the hit ratios are higher
than for the MediaBench benchmarks. On the other hand figure B.3 shows
the breakdown of the speedup according to suite. From this figure it can be
seen that the Multi-Media benchmarks attain higher speedups than the SPEC
benchmarks. This can be attributed to the higher percentage of execution time
spent computing the functions (FE). While the Multi-Media benchmarks spend
19% (MediaBench) to 20% (Khoros) of their execution time in mathematical and
trigonometric functions the SPEC benchmarks only spend 8% of their execution
time in these functions.

B.2.3 MEegMO-TABLE Configuration

The next three experiments performed test the attributes of the LUT itself,
its size, associativity and contents (unified MEMO-TABLE or separate MEMO-
TABLES for each function). For these tests we used only 11* out of 17 application
used in the previous tests. Figure B.4 shows the average hit-ratios of the chosen
applications when the size of the LUT ranges from 16 to 1024 entries, and its
associativity is 4.

4We have omitted the benchmarks su2cor, turb3d, wave5, vpml and vgbox where the hit-
ratios are almost the same regardless of the MEMO-TABLE size. And fpppp was omitted due
to its long run time.

B.2. EXPERIMENTS AND RESULTS 71

application FE Hit Ratio Speedup

inst | cycle | inf sep | unif inf sep unif
rasta 27 31 .72 .67 .45 1.24 1.25 1.13
mesa 18 .20 .69 .26 .20 1.20 1.06 1.04
mpeg2 .04 .05 .32 A7 .22 1.03 1.02 1.02
harmonic mean | .16 .19 .56 37 .29 1.15 1.12 1.06
swim .07 .06 .99 .50 .49 1.07 1.03 1.03
su2cor .20 .22 .99 .99 .99 1.29 1.29 1.29
hydro2d .01 .02 .99 .70 77 1.03 1.02 1.02
turb3d .03 .03 .99 .99 .99 1.03 1.03 1.03
apsi .01 .02 .89 .69 .65 1.02 1.01 1.01
fpppp .04 .08 .62 .39 .34 1.09 1.08 1.07
waveb 10 .10 .00 .00 .00 0.98 0.98 0.98
harmonic mean | .07 .08 .78 .61 .59 1.07 1.06 1.06
kfft 10 .09 .99 .75 .60 1.10 1.07 1.06
kgsin .b4 .50 .99 .06 .13 2.02 1.13 1.20
khisto 21 .13 .99 .63 .83 1.14 1.05 1.08
klogexp 41 .40 .99 .85 .92 1.66 1.53 1.60
vgbox .02 .02 .99 .99 .99 1.02 1.02 1.02
vpml .01 .01 .92 .86 .88 1.02 1.01 1.01
vmarr .40 .26 .90 .26 41 1.33 1.11 1.19
harmonic mean | .24 .20 .96 .62 .68 1.32 1.13 1.16

| harmonic mean | .16 | .15 | .82 | .57 [.58 [1.19 [1.10 | 1.11 |

Table B.5: Performance enhancement with memoization of mathematical and
trigonometric functions. MEMO-TABLES are either infinitely large, of size 256
for each function or a 512-entry unified for all functions.

The figure compares a unified MEMO-TABLE (dashed line) to separate MEMO-
TaABLES for each function (solid line). We see that performance improves up to
about 1024 entries after which the line starts to flatten towards infinity. The
figure shows that almost the same hit-ratios are obtained for a unified table of
size n and separate tables of size n/2. In our case, where 9 separate MEMO-
TABLES are implemented, using a unified MEMO-TABLE gives the same results
at less than 1/4 of the area cost. Table B.5 corroborates this by showing that
the average speedup achieved using a unified MEMO-TABLE of size 512 (11%)
is slightly greater than the average speedup achieved when using 9 separate
MEMO-TABLES of size 256 (10%). This is due to the fact that most applica-
tions heavily use only two or three functions (table B.4).

