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® Input: u (current)
e State variables: x1, x2 (voltages)
® OQutput:y (voltage) Are the system states observable (through y)?

Are the system states controllable (through u)?},
v,




i1=i2= 0 (Kirchhoff current law)

Current law for junc. a: e
L2 ] |
ToCs = 1 —Z2 -
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To — — —— v=1IR i =Cdv/dt
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Current law for junc. b: x2 is not affected by u (uncontrolled)
is =u=x1 +C111
PR
e
Voltage law for left (open circuit): y = x2 + 2u

™~.

y 1s not affected by x1 (since x> 1s not); SO X1 1s unobserved.

This system 1s uncontrolled and unobserved (at least in part).




Definitions

System 1s controllable 1f for every, xo, xrand #sthere 1s a control signal u
that brings the system from x(0) = x¢ to x(#s) = Xy at time #.

Sometimes definition requires Xy = 0 (makes no difference 1f system 1s
linear)

The reachable region at time trare the possible values of x(#) 1f x(0) =0
(and all possible us). Similarly, the controllable region are the possible
values of x(0) so that there exists a control signal that takes the system
to x(z) = 0.

So, 1f system 1s controllable, the controllable region 1s the whole state
space. Otherwise the controllable region may still be non-empty.

In LTI systems:
® The controllable region 1s always a linear subspace of the state space.

® Reachable region = controllable region




Nonlinear System Example
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® Foru#0

dotx=x/(x"—1)
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Controllable?

Reachable!?

dotx=x/(x"—1)
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Reachability

consider state transfer from z(0) = 0 to z(¢)

we say x(t) is reachable (in t seconds or epochs)

we define R; C R" as the set of points reachable in ¢ seconds or epochs
for CT system © = Ax + Bu,

t
Rt:{ / e "ABu(T) dr

0

u:[O,t]—>Rm}

and for DT system z(t + 1) = Az(t) + Bu(t),

R: = { tz_:At_l_TBu(T)

7=0

u(t) € R™ }
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e R; is a subspace of R"

.RthSIftSS

(i.e., can reach more points given more time)

we define the reachable set 'R as the set of points reachable for some t:

R:Um

Controllability and state transfer 18-4
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Theorem (controllability):
Given a system x = Ax +Bu , x € R" the following are equivalent:

1. The (A,B) pair 1s controllable.

2. The controllability grammian matrix,

t t
W.(t) = / eATBB'e? " dr = / eAt=T) BB eA (=T qr
0 0

1s non-singular (invertible) for all 7.

3.The nxnp controllability matrix, C=[B AB A’B ... A™'B] has full row
rank (n).

4.The matrix [A-IAi B] has full row rank for every eigenvalue A of A.




Reachability for discrete-time LDS

DT system x(t 4+ 1) = Ax(t) + Bu(t), z(t) € R"

where C,=[ B AB --- A'""'B ]

so reachable set at t is R; = range(Cy)

by C-H theorem, we can express each A* for k > n as linear combination

of AV, ... A1

hence for t > n, range(C;) = range(C,,)

Controllability and state transfer
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thus we have

range(C) t>n
where C = C,, is called the controllability matrix

R, — { range(Cy) t<n

e any state that can be reached can be reached by t = n

e the reachable set is R = range(C)

Controllability and state transfer
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Controllable system

system is called reachable or controllable if all states are reachable (i.e.,
R =R")

system is reachable if and only if Rank(C) =n

p—t

example: z(t + 1) = [ - ] o(t) + [ | ]u(t)

controllability matrix is C = [ 1 1 ]

hence system is not controllable; reachable set is

R =range(C) ={ x| z1 =22 }

Controllability and state transfer
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General state transfer

with tf > 15,
i u(tf — 1) |
%(tf) = Atf_tiZC(ti) + th_ti :
| U(tz) |
hence can transfer x(¢;) to z(t¢) = Tdes
<~ Ldes — At‘f—tix(ti) < Rtf_tz'

e general state transfer reduces to reachability problem
e if system is controllable any state transfer can be achieved in < n steps

e important special case: driving state to zero (sometimes called
regulating or controlling state)

Controllability and state transfer 18-8
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Least-norm input for reachability

assume system is reachable, Rank(C;) = n

to steer (0) = 0 to z(t) = Xges, inputs u(0),...,u(t — 1) must satisfy
u(t—1) ]
Ldes — Ct 5
L ul(0)

among all u that steer x(0) = 0 to x(t) = xqes, the one that minimizes

S Ju(r)]?

