
Functions - When Developers
Use Them and Why

By

Alexey Braver

A thesis submitted to the Hebrew University of Jerusalem
as a partial fulfillment of the requirements

of the degree of Master of Science
in the Faculty of Computer Science and Engineering

Under the supervision of Prof. Dror Feitelson

February 2022

מתי ־ פונקציות

ולמה בהן משתמשים מפתחים

ע״י

בראבר אלכסיי

בירושלים העברית האוניברסיטה
בנין וסלים רחל שם על המחשב ולמדעי להנדסה הספר בית

המחשב למדעי החוג

המחשב במדעי מוסמך לתואר גמר עבודת

ידי על הונחתה זו עבודה
פייטלסון דרור פרופ׳

תשפ״ב א׳ אדר

Abstract

Software design has a huge impact on the product quality, performance, security, main-
tenance, costs and more. There are many attitudes about what the best design is, and
many discussions about it, yet we can say with caution that there is a consensus about

most of the cases, especially in the high-level design. However, the design practices have barely
been experimented on in quantitative research.

In this research we have done such an experiment and tried to quantify the considerations
behind different designs, especially in regard to function extraction. We tried to answer some
difficult questions about functions length, such as - is there an ideal function length? If so,
what is it? Is there such a term as "too short function" or "too long function"? What are the
considerations for forming a function? Is there something in common among developers in the
way they extract functions?

Our goal was to investigate the function extraction process in a real code used in the industry
and among real developers. We have conducted an experiment that included 23 experimental
subjects who were given a code refactoring task and some design questions about it. The task
contained real code from the industry, that had been converted to one big function, and the
experimenters were asked to refactor it by extracting functions.

To analyse the results we used some interesting methods such as: looking at the areas in
the code where functions were extracted, creating histograms of the number of functions that
were extracted and their length, calculating the part of code that was in functions, and more.
After analysing the results from several angles, we saw that most of the experimenters (80%)
extracted small functions (5-30 lines of code) in the code task, and the most common trigger for
function extraction was the scope that was created by control structures such as "if" and "try".
According to their answers on the experiment questions, we saw that the main consideration for
function extraction was the logic cohesiveness, and most of them think that there is no an ideal
function length. Moreover, they also answered that "making function as short as possible" and
"making each function close to the ideal length" were the two least important considerations for
function extraction. However, most of those who do think that there is an ideal function length
answered that it should be 20-30 lines of code.

Our main conclusion from this research is that developers extract small functions (5-30
lines of code), although they believe there are much more important considerations for function
extraction than length. We also provided a new approach to investigate development patterns
among live developers, and showed new methods to analyze and compare code results.

i

תקציר

עלותו תחזוקתו, ביצועיו, מוצר, של איכותו על עצומה השפעה יש התוכנה למבנה
כך, על דיונים הרבה ויש ביותר, הטוב המבנה מהו לגבי רבות עמדות ישנן ועוד.
במיוחד הדברים, רוב לגבי קונצנזוס שיש בזהירות להגיד יכולים אנחנו ועדיין
בניסויים נבדקו ולא כמעט השונים התוכנה מבני זאת, עם המאקרו. ברמת

כמותיים.

תוכנה מבני מאחורי השיקולים את לכמת וניסינו כזה, ניסוי ביצענו זה בניסוי
מספר על לענות ניסינו פונקציות. של ליצירה שקשור מה בכל בייחוד שונים,
אידיאלי? פונקציה אורך יש האם – כמו פונקציות, של אורך לגבי קשות שאלות
ארוכה ״פונקציה או מדי״ קצרה ״פונקציה כזה מונח יש האם מהו? כן, אם
מפתחים בקרב משותף משהו יש האם פונקציה? ליצירת השיקולים מה מדי״?

פונקציות? יוצרים הם שבו באופן

אמיתי, בקוד פונקציות של היצירה תהליך את לחקור הייתה שלנו המטרה
23 שכלל ניסוי ביצענו אמיתיים. מפתחים ובקרב בתעשייה בשימוש שנמצא
אמיתי קוד כללה המשימה לגביה. שאלות ומספר קוד משימת שקיבלו נסיינים
את לשנות צריכים היו והנסיינים גדולה, אחת לפונקציה ששונה מהתעשייה

פונקציות. של יצירה ע״י הקוד מבנה

להסתכל כמו: מעניינות שיטות במספר השתמשנו התוצאות את לבדוק כדי
מספר של היסטוגרמות של יצירה פונקציות, נוצרו בהם בקוד האזורים על
לפונקציות. שחולץ הקוד חלק של וחישוב שלהן, והאורך שנוצרו הפונקציות
יצרו (80%) הנסיינים שרוב ראינו שונות, מזוויות התוצאות את שבדקנו אחרי
ליצירה ביותר הנפוץ והטריגר הקוד במשימת קוד) שורות (30־5 קטנות פונקציות
לפי ״TRY״. ו־ ״IF״ כמו שליטה מבני ע״י שנוצר הקוד סקופ היה פונקציה של
של ליצירה המרכזי שהשיקול ראינו הניסוי, שאלות על ענו שהם התשובות
לפונקציה. אידיאלי אורך שאין חשבו ורובם הלוגית, הלכידות היה פונקציות
שניתן״ ככל קצרה הפונקציה את ״לעשות שהשיקול גם ענו הם מזאת, יתרה
חשב שכן מי מכל זאת, עם פונקציות. ליצירת חשוב פחות הכי השיקול היה
קוד. שורות 30־20 להיות צריך שהאורך ענה לפונקציה, אידיאלי אורך שיש

(30־5 קטנות פונקציות יוצרים שמפתחים היא מהניסוי שלנו המרכזית המסקנה
פונקציות ליצירת חשובים יותר שיקולים שיש מאמינים שהם למרות קוד), שורות
פיתוח תבניות לחקור חדשה גישה גם סיפקנו הזה במחקר שלהן. האורך מאשר

התוצאות. של והשוואה לניתוח שיטות מספר והראנו מפתחים, בקרב קוד

ii

Acknowledgements

I would like to thank wholeheartedly my supervisor Prof. Dror Feitelson. I first met Dror
as part of my BSc. studies in a software engineering course he taught. After starting my
MSc. studies I enrolled to his software engineering seminar where I was exposed to many

studies in the software engineering field. It was my first step in the research field, and after I
have finished the seminar I decided to ask Dror to take me as his MSc. student. We searched a
lot for a study where we can innovate and bring something new to the software engineering field.
Happily, in the end we succeeded. Dror taught me a lot about research in general and research
in software engineering in particular. He gave me lots of independence and a lot of advice that
helped me get to this wonderful result.

iii

Table of Contents

Page

List of Tables vi

List of Figures vii

1 Introduction 1
1.1 Software Design . 2
1.2 Low-Level Design Implementation . 2
1.3 Software Evolution and Refactoring . 3
1.4 Reasons for Function Extraction . 3

1.4.1 Readability . 3
1.4.2 Reuse . 3
1.4.3 Better Testing . 4
1.4.4 Code Explanation . 4
1.4.5 Understand Big Functions . 4
1.4.6 Expose API . 5

1.5 Dirty Code . 5
1.6 Clean Code . 6

2 Background and Related Work 9
2.1 Clean Code - In Terms of Function Extraction 10

3 Research Questions 11

4 Methods 12
4.1 Code for Refactoring Experiment . 12
4.2 Code Flattening . 14
4.3 Ethics . 15
4.4 Experiment . 15

4.4.1 Background Questions . 16
4.4.2 Code Assignment . 16
4.4.3 Questions About the Code Assignment . 16
4.4.4 Experiment Execution . 16

4.5 Scripts for Analysing the Results . 19

iv

4.5.1 Stripping Script . 19
4.5.2 Comparing Lines Script . 21
4.5.3 Functions Extractor Script . 21
4.5.4 Functions Range Script . 22
4.5.5 Order Change Script . 22

4.6 Manual Analysis . 22

5 Results 23
5.1 Histogram - Function Length . 24
5.2 Histogram - Number of Functions . 25
5.3 Histogram - Lines That Start Function . 26
5.4 Histogram - Lines That Start and End Function 27
5.5 CDF - Part of Code in Functions . 28
5.6 Graph - Flattened Code in Functions Visualization 29
5.7 Code Order Change Indicator . 29
5.8 Coding Opinion Questions . 30

6 Discussion 36
6.1 Function Extraction . 36
6.2 Considerations for Function Extraction . 36
6.3 Code in Functions . 37
6.4 Functions Length . 40
6.5 Number of Functions . 40
6.6 Clean Code . 40

7 Threats to validity 41
7.1 Bugs . 41
7.2 Non-diverse Experimenters . 41
7.3 The Context of the Experiment . 42
7.4 Lack of Generality . 42
7.5 The Number of Experimenters . 42
7.6 Experiment Environment . 42