Figure B.5 shows the hit-ratios as a function of set associativity. For separate
MEMO-TABLES any set associativity higher than one (direct-mapped) hardly in-
fluences the hit-ratio. For a unified MEMO-TABLE the curve starts straightening
out only for a set size of 4. These results can be explained by the contents of the
MEwmO-TABLES. The separate tables are only mapped by the input value(s),
leading to a greater spread of values throughout the entries in the table. In
a unified MEMO-TABLE the mapping is by the input value(s) and the function

72 APPENDIX B. MEMOIZATION OF FUNCTIONS

0.90
I nfinite
Hit 0.70
i
arate (256/4
Ratio =P ()
0.50
Unified (512/4)
0.30
0.10

MediaBench SPEC Khoros

Figure B.2: Breakdown of hit ratios by suite

identifier. In some applications (kfft, swim) the same values are being computed
for several functions. This leads to conflict misses in the case of a direct mapped
or even 2-set associative table. A set associativity of 4 alleviates this problem
and enhances the hit-ratios.

B.2.4 Memoization of User Functions

It is possible to memoize user defined, application specific, functions in addition
to the common mathematical functions. In the benchmarks we used we found
only two applications that heavily use side-effect free functions, apsi (function
OVL) and wave5 (functions VAVG, ERF, DENSX, and DENSY). The functions
memoized have one or two arguments and one return value. As such they are
perfect candidates for memoization in our proposed infrastructure, and the re-
sults of memoizing them are encouraging. Table B.6 shows the hit ratios and
speedups of memoizing user defined instructions (in addition to the mathemat-
ical instructions) compared with only memoizing mathematical functions.

The table clearly shows that there is an advantage to memoizing user defined
functions as well (when possible). The hit ratio for user defined functions is
lower (for apsi) due to the fact that a successful user function lookup avoids
many mathematical functions. When the user function lookup is unsuccessful
the mathematical functions are called with new values, causing a lower hit
ratio. However the run-time is reduced due to many other instructions avoiding

1.25

1.20

Speed

Up 1.15

1.10

1.05

B.2. EXPERIMENTS AND RESULTS

73

1.26 133 132
. . Optimal
Infinite
| Separ ate (256/4)
_ Unified (512/4)
MediaBench SPEC Khoros
Figure B.3: Breakdown of speedups by suite
application math math + user
hr | spdp | hr spdp
apsi .69 | 1.01 | .20 1.05
waved .00 | 0.98 | .55 1.02

Table B.6: Memoization of user defined functions (and math + trig functions)

compared with memoization of only math and trig functions.

execution.

B.2.5 Memoization of Functions and Instructions

In this section we will integrate the technique of IM proposed in the previous
chapters with the technique of FU introduced in this chapter. We will compare

3 implementations::

1. The implementation explored in this chapter where functions are memo-

ized.

2. Multiple-cycle instructions (without loads/stores) are memoized. Func-
tions are implemented in software and benefit from the memoized instruc-

tions.

3. A combined approach where both functions and instructions are memo-

ized.

74 APPENDIX B. MEMOIZATION OF FUNCTIONS

0.90 Separate
Unified - == _
. 070 B
Hit
Ratio
0.50
0.30
0.10

T T T T T T T
2* bl 25 2 28 2° 2% infinity

Number of LUT Entries

Figure B.4: Hit ratios as a function of LUT size (set size is 4). MEMO-TABLE
is unified (dashed line) or separate MEMO-TABLES are used (solid line).

The MEMO-TABLES used to memoize instructions are the tables recommended
at the end of chapter 3. Figure B.6 shows the speedups per suite.

The figure shows that applications that heavily use mathematical functions
(Multi-Media) benefit more by memoizing functions than by only memoizing
instructions. A large amount of the instructions memoized are in the memoized
functions (this was verified by analyzing the source code of the applications),
leading to their execution being avoided when the function is memoized. On the
other hand applications that use the mathematical functions sparingly benefit
from instruction memoization which can catch instructions not in the mathe-
matical functions.

Obviously the combined approach is superior with an average 15% speedup.
In choosing between the function to instruction implementations we might be
mislead to choose function memoization due to the higher speedup (10% vs.
8%). However we must remember that instruction memoization is effective for
a broader scope of applications and is compiler transparent. As opposed to
function memoization which is limited in its scope to specific applications and
needs compiler support for most architectures.

