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Cooperative Games

Overview

Aims of this presentation:

• review coalitional games: representation & complexity;

• introduce qualitative coalitional games (QCGs);

• extend QCGs with preferences (QCGPs);

• consider coalitional resource games (CRGs);

• conclusions & future work.
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Cooperative Games

Coalitional Games

• A coalitional game is game where agents can benefit from
cooperating.

• Issues in coalitional games (Sandholm et al, 1999):

– Coalition structure generation:
Which coalition should I join?
The partitioning of a group of agents into coalitions, where the
overall partition is a coalition structure.

– Solving the optimization problem of each coalition:
Solving the “joint problem” of a coalition, i.e., finding the best
way to maximise the utility of the coalition itself.

– Dividing the value of the solution for each coalition:
Deciding “who gets what” in the payoff (e.g., Shapley value).
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Cooperative Games

Formalising Coalitional Games

Many models of coalitional games, but simplest is a structure:

〈Ag, ν〉

where:

• Ag = {1, . . . , n} is a set of agents;

• ν : 2Ag → R is the characteristic function of the game.

Usual interpretation: if ν(C) = k, then coalition C can cooperate in
such a way they will obtain utility k, which may then be distributed
amongst team members.
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Cooperative Games

What Coalition Should I Join?

• Most important question in coalitional games:

is a coalition stable?

that is,

is it rational for all members of coalition to stay with
the coalition, or could they benefit by defecting from it?

• Possible solutions:

– nonemptiness of the core of a coalition,

– the kernel,

– the nucleolus.
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Cooperative Games

How To Share Benefits of Cooperation?

• The Shapley value is best known attempt to define how to divide
benefits of cooperation.

The Shapley value of agent i is the average amount that i
contributes by joining a coalition, assuming all coalitions are
equally likely.

• Axiomatically: a value which satisfies axioms:

symmetry, dummy player, and additivity of games.
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Cooperative Games

Shapley Value Defined

• Let ∆i(S) be the amount that i adds by joining S ⊆ Ag:

∆i(S) = ν(S ∪ {i}) − ν(S)

. . . the marginal contribution of i to S.

• Then the Shapley value for i, denoted ϕi is:

ϕi =
1

|Ag|!

∑

r∈R

∆i(Si(r))

where R is the set of all permutations of Ag and Si(r) is the set of
agents preceding i in ordering r.
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Cooperative Games

Representing Coalitional Games

• It is important for an agent to know (eg) whether the core of a
coalition is non-empty . . .

so, how hard is it to decide this?

• Problem: naive, obvious representation of coalitional game is
exponential in the size of Ag!

• Now such a representation is:

– utterly infeasible in practice; and

– so large that it renders comparisons to this input size
meaningless: stating that we have an algorithm that runs in
(say) time linear in the size of such a representation means it
runs in time exponential in the size of Ag!
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Cooperative Games

How to Represent Characteristic Functions?

Two approaches to this problem:

• try to find a complete representation that is succinct in “most”
cases

• try to find a representation that is not complete but is always
succinct

• A common approach:

interpret characteristic function over combinatorial structure.

Wooldridge 8



Cooperative Games

Representation 1: Induced Subgraph

• Represent ν as an undirected graph on Ag, with integer weights
wi,j between nodes i, j ∈ Ag.

• Value of coalition C then:

ν(C) =
∑

{i,j}⊆Ag

wi,j

i.e., the value of a coalition C ⊆ Ag is the weight of the subgraph
induced by C.

giving v({A,B,C}) = 3 + 2 = 5

A B

C

D

3

2 4

1
A B

C

3

2

the original graph defining v subgraph induced by {A,B,C}
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Cooperative Games

Representation 1: Induced Subgraph

(Deng & Papadimitriou, 94)

• Computing Shapley:

in polynomial time.

• Determining emptiness of the core:

NP-complete

• Checking whether a specific distribution is in the core

co-NP-complete

But this representation is not complete.
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Cooperative Games

Representation 2: Weighted Voting Games

• For each agent i ∈ Ag, assign a weight wi, and define an overall
quota, q.

ν(C) =

{

1 if
∑

i∈C wi ≥ q
0 otherwise.

• Shapley value:

#P-complete, and “hard to approximate” (Deng & Papadimitriou,
94).

• Core non-emptiness:

in polynomial time.

Not a complete representation.
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Cooperative Games

Representation 3: Marginal Contribution Nets
(Ieong & Shoham, 2005)

• Characteristic function represented as rules:

pattern −→ value.

• Pattern is conjunction of agents, a rule applies to a group of
agents C if C is a superset of the agents in the pattern.
Value of a coalition is then sum over the values of all the rules
that apply to the coalition.
Example:

a ∧ b −→ 5
b −→ 2

We have: ν({a}) = 0, ν({b}) = 2, and ν({a, b}) = 7.