8 Conclusions 43

A The original flattened code 45

B Reddit comments 50

Bibliography 52

Experimental Materials 55

v

List of Tables

Table Page

5.1 Main considerations for function extraction . 34

vi

List of Figures

Figure Page

4.1 Experiment introduction . 15
4.2 Experiment instructions . 16
4.3 Experimenters’ age distribution . 17
4.4 Experimenters’ development experience distribution 17
4.5 Experimenters’ development environment distribution 17
4.6 Experimenters’ development language distribution 18
4.7 Experimenters’ programming education distribution 18
4.8 Experimenters’ role distribution . 18
4.9 Experimenters agile development distribution . 19
4.10 Example of lines that starts with ’#’ . 20
4.11 Example of lines that starts with <"""> . 20
4.12 Example of lines with spaces between them . 20
4.13 Example of line that divided to multiple lines . 21

5.1 Histogram of function length . 24
5.2 Histogram of number of functions . 25
5.3 Histogram of lines that start function . 26
5.4 Histogram of lines that start and end function . 27
5.5 CDF of lines of code in functions . 28
5.6 Visualization of functions locations related to the flattened code 29
5.7 Familiarity with the "clean code" discipline distribution 30
5.8 The agreement level with "clean code" discipline . 30
5.9 The ideal length of function . 31
5.10 Different refactoring after being exposed to the questions 35

6.1 Error handling code - flattened and stripped . 38
6.2 Error handling code - original code . 39

A.1 The original flattened code . 46

B.1 Reddit comments . 51

vii

C
h

a
p

t
e

r 1
Introduction

Nowadays, almost every field in our life includes computers and software. Many tasks that
were once performed by humans are now performed by computers, and the number of
these tasks keeps growing. Often, the quality of an organization or a field is determined

by its technology, for example medicine is considered better if it has better technology, the army
is considered stronger if it has better technology, and countries are considered a better place to
live in if they have better technology.

One of the main components in technology is the software, thus it should be treated with
the appropriate respect. Many resources are being invested to develop new algorithms, new
functionalities, and new developments. Obviously, all of these include software, but in most of
the cases the emphasis is on the functionality of the software and not on its design. The software
is the hidden part of the product so it’s not being examined by the customers. Moreover, in
most of the cases the low-level design has no big impact on the software’s performance. As a
result, it’s very easy to compromise on quality in this part and just make it as simple as possible.
Because of that, there is also not much research in this field.

However, if we look on this from a different perspective, for example the development and
maintenance of the software, we will see that the low-level design has a significant impact of the
final product. A good design can save a lot of effort for the developers, and as a result decrease
the development time of the product, which of course will reduce the costs. As we said before,
low-level design has a very small impact on the software performance, and of course it does not
change the software’s functionality. This makes the software design hard to quantify and study
in terms of comparing between different designs. In this experiment we will try to overcome this
gap.

1

1.1 Software Design

Software design includes the definition of architecture, functions, objects, and the overall structure
of the software. There are many different ways of designing software, almost all of which involve
coming up with an initial design and refining it as necessary. Software design also includes the
deployment on hardware, use of databases, and third-party frameworks of the software. This is
the big picture of what is running where and how all the parts will interact. Software design has
a big impact on the software quality, performance, stability, security, costs, maintenance efforts
and more. For example, If the software design includes many redundant data stores, it will slow
down the whole software, use more resources, and will lead to higher costs and lower quality.
It’s often common to divide software design into two main parts:

High-Level Design The overall design of the product in the macro level. Includes the de-
scription of the architecture, platform, modules, services, database and the relationships,
connections, and integrations among all of them. It’s the conversion between the business
requirements into high-level solution. It is based on considerations like modularity and
information hiding [Par72]. Mostly, it will be created before the low-level design by the
software architect.

Low-Level Design The detailed design of the product in the micro level, based on refining
the high-level design. Includes the logic of all the components, the algorithms, the design
patterns and their actual implementation. Mostly, it will be created after the high-level
design by the developers. Low-level design also includes part of the functions design based
on considerations like that a function should only do one thing.

1.2 Low-Level Design Implementation

As we explained above [1.1], the low level design is the detailed design of the product in the micro
level. The level of the details can differ between designs, but anyway during the implementation
of the low-level design, actual code is being written. The level of the details can affect the freedom
the implementer has to choose the names of the classes and variables, the data structures and
the algorithms he is going to use, and the functions he is going to extract. However, although he
may have to implement the given functions according to the low-level design, it doesn’t mean
that he can’t extract additional functions. There are several reasons for function extraction as
described below in Section 1.4, but what matters now is that it can be done in this phase. Of
course these additional functions must not affect the functionality given by the low-level design,
but they do provide a lot of freedom to the implementer to extract functions and use design
patterns.

Due to this freedom, in this research we couldn’t conduct a coding experiment just by giving
the low level design of the task to the experimenters, and ask them to implement it, because it
can be very difficult to compare the results. Because of that, we conducted a coding experiment
in which we chose to provide a base-code to the experimenters, and asked them to refactor it.

2

1.3 Software Evolution and Refactoring

Product requirements always change over time, causing the software to evolve [Leh96]. New
technologies are always developed, new requirements always arrive, improvement should be
always considered. All of these may also require adaptions in the software design. The actions to
change software design without changing its functionality are named software refactoring [FB18].

Code refactoring is defined as the process of restructuring and improving the internal structure
of existing code without changing or adding to its external behavior and functionality. Generally,
refactoring is done by applying a series of basic actions, sometimes known as micro-refactorings,
which preserve the software’s behavior and functionality. Among other things, these basic actions
include extraction of variables, fields, and functions. If the refactoring was good enough, these
changes will improve software readability, performance, and make it much easier to maintain.
Many will say that the goal of code refactoring is to turn dirty code into clean code, which
increases the project’s readability. In this research we are going to investigate the function
extraction part of software refactoring.

1.4 Reasons for Function Extraction

When we are refactoring, it may look odd to extract functions which are only called once. There
is often an assumption that the main reason for extracting a function is so that it can be
called from multiple places in the code base and prevent code repetitions. This is indeed a good
reason for extracting functions, but it’s not the only one. There are many additional reasons for
extracting functions. Let’s discuss them.

1.4.1 Readability

Extracting a function and naming it with an informative name certainly makes the code more
understandable. It easily can replace the comments which are written by developers to explain
the code they wrote.

1.4.2 Reuse

As we introduced before, this is probably the most obvious reason for extracting functions. When
we understand that we wrote code that can be used in the future in more places, we should
extract it to a function and use it again. But it does not end here. We also need to place this
extracted function in an appropriate place where everyone can consume it easily. Many times,
developers look for a function just by typing the name of the object and clicking on the dot key
to see what functions the object has. If we don’t place functions in the appropriate path, others
may not find it and won’t use it. As a result, duplicate code may appear or inline functions
that developers wrote from scratch because they didn’t find the function that has already been
written.

3

1.4.3 Better Testing

When we are writing tests, functions have quite a big impact on our tests. If the functions are
very big and have many responsibilities, it will be much harder to test them and as a result it
will be hard to test the whole program. Moreover, sometimes such functions will even make
the tests framework impossible to configure, and will require to add additional functions to
compensate for the bad ones, because there is always a deeply nested code inside it that requires
a lot of loops and conditions to reach and test it. It may even make developers skip tests or
change production code because of these difficulties. There is even a methodology (TDD - Test
Driven Development) that requires to write the tests before the functions themselves because
often, in writing tests, we discover defects or missed opportunities for improving our code. TDD
relies on a cycle of declaring intent in a test, writing code that works, scanning that code for
more insights into how the code should be structured and improved, making improvements, and
making the changes part of the code base. When we follow this cycle, functions can’t help but
be testable and small. They tend to also become well-named and readable due to the repeated
scanning and opportunity for revision.

1.4.4 Code Explanation

Many times, we are facing complex conditionals such as:

"if ((x and not y) and not z) or ((x and z) and (q>7))"

However, we can make it more understandable just by extracting it to a function and name
it with an informative name. For example:

"If (isValidInput())"

It’s much clearer now what the condition is for. In the same way we can extract to functions
small blocks of code, according to their logic, and name them with informative names that
explain their logic. Comments become redundant after that. In addition, this shortens and
simplifies the code, and makes it more testable and understandable. Since a large component of
our work is reading and understanding existing code, this can save every team member minutes
or hours every time the code must be modified in the future.

1.4.5 Understand Big Functions

There is no doubt that long and deeply-nested functions are hard to read. Many background
operations such as converting, copying, filtering, error handling, etc. make it difficult to understand
the real purpose of the function. In order to clearly see and understand the structure of such a
function, we need to move details of sub-operations out of our way. Sometimes methods contain
a number of variables that exist only to support the block of code we intend to move. When

4

we extract the method and its variables, the original code becomes smaller and more obvious.
Extracting a method gets it out of our way so that we understand the function better and
manage it with a lower chance of accidentally injecting defects.