B.2.6 Implementing the Functions in Hardware

In this section we will compare a processor that implements the mathematical
and trigonometric functions on chip (like the Pentium family does) to a processor
that memoizes these functions. In both cases square-root taking is implemented
on chip. In addition we will combine both approaches and memoize the hardware
implemented functions. The latencies of the on chip functions are the average

B.3. THE RATIONALE BEHIND FUNCTION MEMOIZATION 75

0.70
Separate

060 | Unified _____

o0 ____----
Hit /

Ratio -~
040 - -~
0.30

1 2 4 8 16
Set Associativity Size

Figure B.5: Hit ratios as a function of set associativity size. MEMO-TABLE is
unified (dashed line, 512-entry) or separate MEMO-TABLES are used (solid line,
256-entry per MEMO-TABLE).

latencies shown in table B.1.

Figure B.7 compares the approaches. The hardware only approach yields the
worst results. For the SPEC benchmarks which use the math & trig functions
much less than the Multi-Media applications the hardware approach barely
surpasses the base processor. The combined approach is the fastest as it benefits
from a lower latency for MEMO-TABLE misses and from a latency of one cycle
for MEMO-TABLE hits.

B.3 The Rationale Behind Function Memoiza-
tion

It is important to understand why the technique works. Why do benchmarks
such as vgbox, turb3d and klogexp display such high benchmarks. A look at
a simplified excerpt from the source code of vghox shows (table B.7) that it is
computing in a loop the Sine and Cosine of a variable. Profiling showed that
this variable doesn’t change. However the compiler can’t perform Common
Subexpression Elimination (CSE) and move it out of the loop body due to a
condition that might change the variable’s values. The compiler can’t detect the
fact that the value doesn’t change. Using a MEMO-TABLE solves the problem
by saving the previous computations.

The benchmark turb3d contains code that performs a complex Fast Fourier

76 APPENDIX B. MEMOIZATION OF FUNCTIONS

1.25
1.20
Speed 1.15 D Functions
Up ~ o
=
1.10 g Instructions
= —
1.05 D Combined
MediaBench SPEC Khoros Average

Figure B.6: Breakdown of function, instruction, and combined memoization
speedups by suite.

Transformation (FFT). The main loop of the fortran subroutine is shown in
table B.8. In the inner loop half the values of TI are the same as from the
previous iteration of the outer loop. The MEMO-TABLE easily takes advantage
of this.

The application klogexp takes the logarithm of all pixels in an image. Section
2.2 has shown that neighboring pixels in an image tend to have the same values
leading to a high hit-ratio in the MEMO-TABLE.

for(i=0;i<N;i++){
xp = i/px;
std[i] = xp*cos(teta)/sin(teta);
if (std[i] >= KPI - EPS && std[i] <= KPI + EPS)
teta += KPI;

Table B.7: Simplified vgbox code.

B.4 Related Work

Two techniques are comparable to FM. The first is a hardware implementation
with extensive software support. The other is a pure software approach.

B.4. RELATED WORK 7

1.25 q
1.20 -
S?Je;dl_ls B . Memoized Softwar e Functions
1.10 - . Hardwar e Functions
1.05 . Memoized Hardwar e Functions

MediaBench SPEC Khoros Average

Figure B.7: Breakdown of software memoization, hardware implemented func-
tions, and combined hardware memoization speedups by suite.

DO 110 J =1, M
T =PI /LN
DO 100 I =
TI = I *
U(I+KU) = C0S (TI)
U(I+KN) = SIN (TI)
100 CONTINUE
KU = KU + LN
KN = KU + NU
LN = 2 x LN
110 CONTINUE

0, LN - 1
T

Table B.8: FFT routine from turb3d.

