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Abstract

We propose a novel approach to the design of efficient
representations of speech for various recognition tasks. Using
a principled information theoretic framework — the
Information Bottleneck method — which enables quantization
that preserves relevant information, we demonstrate that
significantly smaller representations of the signal can be
obtained that still capture most of the relevant information
about phonemes or speakers. The significant implications for
building more efficient speech and speaker recognition
systems are discussed.

1. Introduction

The extraction of the relevant features of speech signals
is a long- standing challenge in signal processing.
Feature extraction should be guided by the task, such as
phoneme recognition, or speaker identification. Most
speech recognition algorithms, however, do not take this
ultimate goal into account at the front-end feature
extraction level. Here we present a novel approach for
automatic detection and selection of the most relevant
features of speech signals using the information
bottleneck method.

The information bottleneck method [1] aims at

selecting a compact set of features X representing a
much larger data variable X , which preserves high
mutual information about a target variable Y . This
method has been successfully employed in several
applications such as document categorization [2], image
classification [3], analysis of neural codes [4], and
others.

Here we apply the method to a
commonly used representation of speech signals — the
Mel-cepstrum[9]. We perform a vector quantization of
the mel-cepstrum feature set, and use the resulting
quantization as our initial data-space. We then extract
compact representations of the data-space that preserve
information about our target variables via clusters
obtained through the agglomerative information
bottleneck procedure (AIB) [S5]. This procedure takes
into account the ultimate goal of recognition by
iteratively merging cluster pairs which lead to the
minimal reduction of mutual information with the target
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variable, phonemes in one case and speaker’s identity in
the other. We show that this procedure efficiently
preserves the relevant information for either phoneme
recognition or speaker recognition, and makes it
possible to use a much smaller representation without
reducing recognition relevant information. We show that
starting with a higher number of codebook vectors and
reducing them using the AIB preserves significantly
more relevant information than starting with a
quantization of the same size. This has obvious
implications for designing efficient speech recognition
systems. While we limit ourselves in this paper to
discrete models (vector quantization), the method can be
extended to continuous (GMM) models as well.

2. Methods

In this section we describe the information theoretic
principle, the feature extraction procedure and the AIB
algorithm applied, and the database we used.

2.1. Relevant Speech Quantization

Speech is a complex signal with a high entropy rate.
It contains ample information about the various
components of its acoustic structure, such as the spoken
language, specific utterances, identity of the speaker,
his/her physical conditions, mood, etc. Yet most speech
processing algorithms employ  standard front-end
processing that eliminates much of the entropy of the
signal, but do it in a universal — task independent — way.
Such a representation is bound to contain irrelevant
information which thus reduces the efficiency and
performance of the recognizer that follows. It is
therefore a fundamental problem in speech technology
to filter out only (or mostly) the task-relevant
components of the signal. This is a difficult problem, as
the relevant acoustic distortion measure is unknown and
involves both complex perceptual and linguistic
variables. Our approach to this problem is to utilize the
available tagging of the signal (phonemes or speakers)
to guide the selection of its representation.

We begin with the joint representation of the speech
signal, denoted by X, and its relevant labeling signal —
whether phonemes, speaker identity, or other attributes



— denoted here by Y. We then estimate their joint
distribution, P(x,y). The amount of relevant information
in X about Y is determined by Shannon’s mutual
information between the variables, defined as:

I(X;Y) = ZP(x,y)logm M)

For continuous variables the sum should be replaced
by the appropriate integral. Our goal is to find a

compact representation of X , denoted by)? , that on
one hand compresses it by minimizing the mutual

information between them, /(X ;}? ), and on the other
preserves as much as possible the information about
Y, I ()2 ;Y). To this end we minimize the Information-

Bottleneck variational functional,
Lp(&10)]=1(X;X) - BI(X:Y) 2)

with respect to the (stochastic) mapping p(xlx),
This is
similar to the procedure of Rate-Distortion Theory — but
without using an explicit distortion function. The
solution to this variational problem yields an iterative
converging algorithm for the mapping — thus the
reduced representation — given P(x,y), for any value of
the parameter £ . This procedure generates the optimal

where # is a positive Lagrange multiplier .

relevant quantization of the variable X with respect to Y,
where the complexity of the quantization is controlled
through the variable B (see [1]).

2.2, Agglomerative Information Bottleneck

A greedy approximation to the above
optimization problem was introduced in [5]. This is done
using an agglomerative greedy hierarchical clustering
algorithm which merges x points that result in the
smallest loss of mutual information about Y. The
algorithm starts with a trivial partition of singleton
clusters where each element of the data X is in its own

cluster (we denote the cluster set by X ). At each step of
the algorithm we merge two conditional distributions in
the current partition into a single distribution in a way
that locally minimizes the loss of mutual information on
the relevant variable Y. The value of the information loss
in merging the distributions p(ylX,) and p(ylX;) is
given by the Jensen-Shannon divergence [6] between the
distributions:

IS, |p(y1&), p(y1 &)=
7D [P 8D p(y 18 + 7, p(12 )]+ B
7D [P 1 &)1z, p(y1x) + 7, p(y15))]

where D, [ pl q] is the Kullback Leibler divergence:

p(x)

D [plq]= Jog 2%
[p14]=3 p(x)log 0o

“)

and; = p(X;)/(p(X;) + p(X;)) for each i This

greedy merging yields hierarchical clusters that provide
a simple approximation to the optimal solution of the IB
problem in many cases. Throughout the merges we
monitor the amount of information preserved by

clusters X about Y o ()2 ;Y), and compare it to the

original value of I(X;Y). This way we can stop the
merging when we reach an acceptable level of relative
information loss.