1.4.6 Expose API

When we extract functions and define them public, we expose their usage outside the class.
Obviously, the main purpose of that is to allow us to use these functions outside the class, and
it’s a good reason on its own to extract functions – when we want to expose code outside the
class. However, it also helps us to understand the functionality of a certain class and make the
code more understandable. Code documentation and code completion are closely related to code
reuse. Many developers rely upon their IDE to understand code. They use the tools in their
IDEs to find where functions are called and where variables are used. They also type the name
of an object and press the period key to see the list of functions that exist and are callable for
that object. Even when functions have light usage, they appear in the list. This gives developers
an understanding of what the class is for, how it is to be used, and what it means in its context.

1.5 Dirty Code

Dirty code is an informal term that refers to any code that is hard to maintain and update, and
even more difficult to understand and translate. Dirty code is typically the result of deadlines
that occur during development. This is the idea behind technical debt: if code is as clean as
possible, it is much easier to change and improve in later iterations – so that your future self and
other future programmers who work with the code can appreciate its organization. When dirty
code isn’t cleaned up, it can snowball, slowing down future improvements because developers
will have to spend extra time understanding and tracking the code before they can change it.
Some types of dirty code include:

• Monolith architecture, that is long blocks of code with multiple responsibilities and many
functionalities that are hard to understand.

• Codes, methods, or classes that are so large that they are too unwieldy to manipulate
easily.

• The incomplete or incorrect application of object-oriented programming principles.

• Superfluous coupling.

• Areas in code that require repeated code changes in multiple areas in order for the desired
changes to work appropriately.

• Any code that is unnecessary and removing it won’t be detrimental to the overall function-
ality.

5

1.6 Clean Code

Generally, clean code is code which is easy to read, understand, and maintain, thereby easing
future software development and increasing the likelihood of a quality product in shorter time.
But of course there is not only one correct definition. According to Martin [C M08, p. 7], there
are probably as many definitions to "Clean Code" as there are programmers. So he asked some
very well-known and deeply experienced programmers what they thought.

Bjarne Stroustrup,
inventor of C++ and author of The C++ Programming Language
«I like my code to be elegant and efficient. The logic should be straightforward to make
it hard for bugs to hide, the dependencies minimal to ease maintenance, error handling
complete according to an articulated strategy, and performance close to optimal so as not
to tempt people to make the code messy with unprincipled optimizations. Clean code does
one thing well.»

Grady Booch,
author of Object Oriented Analysis and Design with Applications
«Clean code is simple and direct. Clean code reads like well-written prose. Clean code never
obscures the designer’s intent but rather is full of crisp abstractions and straightforward
lines of control.»

“Big” Dave Thomas,
founder of OTI, godfather of the Eclipse strategy
«Clean code can be read, and enhanced by a developer other than its original author. It
has unit and acceptance tests. It has meaningful names. It provides one way rather than
many ways for doing one thing. It has minimal dependencies, which are explicitly defined,
and provides a clear and minimal API. Code should be literate since depending on the
language, not all necessary information can be expressed clearly in code alone.»

Michael Feathers,
author of Working Effectively with Legacy Code
«I could list all of the qualities that I notice in clean code, but there is one overarching
quality that leads to all of them. Clean code always looks like it was written by someone
who cares. There is nothing obvious that you can do to make it better. All of those things
were thought about by the code’s author, and if you try to imagine improvements, you’re
led back to where you are, sitting in appreciation of the code someone left for you—code
left by someone who cares deeply about the craft.»

Ron Jeffries,
author of Extreme Programming Installed and Extreme Programming
Adventures in C#
«In recent years I begin, and nearly end, with Beck’s rules of simple code. In priority order,
simple code:

6

• Runs all the tests.

• Contains no duplication.

• Expresses all the design ideas that are in the system.

• Minimizes the number of entities such as classes, methods, functions, and the like.

Of these, I focus mostly on duplication. When the same thing is done over and over, it’s a
sign that there is an idea in our mind that is not well represented in the code. I try to
figure out what it is. Then I try to express that idea more clearly.

Expressiveness to me includes meaningful names, and I am likely to change the names of
things several times before I settle in. With modern coding tools such as Eclipse, renaming
is quite inexpensive, so it doesn’t trouble me to change. Expressiveness goes beyond names,
however. I also look at whether an object or method is doing more than one thing. If it’s
an object, it probably needs to be broken into two or more objects. If it’s a method, I will
always use the Extract Method refactoring on it, resulting in one method that says more
clearly what it does, and some submethods saying how it is done.

Duplication and expressiveness take me a very long way into what I consider clean code,
and improving dirty code with just these two things in mind can make a huge difference.
There is, however, one other thing that I’m aware of doing, which is a bit harder to explain.

After years of doing this work, it seems to me that all programs are made up of very similar
elements. One example is “find things in a collection.” Whether we have a database of
employee records, or a hash map of keys and values, or an array of items of some kind,
we often find ourselves wanting a particular item from that collection. When I find that
happening, I will often wrap the particular implementation in a more abstract method or
class. That gives me a couple of interestin advantages.

I can implement the functionality now with something simple, say a hash map, but since
now all the references to that search are covered by my little abstraction, I can change the
implementation any time I want. I can go forward quickly while preserving my ability to
change later.

In addition, the collection abstraction often calls my attention to what’s “really” going on,
and keeps me from running down the path of implementing arbitrary collection behavior
when all I really need is a few fairly simple ways of finding what I want.

Reduced duplication, high expressiveness, and early building of simple abstractions. That’s
what makes clean code for me.»

Ward Cunningham,
inventor of Wiki, inventor of Fit, coinventor of eXtreme Programming. Motive
force behind Design Patterns. Smalltalk and OO thought leader. The godfather
of all those who care about code.
«You know you are working on clean code when each routine you read turns out to be

7

pretty much what you expected. You can call it beautiful code when the code also makes
it look like the language was made for the problem.»

However, if we want to interpreter it into actual code operations, it might be quite difficult.
Since in this research we focus on function extraction, we will try to define "Clean Code" in
terms of function extraction. Martin in his book [C M08, p. 34] suggests that functions should
be very small(less than 20 lines of code), and we will try to check if there is agreement on that
among professional developers.

8

C
h

a
p

t
e

r 2
Background and Related Work

In the literature, there are many attitudes and papers about software design and refactoring.
However, to our best knowledge, there are not so many experiments that compare software
designs, in particular software’s functions designs. Intuitively, we can deduce that longer

code is more complex to understand, because there are more lines to read and remember, but
does that mean that if we will refactor this code and move some of it into functions, it will be
more understandable? According to Landman, Serebrenik, Bouwers and Vinju [Lan+15] the
connection between code complexity to number of lines of code is not straightforward. However,
there are also some studies that claim that bigger code procedures/modules with large size
[D B+93], high complexity [KF91], and low cohesion [MB07] require significantly more time
and effort for comprehension, debugging, testing and maintenance. From that we can deduce
that if we reduce code size and complexity, but increase code cohesion, the code will be more
understandable and easier for comprehension, debugging, testing, and maintenance.

Indeed, there are many studies that claim that long methods are a "bad smell" and try to
identify when methods are too long and need refactoring, by using software metrics such as
size, cohesion, complexity and coupling. Some of these studies even try to find the best metric
for this task. For example, Yoshida, Kinoshita and Iida [YKI12] try to use only a cohesiveness
metric to divide the code into functional segments. Another study [CAA15] claims that size and
cohesion should be used together to get better results. There is even a newer study [Cha+18]
that claims that all these metrics should be used together to get the best results. There are
also studies that propose different approaches to automatically extract methods such as block
based slicing [Mar01] or relying on complete computation of a given variable and the statements
affecting the state of a given object [TC11]. All these approaches are about finding the best and
the most accurate automatic method to identify function extraction, but in our study, we are
trying to find the most common reasons human developers extract functions and if they believe
that there is an ideal length of functions.