B.4.1 Compiler-Directed Dynamic Computation Reuse

Connors & Hwu [13] propose a general technique for reusing large regions of code
which have distinct entry and exit points. They named it: Compiler-Directed
Dynamic Computation Reuse. If the values at the entry points match the val-
ues stored in a lookup table the results stored can be used, thus avoiding the
need to recompute the region. Changes in the registers and memory locations
accessed in the region invalidate the stored results. The regions are detected by
a profiling-compiler which inserts new instructions that test reuse, update the
table, and invalidate stored entries.

While our technique can be seen as a subset of theirs it necessitates smaller
changes to the existing compiler and hardware and doesn’t call for extensive
profiling. Both works are limited by the number of function arguments and

78 APPENDIX B. MEMOIZATION OF FUNCTIONS

return values they can support.

B.4.2 Value Profiling

A software approach suggested by Calder, Feller & Eustace [14] uses value profil-
ing to identify instructions that have invariant or predictable values at run-time.
By inserting specialized code they can compare the inputs of functions or code
segments to the values that have been found to be most common. If they match
the results are obtained immediately, if not the function or code segment is
executed.

The only advantage this technique has over hardware memoization is that
no hardware and instruction set changes are needed. On the other hand our
technique has the following advantages:

e It doesn’t need the extensive profiling necessary for value profiling.

e It can capture reuse that value profiling doesn’t detect such as a large
number of data values each used only a few times, or data that is input
variant.

o If there are even two values to compare to, the overhead of a software miss
is greater than the overhead of a hardware miss.

B.5 Comparing Hardware to Software Memo-
ization

A fundamental question about memoization is: “Why can’t it be done in soft-
ware?” At the instruction level it is obvious that software memoization is of no
avail. The overhead of a lookup would be tens of instructions. Nevertheless the
question is valid in the scope of function memoization.

Memoization is, of course, possible to implement in software but there are
several reasons why a hardware-based approach is superior:

e the most compelling reason for using hardware-based MEMO-TABLE is the
penalty of an unsuccessful lookup. For terminal cases where the hit-ratio
on the MEMO-TABLE is low, the penalty for a software test and update
is several memory accesses and tens of extra instructions. The penalty
of a hardware-based MEMO-TABLE miss is one or two machine cycles as
shown in section B.1.2.

e Initializing, accessing and updating the software based MEMO-TABLE
complicates programming and compiler design. Global MEMO-TABLES
will have to be recognized by code that was written by different teams of
developers or by a third party company. A hardware-based MEMO-TABLE
access is simple (lupm1 and updm1) and all modules of an application

B.5. COMPARING HARDWARE TO SOFTWARE MEMOIZATION 79

access the same table. A developer need not know of the existence of mem-
oization and the compiler writer needs to add only three extra instructions
for each memoized function call.

¢ A memory based MEMO-TABLE demands resources such as registers, cache
lines, and memory ports. These resources are deducted from the original
application. A hardware-based MEMO-TABLE uses none of the above.

Table B.9 compares hardware based to software based memoization. Shown
are the average speedups per suite when using separate MEMO-TABLES for each
function. The size of each MEMO-TABLE is 256 entries and the associativity
is either direct-mapped or 4-way set associativity. In addition to the speedups
we show the table size needed in order to achieve the same speedup of using
a hardware 256/4 MEMO-TABLE, or the maximal speedup if it is impossible
to obtain the same speedup. This happens when the miss ratio is so high
that the miss penalty is larger than the number of cycles avoided by successful
memoization, or the software tables are so large that they dominate the L1 data
cache and degrade execution.

The results were that only 5 out of 17 applications achieve any speedup
(with software-memoing & 256-entry tables). The average speedup is -11% (-
7% for a direct-mapped table), in other words a slowdown. It is interesting to
point out that while the hardware based scheme favors the higher associativity
(10% compared to 8%), the software favors the direct-mapped approach. This
is due to serialization of the 4-way lookup in software. Further simulations have
shown that for software a 2-way lookup is the best tradeoff between hit-ratio
and lookup overhead.

When trying to find the software based table that yields the best results we
observed that a table larger than 2K entries will always cause a degradation in
performance. This is caused by the doubling of the miss ratio of the L1 data
cache over the case where a 1K entry table is used (for some applications a
smaller table size already causes degradation). The average speedup obtained is
1%, with only six applications being slowed down, and 11 achieving some degree
of speedup.

