Dynamics Based Control: An Introduction

Zinovi Rabinovich Jeffrey S. Rosenschein

School of Engineering and Computer Science The Hebrew University of Jerusalem

Agenda

- Motivational Example
- Dynamics Based Control (DBC)
- Planning Perspective
- Control Perspective
- Suboptimal DBC via Extended Markov Tracking
- Future Work

- Formulated by three levels:
 - Environment Design Level
 - User level
 - Agent level

- Formulated by three levels:
 - Environment Design Level
 - Formal specs and modeling of the environment
 - User level
 - Agent level

- Formulated by three levels:
 - Environment Design Level
 - User level
 - Agent level

- Formulated by three levels:
 - Environment Design Level
 - User level
 - Ideal dynamics and dynamics estimator specs, and dynamics divergence measure
 - Agent level

- Formulated by three levels:
 - Environment Design Level
 - User level
 - Agent level

- Formulated by three levels:
 - Environment Design Level
 - User level
 - Agent level
 - Utilization of environment model and dynamics estimator to create ideal dynamics within environment.

- Formulated by three levels:
 - Environment Design Level
 - User level
 - Agent level

The data flow between the levels can be depicted as:

- For Markovian Environment it is possible to specify DBC in a more explicit form.
 - Environment Design: Markovian environment $< S, A, T, O, \Omega, s_0 >$
 - User: $L: O \times (A \times O)^* \to \mathcal{F}, q \in \mathcal{F}, d: \mathcal{F} \times \mathcal{F} \to \mathcal{R}.$

• Agent:
$$a^* = \arg\min_a Pr(d(\tau_a, q) > \theta)$$

- For Markovian Environment it is possible to specify DBC in a more explicit form.
 - Environment Design: Markovian environment $< S, A, T, O, \Omega, s_0 >$, where
 - \checkmark S set of possible environment states
 - $s_0 \in \Pi(S)$ the initial state (distribution)
 - A set of possible actions applicable
 - $T: S \times A \to \Pi(S)$ is the stochastic transition function
 - O set of (partial) observations
 - $\Omega: S \times A \times S \rightarrow \Pi(O)$ stochastic observability function
 - User: $L: O \times (A \times O)^* \to \mathcal{F}, q \in \mathcal{F}, d: \mathcal{F} \times \mathcal{F} \to \mathcal{R}.$
 - Agent: $a^* = \arg\min_a Pr(d(\tau_a, q) > \theta)$

- For Markovian Environment it is possible to specify DBC in a more explicit form.
 - Environment Design: Markovian environment $< S, A, T, O, \Omega, s_0 >$
 - User: $L: O \times (A \times O)^* \to \mathcal{F}, q \in \mathcal{F}, d: \mathcal{F} \times \mathcal{F} \to \mathcal{R}.$

• Agent:
$$a^* = \arg\min_a Pr(d(\tau_a, q) > \theta)$$

- For Markovian Environment it is possible to specify DBC in a more explicit form.
 - Environment Design: Markovian environment $< S, A, T, O, \Omega, s_0 >$
 - User: $L: O \times (A \times O)^* \to \mathcal{F}, q \in \mathcal{F}, d: \mathcal{F} \times \mathcal{F} \to \mathcal{R}.$
 - $\mathcal{F} = \{\tau : S \times A \to \Pi(S)\}$ all possible dynamics
 - L is dynamics estimator
 - \bullet q is the ideal dynamics
 - \bullet d is the dynamics divergence measure
 - Agent: $a^* = \arg\min_a Pr(d(\tau_a, q) > \theta)$

- For Markovian Environment it is possible to specify DBC in a more explicit form.
 - Environment Design: Markovian environment $< S, A, T, O, \Omega, s_0 >$
 - User: $L: O \times (A \times O)^* \to \mathcal{F}, q \in \mathcal{F}, d: \mathcal{F} \times \mathcal{F} \to \mathcal{R}.$

• Agent:
$$a^* = \arg\min_a Pr(d(\tau_a, q) > \theta)$$

- For Markovian Environment it is possible to specify DBC in a more explicit form.
 - Environment Design: Markovian environment $< S, A, T, O, \Omega, s_0 >$
 - User: $L: O \times (A \times O)^* \to \mathcal{F}, q \in \mathcal{F}, d: \mathcal{F} \times \mathcal{F} \to \mathcal{R}.$
 - Agent: $a^* = \arg\min_a Pr(d(\tau_a, q) > \theta)$
 - with θ coming from User level as well, or algorithm specific
 - alternatively $a^* = \arg\min_a d(d(\tau_a, q), \delta(0))$

Control Perspective

Agent Level algorithm can be seen from control perspective:

- Control perspective requires dynamics estimation to change "smoothly"
- Not environment state, but rules of the change system dynamics – are inferred.