9

2.1 Clean Code - In Terms of Function Extraction

Martin explains in detail in his book [C M08] the best practices to write code. Among other
things, he talks about clean code, extracting functions, error handling and more. In the functions
chapter he explains why functions should be as small as possible. He also claims that the block
of code within if statements, else statements, while statements, and so on should be one line long.
Probably that line should be a function call because it also adds documentary value because the
function called within the block can have a nicely descriptive name. Concerning function length,
Martin writes:
« The first rule of functions is that they should be small. The second rule of functions is that
they should be smaller than that. This is not an assertion that I can justify. I can’t provide any
references to research that shows that very small functions are better. What I can tell you is that
for nearly four decades I have written functions of all different sizes. I’ve written several nasty
3,000-line abominations. I’ve written scads of functions in the 100 to 300 line range. And I’ve
written functions that were 20 to 30 lines long. What this experience has taught me, through
long trial and error, is that functions should be very small. In the eighties we used to say that a
function should be no bigger than a screen-full. Of course we said that at a time when VT100
screens were 24 lines by 80 columns, and our editors used 4 lines for administrative purposes.
Nowadays with a cranked-down font and a nice big monitor, you can fit 150 characters on a line
and a 100 lines or more on a screen. Lines should not be 150 characters long. Functions should
not be 100 lines long. Functions should hardly ever be 20 lines long. »[C M08, p. 34]
With this approach he emphasizes a significant reason for function extraction – explanation and
documentation of the code. Size, complexity, coupling, and even cohesive metrics will not identify
such code to be extracted to a function. That’s why experiments among human developers are
important as well, and not only among automatic tools. In this research we will try to check if
these statements are applied among nowadays developers.

10

C
h

a
p

t
e

r 3
Research Questions

Is there an ideal length of functions? If yes, what is it? This question is interesting, but
complicated. As it was introduced in the introduction, if we compare functions with
the same functionality, but with different length, the impact on the performance of the

software in such a low level change is minimal and almost non-existent in human terms. The
results of running the functions obviously will be the same since the functions are with the same
functionality. Thus, we have no empirical metric to measure the difference between the functions
in terms of quality.

So, how can we decide which length is better? We can simplify the question of ideal length
by trying to answer it with more vague answers like "long functions" and "short functions".
From this we can ask more questions like: Which functions are better? Longer or shorter? Is
there such a term "too long functions"? "Too short functions"? What are the considerations
for extracting functions? What is the most significant reason for function extraction? Would
different developers divide into functions in the same way?

In this research we will try to answer these questions. We will ask developers what they think
the answers for these questions are, and check if their answers are correlated with their actual
coding habits. In addition, we will compare the results to the related work we have introduced.

11

C
h

a
p

t
e

r 4
Methods

To answer our research questions, we decided to conduct an anonymous experiment
among developers which includes some questions and a coding task. We had to do a
lot of preparations before we did the experiment itself. We knew that we have only

"one shot" since recruiting experimenters is quite a complicated task, and if we had done the
experiment without thinking on all what we wanted to achieve, we could have lost all our
experimenters. In addition, we had to think of ways we are going to analyse the results, and it
wasn’t easy since we had dozens of results and each result contains hundreds of code lines.

4.1 Code for Refactoring Experiment

Our goal was to see how different developers arrange their code and if there is any dependency
between their design and their background and profile. It’s a non trivial experiment and is
quite hard to implement, because if we just give them a programming assignment that includes
enough logic to get different designs, it’s a lot of work, and they can come up with very different
designs that are hard to compare. That’s why we decided to start from a given code-base
and just ask them to refactor. At first, we wanted to do the experiment by looking at the
way the experimenters partitioning a given code to modules. The given code was supposed to
be a designed and refactored code which was converted, manually by us, to a monolith. The
experimenters needed to redesign and refactor it as they think best. We can then compare their
designs to each other, and to the original design.

Since Java is an object-oriented language, we considered it as a good fit for this task, because
a small project with a few classes can be converted to one class monolith, and the experiment
will be a refactoring of this monolith. We started to search for a java project we can do the
experiment on. We see a high value in a code which was being used in the industry, therefore we
looked for a "real" code in open-source projects in GitHub. Our goal was to find code which is
long enough to allow different results among the experimenters and is short enough to complete

12

the experiment in 20-30 minutes. We couldn’t find such code. Some of the reasons were the
fact that the code was too big, and the classes were too interdependent. We couldn’t find a
break-point where we can cut the chain of the dependencies to make the code self contained.
Eventually we decided to use an academic project. We found a project of an ATM that included
5 classes:

1. ATM

2. Account

3. Bank

4. Transaction

5. User

In this kind of project our challenge was to find a way to convert it to a monolith with as few
as possible changes, to keep it as similar as possible to the original project. At first, we needed
to remove the classes. The challenge was to find a way to represent the fields, the methods and
the data that was stored in the classes. We decided to do that by creating a database which was
represented by an array of arrays, and the deepest array represented the object with its fields.
Each field had its unique index in the array, and the index was defined with a constant to make
it easier to understand the order of the fields in the array.

After we had finished creating the monolith, we sent it to 4 experimenters in order to
understand if it satisfies our experiment requirements. We mostly checked the variety of the
results, and the time it took to finish the experiment. The conclusion was that from the time
perspective it does satisfies our experiment requirements, but from a variety of other perspectives
it doesn’t. Although there was some variety between the results, it was not significant. All the
experimenters created 4-5 classes with almost the same responsibility and almost the same
names.

After that pilot, we decided to leave the idea of making a monolith from classes and try to
make it from functions. The concept was almost the same - take some functions and convert
them to one big function, kind of a monolith. In this way, we can significantly increase the variety
of the results by increasing the number of functions, and not be worried about the time it will
take, because the functions are potentially much smaller than classes. We called the procedure
of converting the code from many functions to one function "flattening".

Since Python is a more procedural language than Java, we decided to search for a suitable
code in Python. After we found such a code, we did the same pilot and sent again the experiment
to 4 developers. The results we received were much better both from time consuming and from
variety perspectives. The code we chose is from file "BaseAdapter.py" in "Requests" http python
library [21]. Requests allows to send HTTP/1.1 requests easily.

13

4.2 Code Flattening

The code was flattened manually in the following way:

1. One function was chosen to be the main function("send"): This function was the biggest
function in the original code as well. In the original code it included the main logic with
all the smaller functions which were called from this function.

2. Every function which was only defined, but not called, was removed: There were some
functions in the original code which were only defined but were called from another classes.
We decided to remove them since we wanted the experiment code to be a one class code
which is short enough for such an experiment.

3. Every function call line was replaced with the function definition: The code needed to be
functionless, so to achieve this we inlined all the functions by replacing each function call
by its code. The names of the function’s arguments were replaced with the names of the
arguments the function was called with.

4. All not related classes were removed: There were some additional classes which were only
defined but not used. We remove them to prevent the code from being too long.

5. A function with ambiguous name was renamed to a different name: There was one
function in the original code which was defined with the same name as a different function
from a different module, and both functions were called in the code. To prevent the
experimenters from being confused, and to give the scripts a way to differentiate between
those two functions, we renamed the function which was defined in the code from "send"
to "send_the_request".

6. All the comments remained as they are, except the description comments of the inlined
functions: The comments in the original code which were added by its developers and
described some flows in the code and the main function definition, remained as they are.
We wanted the experimenters to refactor as real a code as possible, and comments is
something that can be found in almost every code in the industry. However, the comments
that described the inlined functions [3] were removed, since there was no a suitable place
for them. If we were to write them above the code of the inlined functions, it could cause
the experimenters to extract functions below these comments.

7. All the third-party functions calls remained as they are: Any function that was called from
another module, remained as it is. We didn’t replace literally all the functions calls in the
code with their definition code, since it’s not what we wanted to achieve. We wanted the
experimenters to refactor a code in a specific context, and not in such large context as all
the python language. We wanted to illustrate a code which was written in some company
by some developer in a monolith design. Such code must contain third-party functions
calls.

14

4.3 Ethics

To do this experiment we finished the "CITI Program" course of "Social & Behavioral Research -
Basic/Refresher" under requirements set by the Hebrew University and got an IRB approval
for the experiment. We informed the experimenters that the experiment and the questions
are not mandatory, they can quit the experiment whenever they want, and that there is no
personal information collected - The experiment is completely anonymous. We provided to
the experimenters an introduction page in which we wrote all the notes mentioned above and
informed them that by moving to the next page they agree with these conditions [Figure 4.1].

4.4 Experiment

The experiment was created with "Google Forms", but since "Google Forms" does not allow
to upload files anonymously (It requires to log in to upload, and the email of the uploader is
marked in the results), and the experiment required the experimenters to upload files, we used
the services of "Formfacade" which integrates with "Google Forms" and allows to add more
functionalities that one of them is the ability to upload files anonymously. Additional service
of "Formfacade" we used is the website creation from the form. It didn’t give us additional
functionality for the experiment, but it was much more beautiful and convenient to distribute it
like that. The form contained an introduction [Figure 4.1] and 3 sections:

Figure 4.1: Experiment introduction

15

4.4.1 Background Questions

questions related to the experimenter background, such as age, programming education, develop-
ment experience, etc.

4.4.2 Code Assignment

The experimenters got the code as a link to "GitHub" and needed to download it and open it
with their preferable IDE. After they finished, they needed to make a zip file of their code and
upload it. The instructions are in Figure 4.2.