256-entry tables best achieved
suite 4-way direct soft memoization
hard | soft | hard | soft size/assoc | spdp
MediaBench 1.12 | 0.86 | 1.10 | 0.90 1024/2 | 0.95
SPEC 1.06 | 0.93 | 1.05 | 0.95 2048/2 | 1.01
Khoros 1.13 0.88 1.12 0.92 1024/2 | 1.03
| Harmonic mean [1.10 | 0.89 [1.08 [0.93 | | 1.01]

Table B.9: Speedup comparison between hardware based to software based
memoization. Hardware MEMO-TABLES are separate and of size 256/1 and
256/4.

80 APPENDIX B. MEMOIZATION OF FUNCTIONS

B.6 Summary

This chapter investigates the technique of memoization in the framework of
the mathematical and trigonometric functions. The results of previous function
invocations are saved (along with their inputs) in lookup tables. If the result of a
function call already resides in a table, it is obtained in a single cycle as opposed
to the tens to hundreds of cycles it would take to compute the function. Our
tests have shown that an average success rate of 58% is achieved for applications
that utilize the mathematical and trigonometric functions.

Our main conclusion is that with hardware support in the form of a small and
simple to design lookup table (a unified, 512-entry, 4-way associative MEMO-
TABLE’s size is 16KBytes) it is possible to attain an average (harmonic mean)
speedup of 11% for applications which utilize the aforementioned functions. This
is 60% of the maximal speedup achievable which would require using MEMO-
TABLES with millions of entries.

The overhead for unsuccessful lookups is one or two cycles for each function
call, thus an almost negligible penalty is paid for applications that don’t display
a large degree of “value locality”. Such a low overhead is impossible to duplicate
using software memoization techniques.

As most mathematical and trigonometric functions aren’t included in the
instruction sets of most microprocessors (square root taking being the excep-
tion) we suggest adding two new instructions to the ISA. lupm1 (lupm2) and
updml (updm?2), which lookup and update a generic MEMO-TABLE.

In comparing FM with IM we saw that for applications which heavily utilize
mathematical and trigonometric functions, function memoization yields better
results. For almost all applications both approaches complement each other
leading to a 14% speedup using a combined implementation. We compared
a processor that implements the mathematical and trigonometric functions in
hardware on chip, to a processor that memoizes these functions on chip, but
executes them in software. The results showed that the latter processor was
7% faster than the former one. Combining both approaches yields a speedup of
15% over the base processor.

Bibliography

[1]

[10]

[11]

[12]

Michie D., “Memo Functions and Machine Learning,” Nature 218, pp. 19—
22, 1968.

L. Sterling and E. Shapiro, “The Art of Prolog, 2nd Ed.”, MIT Press Cam-
bridge MA, 1992.

Abelson, H. and Sussman, G.J. Structure and Interpretation of Computer
Programs. MIT Press, Cambridge, Mass. 1985.

R. Milner, M. Tofte, R. Harper, and D. MacQueen, The Definition of Stan-
dard ML (Revised) MIT Press, Cambridge, Mass. 1997.

S. Harbision, “An Architectural Alternative to Optimizing Compil-
ers”,Proc. of the 1st Int. Conf. on Architectural Support for Programming
Languages and Operationg Systems, pp. 57—65, March 1982.

S. Richardson, “Exploiting Trivial and Redundant Computation”, Proc. of
the 11th Symp. on Computer Arithmetic, pp. 220-227, July 1993.

S. Oberman and M. Flynn, “Reducing Division Latency with Reciprocal
Caches”, Reliable Computing, Vol 2, no. 2, pp. 147-153, April 1996.

A. Sodani and G. Sohi, “Dynamic Instruction Reuse”, Proc. of the 2/th
Int. Symp. on Computer Architecture, pp. 194205, June 1997.

F. Gabbay and A. Mendelson, “Speculative Execution based on Value Pre-
diction”, EE Department TR #1080, Technion - Israel Institute of Tech-
nology, November 1996.