2.3. Database and feature extraction

Our database was taken from the OGI multi-
language phonetically transcribed corpus [7]. We used
files from the English story part. The database included
over 100 PCM wave files of different speakers, each
about one minute long. We used the standard Mel-
cepstrum speech feature extraction (fig 1a) [9]. For each
file the speech signal was divided into frames of 20
msec long. Each frame was multiplied by a Hamming
window, and Fourier transformed. The power spectrum
coefficients were mel-scaled. The Log-Mel-scaled
coefficients passed through iDCT and cepstrum mean
subtraction. The resulting features are a set of 16
coefficients of cepstrum values and their temporal
derivative between adjacent frames. Each set of
coefficients is tagged by the label phoneme (Y;) and
speaker (Y5).

As the mutual information for the full continuous
cepstral space is difficult to estimate, we performed
vector quantization for discretizng the space. We used a
training set taken from the database at different stages
of the feature extraction process to produce codebooks
of different sizes, N, which henceforth serve as our
compressed variable X. We then calculated the
empirical mutual information between the tagged
phoneme Y; and the discretized speech features X.

3. Results

Our first interesting observation is that the mutual
information of X and Y; increases at each stage of the
standard feature extraction procedure (as shown in
figure 1b), despite the fact that each stage reduces
entropy and thus discards information. This can be
explained by the facts that first, the information
discarded is less relevant for phoneme identification —
as it should be — and second, after quantization we are



left with more efficient representation. This suggests the
code-book obtained from the final processing stage, G,
as the best choice of data-space for our relevant
compression procedure.
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Figure I: (a) The feature selection process. (b) The mutual
information between the VQ codebook and the phonemes.
Note the monotonic increase of the relevant information along
the stages as well as with the VQ size. Error bars are for 7
cross-validation batches.

The application of the agglomerative
information bottleneck procedure leads to the desired
result. For a given number of clusters, the amount of
mutual information between the clusters and the target
variable Y is much higher when starting from a larger
codebook and then reducing its size using the AIB
algorithm (Fig. 2). As an example, the mutual
information between a code book of size N=256

extracted directly from the vector quantization stage
described in section 2.2 is lower than the mutual
information between the target Y and a codebook of size
256 obtained by AIB applied to an initial data-space of
512 vectors.
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Figure 2 : Mutual information between the clusters ( )2 ) and
the phonemes (Y;) at different stages of the AIB algorithm.
Shown are results for N=32, 64, 128, 256, and 512.

An important advantage of the IB algorithm is
flexibility in choosing the relevant target. When
performing the IB algorithm for purposes of maximizing
the mutual information with the tagged phoneme Y; we
observe a large range in which the number of clusters
decreases without a considerable decrease in the mutual
information about Y; (Fig. 3). On the other hand, the
mutual information with the speaker target (Y;) drops
rapidly (see fig 3). When applying the IB algorithm with
the goal of maximizing the mutual information about the
speaker's identity Y, we observe a larger range

where [ ()2 ;Y,) barely drops, while / ()2 ;Y,) decreases

rapidly (Fig. 3). Interestingly, this is more noticeable
when starting from a smaller data-space size N. The 1B
indeed captures the relevant information about the
target, whether phonemes or speaker, as it is designed to
do. The difference between the phoneme-cluster
information and the speaker-cluster information is about
50% of the mutual information, which (roughly) predicts
a similar improvement in recognition performance for
each task (respectively). Moreover, the analysis of the
resulting clusters can identify the speaker vs. phoneme
dependent components of the Mel-cepstra, identifying
them as clearly different components of the signal.
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Figure 3: Mutual information between clusters and

phonemes, /(X ;Y,) vs. the mutual information between

clusters and speakers [ (}2 ;Y,). Results shown are for
initial data-spaces of sizes N=1024 and N=32. The results
shown are for the AIB applied to the phonemes (dashed)
and the AIB applied to the speakers (solid).

Entropy vQ MI  after | MI  after
1024 AIB to | AIB to
MI speakers Phonemes
Phonemes | 3.58 1.33 0.35 0.82
Speaker 4.0 1.08 0.35 0.15

Table I: Entropies and Mutual Information (bits) for the
phonemes and speakers for the initial size N=1024 VQ
and after applying the AIB algorithms for phonemes and
speakers with reduced N=32 clusters.

4. Discussion

Current  speech  recognition  algorithms
commonly use a universal set of features that are applied
uniformly to classify a wide variety of attributes of the
original speech signal. These attributes, or recognition
targets, include the spoken phoneme, the speaker’s
identity, gender, language, prosody etc.. Such a uniform
front-end approach does not utilize the clearly different
characteristics of the signal that affect each of these
attributes. It would be much more productive to use a
different - task-specific — front-end approach that
specifically extracts the relevant features of the speech

signal. The information bottleneck method provides
natural framework to tackle this challenge.

Here we present a novel approach for the
selection of a reduced set of features for different speech
recognition tasks using the information bottleneck
method, by applying the simple agglomerative proxy
algorithm (AIB). By starting with a standard vector
quantization of mel-cepstrum features, we iteratively
reduce the feature set size in a way that minimizes the
loss of mutual information between the reduced feature
set and the relevant target variable. We show that this
method preserves the relevant information while
considerably reducing the feature set dimensionality.
The method produces a feature set that is much more
appropriate for the task than a feature set of the same
size obtained with a standard vector quantization of the
mel-cepstrum. This method is designed to capture the
relevant information of the target, and is not suited for
the recognition of other targets.

The information bottleneck approach opens up
many other directions to pursue in speech processing.
The method is suited to the recognition of other speech
characteristics, and to combined speech characteristics
such as words. In addition the AIB can be used to
analyze the correlation between frames.
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