Figure 4.2: Experiment instructions

4.4.3 Questions About the Code Assignment

Questions related to the code assignment the experimenters needed to do, such as refactoring
considerations, importance of refactoring methods, etc.

4.4.4 Experiment Execution

The link to the website we created was sent to everyone we know that is familiar in some
way with programming. In addition, the experiment was published in "Reddit.com" forum, in
"r/SoftwareEngineering" and "r/Code". We wanted the experimenters to be as varied as possible.

The following graphs display the results of the experimenters’ background distribution:

16

Figure 4.3: Experimenters’ age distribution

Figure 4.4: Experimenters’ development experience distribution

Figure 4.5: Experimenters’ development environment distribution

17

Figure 4.6: Experimenters’ development language distribution

Figure 4.7: Experimenters’ programming education distribution

Figure 4.8: Experimenters’ role distribution

18

Figure 4.9: Experimenters agile development distribution

The number of responses varies because the questions in the experiment are not mandatory,
and every experimenter can choose if he answers the question or not. In total there were 34
responses, but since 11 of them didn’t include the code submission, they were removed from the
experiment.

4.5 Scripts for Analysing the Results

Since there were too many results for manual analysis to be accurate enough, we developed 10
scripts that clean, align, and analyze the results. Most of the analyses were done with regex
matchers. Some of the scripts we developed are the following:

4.5.1 Stripping Script

The script strips the results from the irrelevant code parts such as whitespaces and blank lines.
The purpose of this script is to align all the results and make them comparable by changing
only the way the code was written, but not the content. Every developer has his own way to
write code, and since the scripts are automatic, every whitespace, empty line, etc. can make two
completely identical results to look different. The script works in the following way:

1. Removes all the import statements: The script runs over all the lines and checks each line
if it starts with "from" or "import". If it does, the line is removed.

2. Removes all the comment lines: The script runs over all the lines and checks each line if it
starts with <"""> or "#". If the line starts with "#", the line is removed. If the line starts
with <"""> the line and every line after it are removed until there is another line that
starts with <""">.

19

Figure 4.10: Example of lines that starts with ’#’

Figure 4.11: Example of lines that starts with <""">

3. Removes all the spaces between lines: The script runs over all the lines and checks if the
line is an empty line. If it is, the line is removed.

Figure 4.12: Example of lines with spaces between them

4. If a line was divided to multiple lines, the script joins them to one line: The script runs
over all the lines and checks if there is an opening bracket "(" but no closing one ")". In
this case, every line after that is concatenated to the line until there is a line with a closing
bracket.

20

Figure 4.13: Example of line that divided to multiple lines

5. Removes all the white spaces at the beginning and at the end of each line: The script runs
over all the lines and checks each line if it has white spaces at the beginning or at the end.
If it does, these white spaces are removed. Since Python is a language where the white
spaces are part of the syntax, this step must be done at the end. The purpose of this step
is to make the comparison between the lines much easier.

4.5.2 Comparing Lines Script

The results were compared to the original code. This comparison was completely based on
comparing lines. For instance, to identify which part of the experimenter’s code was originally in
a function, we needed to compare each line in the experimenter’s code to the original code. At
first, we compared between the lines just by using the Python "==" operator after we cleaned
the white spaces, but it was not good enough. We had a lot of cases where the experimenter
just changed the variable name, changed the argument name the function receives or just added
underscore. This is only a small part of the cases we missed by comparing with the "==" operator.

Because of these problems, we moved to a different comparing method – "SequenceMatcher"
from "difflib" Python library. By using this method, we could choose the similarity threshold,
and all that was left was to find the best threshold to consider lines with small changes as equal,
and completely different lines as unequal. The threshold we used for comparing lines was 0.95.
The threshold for finding lines that were in the original code but were not in the results (lines
that were not kept) was 0.75. (Will be explained in Section 5.6).

4.5.3 Functions Extractor Script

To even start talking about code refactoring and dividing it to functions we need first to extract
the functions from the results. This script runs over all the lines in each submitted result,
and extract the functions names and lines. The script retrieves the functions by counting the
indentations and looking for the "def" word which defines a start of a function. It’s done with
the help of regex matchers. In more details - the script runs over all the lines and checks each
line if it starts with "def ". If it does, the string after that and before the character "(" is taken as
the name of the function. The number of white spaces before that is counted, and after that line
the white spaces of each line are counted. As long as the number of white spaces is greater than
the number of white spaces counted before the "def ", this line is taken as part of the function.

21

4.5.4 Functions Range Script

This script retrieves from the original code the range of lines that a given function was extracted
from. At first, this script retrieves the lines themselves from a given function by using the script
above [4.5.3]. After that, the line which starts the function is checked for its line number in the
original code. If the line does not appear in the original code, the next line is checked. This
process continues until a line appears in the original code. After that, the line which ends the
function is checked for the line number in the original code in the same process. If the line does
not appear in the original code, the previous line is checked until a line appears in the original
code. At the end, the range is determined by these lines. In total, there were 61 ignored lines out
of 142 functions. Most of the ignored lines (57) were the "return" lines which ended the defined
functions. Obviously, these lines did not appear in the flattened code, because the flattened code
contained only one main function. The remaining 4 lines were ignored due to extreme changes
that were made by the experimenters or completely new lines the experimenters decided to add.

4.5.5 Order Change Script

This script checks if the lines’ order was changed in relation to the original code. It’s worth
mentioning that the script does not check the order of the lines execution, but only their
appearance order. At first, the script extracts all the functions in a submitted result with the
help of the functions extractor script [4.5.3]. After that, the script runs over all the functions
and for each function checks if there are 2 lines which appear in different order than they appear
in the original code. This is done by looking at every pair of successive lines, retrieving their
lines numbers in the original code, and validating that those numbers are also in the same order
relation as the lines in the function. If the test fails, the script determines that the order was
changed. If such lines were not found, the script determines that the order was not changed.

4.6 Manual Analysis

A manual scanning of the results was done. In this scanning we analysed the results and tried
to find some patterns. We analysed the results by looking at the results from the scripts and
analyse them in the code itself. We did that for two main purposes:

1. Verify the scripts: we wanted to do some manual testing to make sure the scripts are
accurate.

2. Looking for patterns that can’t be seen in the scripts: We tried to retrieve more infor-
mation about the function extraction by understanding what the experimenters’ main
considerations for the refactoring were.

22

C
h

a
p

t
e

r 5
Results

We analysed the coding task results both manually and automatically with scripts.
Since our research questions are very complicated and vague as we have described
in the introduction, we tried to analyse the results from as many as possible angels

to get as much as possible information to compare. In addition, we also analysed the answers to
the questions we have asked the experimenters. This chapter shows graphs of the results. The
next chapter contains discussions of these results.

23

5.1 Histogram - Function Length

Figure 5.1: Histogram of function length

This histogram shows how long were the functions the experimenters chose to extract from the
flattened code. This histogram was calculated regardless the experimenters themselves, that is
there is no reference to the function owner. The main function was ignored. This is discussed
below in section 6.4

24

5.2 Histogram - Number of Functions

Figure 5.2: Histogram of number of functions

This histogram shows how many functions the experimenters chose to extract from the flattened
code. This histogram was calculated by counting the number of functions each experimenter
extracted. The main function was ignored. This is discussed below in section 6.5

25

5.3 Histogram - Lines That Start Function

Figure 5.3: Histogram of lines that start function

This histogram was calculated by taking the flattened code as a reference, that is the number of
each line that was found as a starting function line in the results, was determined by looking
for its line number in the flattened code. If a line was not found in the flattened code, it was
ignored. In this histogram there were no ignored lines. This is discussed below in section 6.1

26

5.4 Histogram - Lines That Start and End Function

Figure 5.4: Histogram of lines that start and end function

This histogram was calculated by taking the flattened code as a reference, that is the number of
each line that was found as an ending function line or starting function line in the results, was
determined by looking for its line number in the flattened code. If a line was not found in the
flattened code, it was ignored, and the closest line that was found was chosen, as described in
the functions range script [4.5.4]. This script was used to create this histogram - the lines that
start and the lines that end the functions were taken from the range created by the script. This
is discussed below in section 6.1

27

5.5 CDF - Part of Code in Functions

Figure 5.5: CDF of lines of code in functions

This CDF shows the part of code in percentages that was extracted to functions. This CDF was
calculated by taking each result, counting the number of lines in functions (Except the main
function) divided by the total number of lines, and multiplied by 100. From this data a CDF
was created. Three main gaps were marked to be discussed below in section 6.3

28

5.6 Graph - Flattened Code in Functions Visualization

Figure 5.6: Visualization of functions locations related to the flattened code

This visualization shows the functions locations related to the flattened code. Every yellow block
represents a function, and the red lines represent the code that was not extracted to a function.
Even functions inside another function can be seen easily. The black spots represent the lines
that were in the results but didn’t appear in the original flattened code, meaning these lines were
replaced by new lines or were changed too drastically to allow the comparator to find them in
the original code. The results are sorted by the part of its code that was extracted to functions.
The part of code in percentages that was extracted to functions is shown in the right Y axis.
The original code is marked with the blue color. This is discussed below in section 6.3

5.7 Code Order Change Indicator

Only in result 19 the order of 1 line was changed. There is no explanation we could think of why
it has been done.