M. Lipasti, C. Wilkerson and J. Shen, “Value Locality and Load Value
Prediction”, Proc. of the 7th Int. Conf. on Architectural Support for Pro-
gramming Languages and Operationg Systems, pp. 138-147, October 1996.

M. Lipasti and J. Shen, “Exceeding the Dataflow Limit via Value Predic-
tion”, Proc. of the 29th Int. Symp. on Microarchitecture, December 1996.

Y. Sazeides and J. Smith, “The Predictability of Data Values”, Proc. of
the 30th Int. Symp. on Microarchitecture, pp. 138—148, December 1997.

81

82

[13]

BIBLIOGRAPHY

D. Connors and W. Hwu, “Compiler-Directed Dynamic Computation
Reuse: Rationale and Initial Results”,Proc. of 32nd Int. Symp. on Mi-
croarchitecture, pp. 158-169, November 1999.

B. Calder, P. Feller, A. Eustace, “Value Profiling and Optimization”, Jour-
nal of Instruction-Level Parallelism, Vol. 1, 1-6 1999.

D. Citron, D. Feitelson and L. Rudolph, “Accelerating Multi-Media Pro-
cessing by Implementing Memoing in Multiplication and Division Units”,
Proc. of the 8th Int. Conf. on Architectural Support for Programming Lan-
guages and Operationg Systems, pp. 252-261, October 1998.

A. Sodani and G. Sohi, “An Empirical Analysis of Instruction Repetition”,
Proc. of the 8th Int. Conf. on Architectural Support for Programming Lan-
guages and Operationg Systems, pp. 35—45, October 1998.

D. Burger and T. Austin, “The SimpleScalar Tool Set, Version 2.0”, Tech-
nical Report TR-CS-97-1342, University of Wisconsin-Madison, June 1997.

http://www.specbench.org

C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “MediaBench: A Tool
for Evaluating and Synthesizing Multimedia and Communications Sys-
tems”, Proc. of 30th Int. Symp. on Microarchitecture, December 1997.

Jain R., “The Art of Computer Systems Performance Analysis”, John Wi-
ley & Sons, 1991.

Hennessy J. L. and Patterson D. A., “Computer Architecture: A Quanti-
tative Approach”, Morgan Kaufmann Publishers, San Mateo CA, 1990.

http://www.mot.com/SPS/PowerP C/products/semiconductor/cpu/750.html

D. Citron and L. Rudolph, “Creating a Wider Bus Using Caching Tech-
niques”, Proc. of 1st Int. Symp. on High Performance Computer Architec-
ture (HPCA), January 1995.

http://www.sgi.com/MIPS/products/r10k
http://www.mot.com/SPS/PowerP C/products/semiconductor/cpu/604.html

http://www.support.compaq.com/alpha-tools/documentation/current/chip-
docs.html

M. Azam, P. Franzon, and W. Liu, “Low Power Data Processing by E
limination of Redundant Computations”, 7th Int. Symp. on Low Power
Electronics and Design, August 1997.

Cmelik R. and Keppel D., Shade: A Fast Instruction-Set Simulator for
Ezecution Profiling, Sun Microsystems Laboratories.

BIBLIOGRAPHY 83

[29] S. Richardson, “Caching Function Results: Faster Arithmetic b y Avoid-
ing Unnecessary Computation”, Sun Microsystems Laboratories,Techni cal
Report TR-92-1, September 1992.

[30] A. Sodani and G. Sohi, “Understanding the Differences Between Value
Prediction and Instruction Reuse”, Proc. of 31st Int. Symp. on Microar-
chitecture, November 1998.

[31] F. Gabbay and A. Mendelson, “Can Program Profiling Support Value Pre-
diction?”, Proc. of the 30th Int. Symp. on Microarchitecture, pp. 138-148,
December 1997.

[32] C. Molina, A. Gonzélez, and J. Tubella, “Dynamic Removal of Redundant
Computations”, Proc. of the ACM Int. Conf on Supercomputing, June 1999.

[33] http://www.intel.com/design/

[34] http://www.khoral.com