• We can also allow negations in rules (agent not present).
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Cooperative Games

Representation 3: Marginal Contribution Nets

• Shapley value:

in polynomial time

• Checking whether distribution is in the core:

co-NP-complete

• Checking whether the core is non-empty:

co-NP-hard.

A complete representation, but not necessarily succinct.
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Cooperative Games

Qualitative Coalitional Games

• Often not interested in utilities, but in goals – either the goal is
satisfied or not

– TL specifications in CAV

– state oriented domains (Rosenschein, 1994)

• QCGs are a type of coalitional game in which each agent has a
set of goals, and wants one of them to be achieved (doesn’t care
which)

Agents cooperate in QCGs to achieve mutually satisfying sets of
goals.

Coalitions have sets of choices representing the different ways
they could cooperate

Each choice is a set of goals.
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Cooperative Games

QCGs
A Qualitative Coalitional Game (QCG) is a structure:

Γ = 〈G, Ag, G1, . . . , Gn, V〉

where

• G = {g1, . . . , gm} is a set of possible goals;

• Ag = {1, . . . , n} is a set of agents;

• Gi ⊆ G is a set of goals for each agent i ∈ Ag, the intended
interpretation being that any of Gi would satisfy i;

• V : 2Ag → 22
G

is a characteristic function, which for every coalition
C ⊆ Ag determines a set V(C) of choices, the intended
interpretation being that if G′ ∈ V(C), then one of the choices
available to coalition C is to bring about all the goals in G′

simultaneously.
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Cooperative Games

Feasible/Satisfying Goal Sets

• Goal set G′ ⊆ G satisfies an agent i if Gi ∩ G′ 6= ∅.

Goal set G′ ⊆ G satisfies a coalition C ⊆ Ag if

∀i ∈ C, Gi ∩ G′ 6= ∅

• A goal set G′ is feasible for C if G′ ∈ V(C).
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Cooperative Games

Representing QCGs

• So, how do we represent the function V : 2Ag → 22
G
?

• We use a formula ΨV of propositional logic over propositional
variables Ag, G, such that:

Ψ[C, G′] = > if and only if G′ ∈ V(C)

• “Often” permits succinct representations of V.

• Note that given ΨV, C, G′, determining whether G′ ∈ V(C) can be
done in time polynomial in size of C, G′

, ΨV.
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Cooperative Games

Fourteen QCG Decision Problems (AIJ, Sep 2004)

Problem Description Complexity qmono

SC SUCCESSFUL COALITION NP-complete NP-complete
SSC SELFISH SUCCESSFUL COALITION NP-complete NP-complete
UGS UNATTAINABLE GOAL SET NP-complete NP-complete
MC MINIMAL COALITION co-NP-complete co-NP-complete
CM CORE MEMBERSHIP co-NP-complete co-NP-complete
CNE CORE NON-EMPTINESS Dp-complete D p-complete
VP VETO PLAYER co-NP-complete -
MD MUTUAL DEPENDENCE co-NP-complete -
GR GOAL REALISABILITY NP-complete P

NG NECESSARY GOAL co-NP-complete -
EG EMPTY GAME co-NP-complete co-NP-complete
TG TRIVIAL GAME Πp

2
-complete Πp

2
-complete

GU GLOBAL UNATTAINABILITY Σp
2
-complete NP

IG INCOMPLETE GAME Dp
2
-complete -
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Cooperative Games

Introducing Preferences

A Qualitative Coalitional Game with Preferences (QCGP) is a
2n + 3-tuple:

Γ = 〈G, Ag, G1, . . . , Gn, Ψ, .1, . . . , .n〉,

where:
〈G, Ag, G1, . . . , Gn, Ψ〉

is a QCG, and

.i ⊆ Gi × Gi

is a partial order over Gi representing i’s preference relation, so
that g1 .i g2 indicates that i would rather have goal g1 satisfied than
goal g2.
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Cooperative Games

Problems with QCGPs

• Although they seem a simple extension of QCGs, it turns out that
QCGPs are much harder to deal with, technically:

– issue of lifting preference relations to coalitions;

– outcomes in QCGs/QCGPs have structure: they are sets of
goals.

• So, how does the complexity compare?
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Cooperative Games

Core Membership

CORE MEMBERSHIP: (CM)
Instance: QCGP 〈G, Ag, G1, . . . , Gn, Ψ, .1, . . . , .n〉, coalition
C ⊆ Ag, goal set G′ ⊆ G.
Question: Is G′ in the core of C?

Theorem 1 CM is co-NP-complete.

Thus no worse than QCGs.
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Cooperative Games

Maximal Goal Sets

The next problem is whether or not a goal set is maximally
preferred by a coalition, i.e., whether this goal set both satisfies
every member of the coalition, and there is no other goal set that
satisfies the coalition that is strictly preferred by it.