29

5.8 Coding Opinion Questions

After the code assignment the experimenters were asked questions about refactoring methods
and function extractions. Here are the Experimenters’ responses to these questions:

Figure 5.7: Familiarity with the "clean code" discipline distribution

Figure 5.8: The agreement level with "clean code" discipline
1 - Don’t agree at all, 5 - Enthusiastically agree

30

Figure 5.9: The ideal length of function

31

What were your main considerations when you extracted new functions?
(1 - Not important, 5 - Very important)

Consideration Mean Histogram

1 Making each function’s
logic cohesive

4.62

2 Making each function
do only one thing

4.10

32

3 Separating code control
blocks

3.93

4 Making functions easily
testable

3.89

5 Following design pat-
terns

3.41

33

6 Not needing to pass too
many arguments

3.10

7 Making functions as
short as possible

2.72

8 Making each function
close to the ideal length

2.65

Table 5.1: Main considerations for function extraction

34

Figure 5.10: Different refactoring after being exposed to the questions

35

C
h

a
p

t
e

r 6
Discussion

After analysing all the results we retrieved from the scripts, the manual analysis and
the answers to the questions the experimenters have provided, we can conclude some
conclusions.

6.1 Function Extraction

Our conclusion is that the main triggers for extracting a function are the "if" and "try" statements.
As we can see in figure 5.3, most of the functions were extracted after these statements. We
believe that there is some effect of the language syntax, since python is a language that is based
on indentations, and when developers see a start of a new block of code, it may indicate to them
to extract a function. When we look what was the trigger to end a function, our conclusion is
that the main trigger for that was the same as starting a function – the end of an "if" or "try"
block. In this case we also believe that there is a language syntax impact. Ending of a block of
code can also indicate to end a function.

We also believe that extracting functions only by looking at blocks of code is the easiest
way to extract (As we can see in the Reddit comments [appendix B]). It doesn’t even require
the experimenters to understand the code’s logic, and since our experimenters were anonymous
and were not paid for their time, we believe that they looked for the shortest path to do the
experiment.

6.2 Considerations for Function Extraction

As we can see in Table 5.1, the most popular consideration was the "Making each function’s logic
cohesive" with an average score of 4.62/5. The consideration that fits to our conclusion discussed
in section 6.1 is the third most popular consideration - "Separating code control blocks" with an
average score of 3.93/5. We can’t really measure the actual difference in the importance between

36

these two considerations by looking in the results themselves, because "Making each function’s
logic cohesive" is a quite abstract consideration that can’t be compared to the "Separating code
control blocks" consideration that measured just by counting the lines that started a function
after a statement that starts a new block of code. Because of that we do see a good fit of our
conclusions to the experimenters’ answers abut their considerations.

6.3 Code in Functions

As we can see in figure 5.5 and in figure 5.6 the majority of the experimenters extracted more
than 70% of their code to functions. As we see it, on the one hand there is an understanding
that code should be divided to functions and not be a part of a big main function, but on the
other hand we think that there is a small bias that comes from the definition of the experiment.
The instructions were to extract functions, and it might cause the experimenters to look only
for function extraction. In addition, if we compare the results to the original code, the original
code has only 51% of the code in functions, and it’s placed in the fifth place from the end in this
parameter, and that reinforces the conjecture that there may be a bias because of the experiment
definition.

In figure 5.5 we mark three areas where the gap in the percentages was the biggest. These
gaps represent the cases where all the function extractions before the gap are almost identical,
but from this point the change is much more significant.

The first gap is the 56% to 67% change. We can see that most of the results below this gap,
don’t include any functions in the line range of 80-90. Only 2 of 8 results include functions in
this area, compared to 3 of 8 results between the second and the third gap, and 8 of 8 results
above the third gap. In total 11 of 16 results above the first gap have at least one function in
this area. One more area to look at is the line range of 105-130. Only 3 of 8 results below the
first gap include functions in this area, compared to 6 of 8 results between the second and the
third gap, and 8 of 8 results above the third gap. In total 14 of 16 results above this gap have
at least one function in this area. These parts of code contain quite a long error handling part,
which includes three "try-except" blocks in total [Figure 6.1].

In the second gap, we can see that again the most significant part of the code that is different,
is the same error handling code, that this time all of it was in one big function, and not just
parts of it. The main difference between the gaps is which "try" block the experimenters chose
to extract to a function, and whether the whole error handling code should be in one function,
separated to several functions or not to be in a function at all.

We can see that most of the experimenters who submitted the results below the first gap,
chose to extract only the code in the second "try-except" block to a function, while most of the
experimenters who submitted the results between the second and the third gap chose to include
also the code inside the first "try" block (without the except block) into a function, and most of
the experimenters who submitted the results above the third gap chose to include the whole
"try-except" block, from the first one, into a function (include the except block).

37

In our opinion, the main reason for that is the fact that indeed there are different ways and
designs to handle errors. Some believe that all the error handling logic should be handled with
functions, and others believe that it should be one long code that handle all the errors together.
It is worthwhile to mention that in the original code, this error handling part was not extracted
to a dedicated function.

Figure 6.1: Error handling code - flattened and stripped
Purple box - first try-except block

Turquoise box - second try-except block
Red box - third try-except block

38

Figure 6.2: Error handling code - original code
Purple box - first try-except block

Turquoise box - second try-except block
Red box - third try-except block

39

6.4 Functions Length

As we can see in figure 5.1 most of the functions are of length 5-30 lines of code (80%), and 55%
of the functions are of length 10-14. One of our goals was to check if there is an ideal length of
function, and we actually asked the experimenters that question as it appears in figure 5.9. As
we can see most of the answers were that there is no ideal length of function, but from those
who did respond most of the responses were 20-30 lines of code. The result we see in figure 5.1
is even shorter than the ideal length the experimenters stated in the question they were asked
in the experiment. So, there is a correlation between the responses and the results, and it also
agrees with the no more than 20 lines suggested by Martin in Clean Code [C M08, p. 34].

6.5 Number of Functions

As we can see, every experimenter extracted at least 3 functions and 56% of them extracted
more than 5 functions. The number of functions is corelated in some way to the functions length,
since it’s obvious that shorter functions increase the chance for more functions to be extracted.

6.6 Clean Code

As we can see in Martin’s Clean Code book [C M08, p. 34], there is a quite clear statement
about functions length - they should be as small as possible. That can affect the results as 60.9%
of the experimenters answered that they are familiar with this discipline, so it might be the
reason for the fact that 80% of the functions were 10-30 lines of code, and 55% were 10-14 lines
of code. It fits to the Martin theory.

However, as we saw in the experimenters answers, "making function as short as possible"
and "making each function close to the ideal length" were the two least important considerations
for function extraction [Table 5.1], meaning the experimenters believe that small functions and
ideal functions length are not as important as at least 6 other considerations we exposed them
to, but in fact they do extract small functions. It’s a quite interesting result, because it means
the experimenters extracted small functions unintentionally, and we might carefully deduce that
nowadays developers extract small function as part of their coding skills. Also possible that
other considerations, like keeping the logic cohesive and doing just one thing, naturally lead to
shorter functions. So short functions are not an end in themselves, but they happen to be the
solution to other goals.

40

C
h

a
p

t
e

r 7
Threats to validity

As we have introduced so far, it’s quite hard to answer our research questions, let alone
make an empirical experiment that will provide the answers. Thus, as in any experiment,
we had some difficulties and threats to validity of our results. The following threats

are the most significant ones.

7.1 Bugs

There might be scenarios where the scripts don’t work as expected, for example: wrong line
classification, wrong function detection, wrong lines comparison, etc. Obviously, all these cases
have bad impact on the results and the results can be unreliable. To reduce these cases, we
made several manual validation cycles. Since the number of results is not too big (23) we could
manually validate all the results just by comparing the scripts’ results to the actual code. Figure
5.6 contains the logic of all the scrips, that is it summarizes all the functions per experimenter -
shows the number of functions per experimenter, the functions length, the start and the end of
the functions, and functions location in relation to the flattened code. Once we validated this
figure manually, we covered all the cases, and it means the scripts work as expected with very
high probability.

7.2 Non-diverse Experimenters

We tried to find experimenters as diverse as we could. We reached students without experience,
students with experience, experienced developers, different roles, different educations, different
ages. The experiment is quite long and requires some time to participate, so finding experimenters
and making sure they are very diverse was not so easy.