Planning Perspective

Appears if dynamics estimate is based on a non-trivial sequence of actions, rather then corrected.

- Dynamics Estimator is akin to plan recognition
- Agent level deals with sets of plans, and chooses one whose remainder is to achieve the ideal dynamics

DBC vs. and pro. POMDP

- In Markovian environment planning and control overlap
 - Except off-line vs. on-line property
- Alternative planning task exists: (PO)MDP
 (Partially Observable) Markov Decision Process
 - Environment Design coincides with DBC
 - User: define reward structure $r: S \times A \to \mathcal{R}$
 - Agent: find plan (policy) such that $\pi^* = \arg \max_{\pi} E(\sum \gamma^i r_i)$
- DBC can be positioned both versus and pro POMDP
 - DBC as an on-line planning scheme vs. POMDP
 - DBC control is pro POMDP as plan implementation

- Optimality Concept
- Controller Similarity
- Preference Interpretation

Optimality Concept

POMDP selects maximum expected payoff

- Optimality Concept
 - DBC optimality is based on probability threshold
 - Direct comparison between induced and ideal dynamics

- Optimality Concept
- Controller Similarity
 - POMDP has off-line policy computation, blindly applied based on value expectation — Open loop control

- Optimality Concept
- Controller Similarity
 - DBC is explicitly on-line, with continual policy update with complete integration of sensory information — Closed loop control

- Optimality Concept
- Controller Similarity
- Preference Interpretation
 - POMDP has user preference expressed as $r: S \times A \times S \rightarrow \mathcal{R}$
 - (if normalized) constitutes dynamics preference
 - Solution is based on state oriented Value Function
 - possible preference distortion

- Optimality Concept
- Controller Similarity
- Preference Interpretation
 - DBC directly compares induced and estimated system dynamics
 - No preference distortion
 - Can translate into direct comparison of value distributions of policies

DBC via Extended Markov Tracking

- Complete DBC algorithm is yet available
- Approximation with all DBC features exists
 - Extended Markov Tracking (EMT) based control
- EMT is a dynamics estimator
 - Conservative with respect to Kullback-Leibler divergence measure
 - Continuous in the environment state beliefs space

$$\tau_{EMT}^{t} = H[p_{t}, p_{t-1}, \tau_{EMT}^{t-1}] = \arg\min_{\tau} D_{KL}(\tau \times p_{t-1} || \tau_{EMT}^{t-1} \times p_{t-1})$$
s.t.
$$p_{t}(s') = \sum_{s} (\tau \times p_{t-1})(s', s)$$

$$p_{t-1}(s) = \sum_{s'} (\tau \times p_{t-1})(s', s)$$

EMT as DBC

- Environment Design
 - Markovian Environment
- User level
 - Estimator is EMT
 - Dynamics divergence measure is Kullback-Leibler
- Agent Level
 - Greedy action selection based on EMT predicted response

$$a^* = \arg\min_{a \in A} D_{KL}(H[T_a \times p_t, p_t, \tau_{EMT}^t] \| q_{EMT} \times p_{t-1})$$

EMT: Success and Limitations

- EMT has been successfully applied to balancing problems, both single and multi-agent scenarios.
- EMT is limited relatively to DBC in general
 - EMT can not directly deal with negative preference
 - EMT can not directly deal with pure sensory actions
 - Pure sensory actions virtually do not exist in robotics

Future Work

Extensive theoretical study of DBC framework

- General and special case complexity
 - EMT is polynomial, but this is an approximation
- Convergence rates, and conditions
- Algorithmic implementations
 - Modification and extension of EMT-based version
 - Alternative estimators integration
 - Problem specific implementations

THANK YOU