MAXIMAL GOAL SET: (MGS)
Instance: QCGP 〈G, Ag, G1, . . . , Gn, Ψ, .1, . . . , .n〉, coalition
C ⊆ Ag, goal set G′ ⊆ G.
Question: Is G′ ∈ µ

�(C)?

Theorem 2 MGS is co-NP-complete.
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Cooperative Games

Pareto Optimality

PARETO OPTIMAL GOAL SET: (PO)
Instance: QCGP 〈G, Ag, G1, . . . , Gn, Ψ, .1, . . . , .n〉, coalition
C ⊆ Ag, goal set G′ ⊆ G.
Question: Is G′ P.O. for C?

Theorem 3 PO is co-NP-complete.
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Cooperative Games

Core Completeness

CC is concerned with the question of whether C is successful and
every feasible goal set that satisfies each member of C is in the
core.

CORE COMPLETENESS: (CC)
Instance: QCGP 〈G, Ag, G1, . . . , Gn, Ψ, .1, . . . , .n〉, C ⊆ Ag.
Question: Is κ

�(C) = X (C) and X (C) 6= ∅?

Theorem 4 CC is D p-complete.
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Cooperative Games

Coalitional Resource Games (CRGs)

• Problem:

where does characteristic function come from?

• One answer provided by Coalitional Resource Games (CRGs).

• Key ideas:

– achieving a goal requires expenditure of resources;

– each agent endowed with a profile of resources;

– coalitions form to pool resource so as to achieve mutually
satisfactory set of goals.
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Cooperative Games

CRGs

A coalitional resource game Γ is an (n + 5)-tuple:

Γ = 〈Ag, G, R, G1, . . . , Gn, en, req〉

where:

• Ag = {a1, . . . , an} is a set of agents;

• G = {g1, . . . , gm} is a set of possible goals;

• R = {r1, . . . , rt} is a set of resources;

• for each i ∈ Ag, Gi ⊆ G is a set of goals, as in QCGs;

• en : Ag × R → N is an endowment function,

• req : G × R → N is a requirement function.
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Cooperative Games

Nine Decision Problems for CRGs

Problem Complexity
SUCCESSFUL COALITION NP-complete
MAXIMAL COALITION co-NP-complete
NECESSARY RESOURCE co-NP-complete
STRICTLY NECESSARY RESOURCE Dp-complete
(C, G′

, r)-OPTIMAL NP-complete
R-PARETO OPTIMALITY co-NP-complete
SUCCESSFUL COALITION WITH RESOURCE BOUNDS NP-complete
CONFLICTING COALITIONS co-NP-complete
ACHIEVABLE GOAL SET in P
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Cooperative Games

QCG and CRG Equivalence

• We can define a notion of “equivalence” (≡) between QCGs and
CRGs:

Γ1 ≡ Γ2 means that QCG Γ1 and CRG Γ2 agree on the goal
sets that are feasible for coalitions

• Given a QCG Γ1 and CRG Γ2, the problem of determining
whether Γ1 ≡ Γ2 is co-NP-complete.
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Cooperative Games

Can we translate between QCGs and CRGs?

Four questions suggest themselves:

1. Given a crg, Γ, is there always a QCG, QΓ such that QΓ ≡ Γ?

2. Given a qcg, Q, is there always a CRG, ΓQ such that ΓQ ≡ Q?

3. How “efficiently” can a given CRG be expressed as an equivalent
QCG in those cases where such an equivalent structure exists?

4. How “efficiently” can a given QCG be expressed as an equivalent
CRG in those cases where such an equivalent structure exists?
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Cooperative Games

Translating CRGs → QCGs

• We can always translate a CRG into an equivalent QCG.

• More interestingly, we can do this efficiently:

for every CRG Γ1 there exists an equivalent QCG Γ2 such
that |Γ2| ≤ |Γ1|

2.
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Cooperative Games

Translating QCGs to CRGs

• We cannot always translate QCGs to equivalent CRGs.

• Moreover, even when we can translate, we can’t always do it
efficiently:

there exist QCGs Γ for which equivalent CRGs exist but for
which the size of the smallest equivalent CRG is at least 2|Γ|

• We can identify some necessary and some sufficient conditions
on QCGs for the existence of equivalent CRGs.
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Cooperative Games

Conclusions & Future Work

• QCGs, QCGPs, + CRGs allow us to formally frame meaningful
questions about cooperation & cooperative systems, and allow
us to investigate their complexity.

• Future work:

– temporal QCGs (AAMAS06) – use ATL variants to classify
solution concepts
“resource automata” to model temporal resource
requirements of goals

– new (qualitative) solution concepts

– social choice mechanisms
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