41

7.3 The Context of the Experiment

Refactoring and function extraction is the context of the experiment and not just writing code.
It definitely affects the results, since the main goal of the experimenters is to extract functions
and refactor. To overcome this threat, the experiment should be much longer, and the context
should be to write a program from the beginning without any limitations. But in the scope of
our research, it was not possible, since the experimenters were not paid for their effort, and it
was not possible to recruit experimenters that will invest so much time and effort without being
paid for that.

7.4 Lack of Generality

We did this experiment only on 1 function, so the question if it represents all the cases and if
we can look on it as a general case is nontrivial. If we could do a much bigger experiment with
much more experimenters, we could overcome this threat by using more than 1 function in the
experiment.

7.5 The Number of Experimenters

We recruited only 33 experimenters of which only 23 did also the code assignment. It’s not many
results, and because of that the results may have a lot of bias, making conclusions is much more
complicated and the conclusions themselves might not be accurate enough.

7.6 Experiment Environment

The experiment environment is different from the real developing environment. The goals are
different, the lack of authority in the experiment environment, as well as the lack of incentives
in the experiment environment and the anonymity effect can cause the experimenters to want
to finish the experiment as fast as possible without investing enough time for quality. The
conclusion is maybe to pay developers for such experiments.

42

C
h

a
p

t
e

r 8
Conclusions

In this study we tried to answer some quite difficult questions like if there is an ideal length
of functions, what are the consequences of too short or too long functions, what are
the considerations to extract functions and if there is a difference between developers’

statements and their actual actions. To answer these questions, we decided to make an empirical
experiment with the hope that it will provide us some results that will help us to answer our
questions.

Since the experiment involves people, obviously the results cannot be the same among all
the experimenters, but we still can deduce conclusions if we will look for patterns and focus
on the most common results. To prepare our experiment we first found a very common library,
took from there one of the classes and flattened it to one big function. After that, we looked for
diverse experimenters and asked them to refactor this one big function. In addition, we asked
the experimenters to answer some questions related to their background and on the task itself.

We analysed the results in many different ways and from many angles. There are a lot of
conclusions that can be deduced from our analysis, but we focused on the functions length and
the considerations for function extraction. We found that most of the experimenters extracted
small functions as it was described in the "Clean Code" book, and the main reason for the
extraction was the code structure. It also fits the answers we have got from the experimenters’
questions where most of them answered that they think functions should be small. We believe
that we found the answers to our questions, and they met our expectations.

We also found out that in most of the results the code part that was in functions was bigger
than in the original code. It probably was due to the fact we asked them explicitly to extract
functions, but it can also be deduced from this that speaking with developers about functions
length may spur them to extract small functions. This can be studied in future experiments.

Of course, there were some threats to validity as we have described, but we still believe
that even if we had overcome these threats, the answers would have been the same. We believe
that in addition to the results we have got, we produced some very good methods to analyse

43

such complicated term as "software design" and written code. We developed a lot of scripts that
analysed the written code in many ways such as functions length, the start and the end of the
functions related to the original code, lines that start and end functions, order changes, lines in
functions related to the whole code, and many more. Since this kind of experiments are almost
non-existent, we hope our study and our methods will encourage additional experiments in this
field.

More complicated experiments can be done in order to overcome the threats to validity
we have introduced. For example, more experimenters can be recruited to do the experiment,
experimenters can be paid for the participation in the experiment, a different programming
language can be chosen, different environment can be chosen to do the experiment, for example
do the experiment as part of the regular development routine in existing product, and more.

44

A
p

p
e

n
d

ix A
The original flattened code

The following code is the flattened [4.2] stripped [4.5.1] code, that is the aligned code
that all the submitted results were compared to.

45

Figure A.1: The original flattened code

Page 1 of 4

def send_request(self, request, stream=False, timeout=None
, verify=True, cert=None, proxies=None):

1

try:2
proxy = select_proxy(request.url, proxies)3
if proxy:4
proxy = prepend_scheme_if_needed(proxy, 'http')5
proxy_url = parse_url(proxy)6
if not proxy_url.host:7
raise InvalidProxyURL("Please check proxy URL. It is
malformed"" and could be missing the host.")

8

if proxy in self.proxy_manager:9
proxy_manager = self.proxy_manager[proxy]10
elif proxy.lower().startswith('socks'):11
username, password = get_auth_from_url(proxy)12
proxy_manager = self.proxy_manager[proxy] =
SOCKSProxyManager(proxy,username=username,password=
password,num_pools=self._pool_connections,maxsize=self.
_pool_maxsize,block=self._pool_block)

13

else:14
proxy_headers = {}15
username, password = get_auth_from_url(proxy)16
if username:17
proxy_headers['Proxy-Authorization'] = _basic_auth_str(
username, password)

18

proxy_manager = self.proxy_manager[proxy] = proxy_from_url
(proxy,proxy_headers=proxy_headers,num_pools=self.
_pool_connections,maxsize=self._pool_maxsize,block=self.
_pool_block)

19

conn = proxy_manager.connection_from_url(request.url)20
else:21
parsed = urlparse(request.url)22
url = parsed.geturl()23
conn = self.poolmanager.connection_from_url(url)24
except LocationValueError as e:25
raise InvalidURL(e, request=request)26
if request.url.lower().startswith('https') and verify:27
cert_loc = None28
if verify is not True:29
cert_loc = verify30
if not cert_loc:31
cert_loc = extract_zipped_paths(DEFAULT_CA_BUNDLE_PATH)32
if not cert_loc or not os.path.exists(cert_loc):33
raise IOError("Could not find a suitable TLS CA
certificate bundle, ""invalid path: {}".format(cert_loc))

34

conn.cert_reqs = 'CERT_REQUIRED'35

46

Page 2 of 4

if not os.path.isdir(cert_loc):36
conn.ca_certs = cert_loc37
else:38
conn.ca_cert_dir = cert_loc39
else:40
conn.cert_reqs = 'CERT_NONE'41
conn.ca_certs = None42
conn.ca_cert_dir = None43
if cert:44
if not isinstance(cert, basestring):45
conn.cert_file = cert[0]46
conn.key_file = cert[1]47
else:48
conn.cert_file = cert49
conn.key_file = None50
if conn.cert_file and not os.path.exists(conn.cert_file):51
raise IOError("Could not find the TLS certificate file, ""
invalid path: {}".format(conn.cert_file))

52

if conn.key_file and not os.path.exists(conn.key_file):53
raise IOError("Could not find the TLS key file, ""invalid
path: {}".format(conn.key_file))

54

proxy = select_proxy(request.url, proxies)55
scheme = urlparse(request.url).scheme56
is_proxied_http_request = (proxy and scheme != 'https')57
using_socks_proxy = False58
if proxy:59
proxy_scheme = urlparse(proxy).scheme.lower()60
using_socks_proxy = proxy_scheme.startswith('socks')61
url = request.path_url62
if is_proxied_http_request and not using_socks_proxy:63
url = urldefragauth(request.url)64
self.add_headers(request, stream=stream, timeout=timeout,
verify=verify, cert=cert, proxies=proxies)

65

chunked = not (request.body is None or 'Content-Length' in
 request.headers)

66

if isinstance(timeout, tuple):67
try:68
connect, read = timeout69
timeout = TimeoutSauce(connect=connect, read=read)70
except ValueError as e:71
err = ("Invalid timeout {}. Pass a (connect, read) "72
"timeout tuple, or a single float to set "73
"both timeouts to the same value".format(timeout))74
raise ValueError(err)75
elif isinstance(timeout, TimeoutSauce):76

47

Page 3 of 4

pass77
else:78
timeout = TimeoutSauce(connect=timeout, read=timeout)79
try:80
if not chunked:81
resp = conn.urlopen(method=request.method,url=url,body=
request.body,headers=request.headers,redirect=False,
assert_same_host=False,preload_content=False,
decode_content=False,retries=self.max_retries,timeout=
timeout)

82

else:83
if hasattr(conn, 'proxy_pool'):84
conn = conn.proxy_pool85
low_conn = conn._get_conn(timeout=DEFAULT_POOL_TIMEOUT)86
try:87
low_conn.putrequest(request.method,url,
skip_accept_encoding=True)

88

for header, value in request.headers.items():89
low_conn.putheader(header, value)90
low_conn.endheaders()91
for i in request.body:92
low_conn.send(hex(len(i))[2:].encode('utf-8'))93
low_conn.send(b'\r\n')94
low_conn.send(i)95
low_conn.send(b'\r\n')96
low_conn.send(b'0\r\n\r\n')97
try:98
r = low_conn.getresponse(buffering=True)99
except TypeError:100
r = low_conn.getresponse()101
resp = HTTPResponse.from_httplib(r,pool=conn,connection=
low_conn,preload_content=False,decode_content=False)

