Phase Planes
&
Numerical Integration

Lotke Volterra model with limited capacity

Phase plane, nullclines, fixed points
Numerical integration

Linearization of Nonlinear Dynamical System.

Lotka-Volterra (with limited capacity)
a predator-prey model

We will use this model as an example of non-linear system analysis

The unlimited capacity version was suggested by Alfred J. Lotka and Vito
Volterra in the 1920s as a predator-prey (or parasite-host) model.

x(?) = size of the prey population.

w(t) = size of the predator population.

(as percentage from full capacity) at time ¢.

Prey population 1s limited by the size of the environment and predated upon.

Predator population 1s balanced by the percentage and a natural death rate.

Lotka-Volterra Equations

System equations:
fi=a (1 —x)xr — barw
fo =w cxw — dw
b,c,d> 0

(1 - x)x means prey population grows in the absence of predators up to 1. Fastest
growth at 1/2.

-bxw means prey population diminishes do to predation. b has to do with the
chance of a prey dying in an encounter.

cxw means the predator population grows do to predation. ¢ has to do with how
much an encounter is productive for the predator.

-dw means the predator population has a natural death rate. d 1s the percentage of
deaths per time unit.

3

Phase Plane Analysis

e A 2D method ® .
fi=2a (1 —x)z — barw

® nullclines: places where one of the fy = i g
derivatives 1s zero 2 — W CTW w
b=1,c=2,d=1
| | | —dlx/dt=0

i < ——dw/dt=0 i
® for2=0: w=0 or x=d/c o equilibrium point

® for /1=0: x=0 or x=1-bw \

® Fixed (aka equilibrium) points:
places where all derivatives are 0.

e (x,w)=(0,0),(1,0) 7
or (d/c, 1/b-d/(bc))

® (Clearly (0,0) and (1,0) are
saddle points.

® [ess clearly, The third 1s
stable

N

~ \\\\\\\\

N \\\\\\\\
\\\\\\\\\\\

™\

\\\\\\\\\
R N N N NG N

\

o equilibrium pointH

—= gradient

- \\\\\\\\
\\\\\\\\\\

\\\\\\\\\\

| — dx/dt=0
| —— dw/dt=0

pu -~ ~
-~ ~

_——— —> —> —> —> —> —

—_— = —= —= = = =

—S>——S S > —> —> —» —a

—=>—>——>—Ss—S—S— s — s —s —s —s ~a

1 _ !
o0 © <
o o o

=

(Vg
O
O
S
Jd
)
2
U
D
N
K-
),
=
-
‘-
-
O
U

visualize possible paths
lets us estimate specific
paths either from given

starting points or end
points (by reversing the

® (Gradient field lets us
gradients)

® Numerical integration

Numerical Integration

Given f(x) = dx/dt we would like to find x(¢) starting from a given x(0).
1.e. we would like to solve
t
x(t) = xo + / £ (x(7)) dr
0

Problem: while above formula 1s correct we can not solve it without knowing its
solution 1n advance (we need to know the path in order to know what the gradient
along the path 1s..).

Solution: advance in small steps using the gradients at and around the previous
point 1n order to estimate the next point on the path:

t+h
x(t+ h) =x(t) + / f(x(7))dr
t
If /2 is small we can approximate f (x(7)) in [tt+h f (x(7)) dras constant.

Tradeoff between smaller 4 and complexity of each step..

Euler Method
(Or |5t order Runge Kutta)

This method uses a 15t degree Taylor expansion (1.e. a linearizarion) to propagate
the system state:

x(t+ h) ~ x(t) + x(t)h = x(t) + f(x(1))h
We therefore assume
f(x(1))="Ff(x(t)) 7 € [t,t+h]
As f(x(t+h)) becomes very different than f(x(7)) this will result in a larger error.

O(h?) at every step. One calculation of f at every step.

Note that errors add up..

Improved Euler
(Or 2™ order Runge Kutta)

In Euler we took ftHh f (x(7)) dr = hf(x(?)). i.e. the gradient at the beginning of

the step. We would probably do better to take the gradient halfway through the

PP / e () dr it (X (t i g»

Problem: we don’t know x (t i %)

Solution: approximate 1s using Euler (see a recursion here?)

hf (x <t+ g)) ~ hf (x(t) +

x(z + h) =x(¢) + hf(x + Ax)) Ax1="/1(x(¢))

Can prove that error is O(h?)

Note: we calculate f at two points to make one step..

4* Order Runge Kutta

Find Ax; through Ax4 incrementally (sampling f 4 times).
AXl —
AXQ

AXg
AX4

Estimate the next state as:

1
x(t+h) =~ x(t)+ E(Axl + 2Ax5 4+ 2Ax3 + Axy)

Yields error O(%#°). Considered a good balance between step complexity and step
accuracy.

Note: 1n all three methods, # can be chosen differently at each step by considering
the quickness of changes 1n previously calculated gradients.

Linearization
(esp. near equilibrium point)

We will see 1n future lectures that linear systems of the form

f(x,u) =x(x,u) = Ax + Bu

are easy to analyze (and control).

Many nonlinear systems are approximately linear when observed at very short
time 1ntervals (or in very small areas of state space).

Therefore, linearization (approximating a nonlinear system with a linear one) 1s
very useful, especially near equilibrium points.

We’ll leave out the control signal, u for a while (easy to infer on your own)

In scalar case, we wish to find an approximation of f(CC() + .CIZ)
that has the form:

f(zo+) & f(zy) + ax
We do so by using a Taylor expansion of order 1.

F(ro +2) = flag) + 5

r + O(z?)

In the multidimensional case we wish to find an approximation of f(x) of the
form

A

f(xo+x) ~ f(x,) + Ax
Again, we can do so using the multidimensional 1st order Taylor expansion

f(xo +x) = f(x) + Ix + O(||x]|*)
What 1s J?

f(xo +x) = £(x,) + Ix + O(|)x]*)

® J is the Jacobian of f

of ... 9S4
0xq ox,,

\ ofn Of
ox, ox,,
so A=J

® When done around equilibrium point first term vanishes

O the equilibrium point

N —= true gradient

s SN NN KN

—= linearized system gradient

= L
= <

N

- - I

\
»
f
/
/
/
/

I P A A A A
e il SSS
e 'E\\\\\\\\\\\\\\\

V%\S&\\\G\\\A\\\

o

L -

D

DN NN
N
S

NN S S S T T

N
NN

N

N
o o
M