102

except:103
low_conn.close()104
raise105
except (ProtocolError, socket.error) as err:106
raise ConnectionError(err, request=request)107
except MaxRetryError as e:108
if isinstance(e.reason, ConnectTimeoutError):109
if not isinstance(e.reason, NewConnectionError):110
raise ConnectTimeout(e, request=request)111
if isinstance(e.reason, ResponseError):112
raise RetryError(e, request=request)113
if isinstance(e.reason, _ProxyError):114
raise ProxyError(e, request=request)115

48

Page 4 of 4

if isinstance(e.reason, _SSLError):116
raise SSLError(e, request=request)117
raise ConnectionError(e, request=request)118
except ClosedPoolError as e:119
raise ConnectionError(e, request=request)120
except _ProxyError as e:121
raise ProxyError(e)122
except (_SSLError, _HTTPError) as e:123
if isinstance(e, _SSLError):124
raise SSLError(e, request=request)125
elif isinstance(e, ReadTimeoutError):126
raise ReadTimeout(e, request=request)127
else:128
raise129
response = Response()130
response.status_code = getattr(resp, 'status', None)131
response.headers = CaseInsensitiveDict(getattr(resp, '
headers', {}))

132

response.encoding = get_encoding_from_headers(response.
headers)

133

response.raw = resp134
response.reason = response.raw.reason135
if isinstance(request.url, bytes):136
response.url = request.url.decode('utf-8')137
else:138
response.url = request.url139
extract_cookies_to_jar(response.cookies, request, resp)140
response.request = request141
response.connection = self142
return response143

49

A
p

p
e

n
d

ix B
Reddit comments

The following Reddit comments are the comments we have got after posting the experiment
in Reddit.

50

Figure B.1: Reddit comments

51

Bibliography

[C M08] Robert C. Martin.
Clean code.
1st ed.
Massachusetts: Pearson Education, Inc., 2008
(Cit. on pp. 6, 8, 10, 40).

[CAA15] Sofia Charalampidou, Apostolos Ampatzoglou, and Paris Avgeriou.
“Size and cohesion metrics as indicators of the long method bad smell: An empirical
study”.
In: PROMISE ’15: Proceedings of the 11th International Conference on Predictive
Models and Data Analytics in Software Engineering.
2015,
Pp. 1–10.
doi: https://doi.org/10.1145/2810146.2810155

(Cit. on p. 9).

[Cha+18] Sofia Charalampidou, Elvira-Maria Arvanitou, Apostolos Ampatzoglou, Paris Avge-
riou, Alexander Chatzigeorgiou, and Ioannis Stamelos.
“Structural Quality Metrics as Indicators of the Long Method Bad Smell: An Empir-
ical Study”.
In: 2018 44th Euromicro Conference on Software Engineering and Advanced Appli-
cations (SEAA).
2018.
doi: https://doi.org/10.1109/SEAA.2018.00046

(Cit. on p. 9).

[D B+93] Rajiv D. Banker, Srikant M. Datar, Chris F. Kemerer, and Dani Zweig.
“Software complexity and maintenance costs”.
In: Communications of the ACM 36.11 (1993)
(Cit. on p. 9).

[FB18] Martin Fowler and Kent Beck.
Refactoring.
2nd ed.
Addison-Wesley Professional, 2018
(Cit. on p. 3).

52

https://doi.org/https://doi.org/10.1145/2810146.2810155
https://doi.org/https://doi.org/10.1109/SEAA.2018.00046

[KF91] Geoffrey K. Gill and Chris F. Kemerer.
“Cyclomatic Complexity Density and Software Maintenance Productivity”.
In: IEEE Transactions on Software Engineering 17.12 (1991), pp. 1284–1288.
doi: https://doi.org/10.1109/32.106988

(Cit. on p. 9).

[Lan+15] Davy Landman, Alexander Serebrenik, Eric Bouwers, and Jurgen J. Vinju.
“Empirical analysis of the relationship between CC and SLOC in a large corpus of
Java methods and C functions”.
In: Journal of Software: Evolution and Process 29.10 (2015).
doi: https://doi.org/10.1002/smr.1760

(Cit. on p. 9).

[Leh96] M. M. Lehman.
“Laws of software evolution revisited”.
In: Software Process Technology.
Ed. by Carlo Montangero.
Springer Berlin Heidelberg, 1996,
Pp. 108–124.
doi: https://doi.org/10.1007/BFb0017737

(Cit. on p. 3).

[Mar01] Katsuhisa Maruyama.
“Automated method-extraction refactoring by using block-based slicing”.
In: ACM SIGSOFT Software Engineering Notes 26.3 (2001), pp. 31–40.
doi: https://doi.org/10.1145/379377.375233

(Cit. on p. 9).

[MB07] Timothy M. Meyers and David Binkley.
“An empirical study of slice-based cohesion and coupling metrics”.
In: ACM Transactions on Software Engineering and Methodology 17.1 (2007), pp. 1–
27.
doi: https://doi.org/10.1145/1314493.1314495

(Cit. on p. 9).

[Par72] D.L. Parnas.
“On the Criteria to Be Used in Decomposing Systems into Modules”.
In: Pioneers and Their Contributions to Software Engineering.
Springer Berlin Heidelberg, 1972.
doi: https://doi.org/10.1007/978-3-642-48354-7_20

(Cit. on p. 2).

[TC11] Nikolaos Tsantalis and Alexander Chatzigeorgiou.
“Identification of extract method refactoring opportunities for the decomposition of
methods”.

53

https://doi.org/https://doi.org/10.1109/32.106988
https://doi.org/https://doi.org/10.1002/smr.1760
https://doi.org/https://doi.org/10.1007/BFb0017737
https://doi.org/https://doi.org/10.1145/379377.375233
https://doi.org/https://doi.org/10.1145/1314493.1314495
https://doi.org/https://doi.org/10.1007/978-3-642-48354-7_20

In: Journal of Systems and Software 84.10 (2011), pp. 1757–1782.
doi: https://doi.org/10.1016/j.jss.2011.05.016

(Cit. on p. 9).

[YKI12] Norihiro Yoshida, Masataka Kinoshita, and Hajimu Iida.
“A cohesion metric approach to dividing source code into functional segments to
improve maintainability”.
In: European Conference on Software Maintenance and Reengineering.
2012.
doi: https://doi.org/10.1109/CSMR.2012.45

(Cit. on p. 9).

54

https://doi.org/https://doi.org/10.1016/j.jss.2011.05.016
https://doi.org/https://doi.org/10.1109/CSMR.2012.45

Experimental Materials

[21] The "Request" project that was used for the experiment.
2021.
url: https://github.com/psf/requests/blob/master/requests/adapters.py

(Cit. on p. 13).

[Bra21a] Alexey Braver.
The original flattened code that was given to the experimenters as the coding task.
2021.
url: https://github.com/AlexeyBraver/Program-Design-Experiment/blob/

main/Flattened.py.

[Bra21b] Alexey Braver.
The scripts we developed to analyse the results.
2021.
url: https://github.com/AlexeyBraver/Thesis-scripts.

55

https://github.com/psf/requests/blob/master/requests/adapters.py
https://github.com/AlexeyBraver/Program-Design-Experiment/blob/main/Flattened.py
https://github.com/AlexeyBraver/Program-Design-Experiment/blob/main/Flattened.py
https://github.com/AlexeyBraver/Thesis-scripts

	List of Tables
	List of Figures
	Introduction
	Software Design
	Low-Level Design Implementation
	Software Evolution and Refactoring
	Reasons for Function Extraction
	Readability
	Reuse
	Better Testing
	Code Explanation
	Understand Big Functions
	Expose API

	Dirty Code
	Clean Code

	Background and Related Work
	Clean Code - In Terms of Function Extraction

	Research Questions
	Methods
	Code for Refactoring Experiment
	Code Flattening
	Ethics
	Experiment
	Background Questions
	Code Assignment
	Questions About the Code Assignment
	Experiment Execution

	Scripts for Analysing the Results
	Stripping Script
	Comparing Lines Script
	Functions Extractor Script
	Functions Range Script
	Order Change Script

	Manual Analysis

	Results
	Histogram - Function Length
	Histogram - Number of Functions
	Histogram - Lines That Start Function
	Histogram - Lines That Start and End Function
	CDF - Part of Code in Functions
	Graph - Flattened Code in Functions Visualization
	Code Order Change Indicator
	Coding Opinion Questions

	Discussion
	Function Extraction
	Considerations for Function Extraction
	Code in Functions
	Functions Length
	Number of Functions
	Clean Code

	Threats to validity
	Bugs
	Non-diverse Experimenters
	The Context of the Experiment
	Lack of Generality
	The Number of Experimenters
	Experiment Environment

	Conclusions
	The original flattened code
	Reddit comments
	Bibliography
	Experimental Materials