Controllability and state transfer 18-9
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is given by i i

UIn(t B 1) T T 1
' = C; (CiCf )™ T des

uln:(())

uin is called least-norm or minimum energy input that effects state transfer

Can express as

—1
t—1
Uln(T) _ BT(AT)(t—l—T) E :ASBBT(AT)S T dess
s=0
forr=0,...,t—1
Controllability and state transfer 18-10
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t—1

Emin, the minimum value of Z |u(T)||? required to reach x(t) = Tqes, is

7=0

sometimes called minimum energy required to reach z(t) = Tes

t—1
Emin | = ZHUIH(T)H2
7=0
T
= (C?(thg)_lxdes) C?(thg)_lmdes
— xges(ctcf)_lxdes
4 t—1 -1 h
= Thes | p_ATBBT(AT) | e
7=0
g _/

Controllability and state transfer
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e Enin(Tdes,t) gives measure of how hard it is to reach x(t) = z4es from
x(0) = 0 (i.e., how large a u is required)

e Enin(Tges,t) gives practical measure of controllability /reachability (as
function of e, 1)

e ellipsoid { z | Emin(z,t) < 1 } shows points in state space reachable at ¢
with one unit of energy

(shows directions that can be reached with small inputs, and directions
that can be reached only with large inputs)

Controllability and state transfer 18-12
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Emin as function of ¢:

if ¢ > s then
t—1 s—1
> ABBT(AT)T > ATBBT(AT)"
7=0 7=0
hence
t—1 —1 s—1 —1
> ATBBT(AT)T| <Y ATBBT(AT)
7=0 7=0

SO gmin(xde& t) S 8min(£des; S)

1.e.: takes less energy to get somewhere more leisurely

Controllability and state transfer
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example: z(t + 1) = [ Iy ]:r;(t) + [ . ]u(t)

@in(z,t) for z =[1 1]*: \

10

gmin

\ %

Controllability and state transfer 18-14
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ellipsoids Enin < 1 for t = 3 and ¢ = 10:

gm.in(x’.g) <|1

10 T T

10

8miln($a .10) <| 1

10 T T

Controllability and state transfer
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Minimum energy over infinite horizon

the matrix
t—1 —1
I T T T'\NT
P—th_glo E_OA BB (A )

always exists, and gives the minimum energy required to reach a point Tges
(with no limit on t):

t—1
min ¢ Y [u(7)|? | #(0) =0, 2(t) = Taes ¢ = TheePTaes
7=0

if A is stable, P > 0 (i.e., can't get anywhere for free)

if A is not stable, then P can have nonzero nullspace

Controllability and state transfer 18-16
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e Pz =0, z # 0 means can get to z using u's with energy as small as you
like

(u just gives a little kick to the state; the instability carries it out to z
efficiently)

e basis of highly maneuverable, unstable aircraft

Controllability and state transfer 18-17
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Continuous-time reachability

consider now & = Ax + Bu with z(t) € R"

reachable set at time ¢t is

¢
Ry = { / e =ABu(r) dr | u:[0,t] — R™ }

0

fact: for t > 0, Ry = R = range(C), where
C=|B AB --- A"'B |

is the controllability matrix of (A, B)

e same R as discrete-time system

e for continuous-time system, any reachable point can be reached as fast
as you like (with large enough u)

Controllability and state transfer 18-18
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first let's show for any u (and x(0) = 0) we have z(t) € range(C)

write et as power series:
tA __ I t A t2A2
e =T+ At AT
by C-H, express A™, A®t1 ... in terms of A°,..., A"~ and collect powers
of A:
et = o) T+ a1 ()A+ -+ a1 () A"
therefore

o(l) = /O " TABu(t - 1) dr

Controllability and state transfer

S. Boyd http://www.stanford.edu/class/ee263/
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n—1 t

— ZAiB/ a;(T)u(t — 1) dr
i=0 0

= Cz

t
where z; = / a;(T)u(t — 1) dr
0

hence, z(t) is always in range(C)

need to show converse: every point in range(C) can be reached

Controllability and state transfer 18-20
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Impulsive inputs
suppose 2(0_) = 0 and we apply input u(t) = §%)(¢) f, where 6(¥) denotes
kth derivative of 6 and f € R™
then U(s) = s f, so

X(s) = (sI—A)"'Bs"f
= (5_1] + 5 2A+ - ) Bs*f

_ (§k_1—|——I-SAk_2—|-Ak_£—|—S_1Ak—|—)Bf
impulsive terms

hence

t t?
x(t) = impulsive terms + A*Bf + AkHBfF T A"ﬁL?Bf5 4 ...

in particular, z(0,) = A*Bf

Controllability and state transfer 18-21
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thus, input u = 6 f transfers state from z(0_) = 0 to 2(0,) = A*Bf

now consider input of form
u(t) =0(t) fo+ -+ 6" (t) faa

where fz c R™

by linearity we have

fo
2(0,)=Bfo+---+ A" 'Bf, 1 =C 5
B fn—l i
hence we can reach any point in range(C)
(at least, using impulse inputs)
Controllability and state transfer 18-22
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can also be shown that any point in range(C) can be reached for any ¢ > 0
using nonimpulsive inputs

fact: if z(0) € R, then z(t) € R for all ¢ (no matter what w is)

to show this, need to show e4z(0) c Rif z(0) € R . ..

Controllability and state transfer 18-23
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Continuous time system 1s controllable if the controllability grammian

t t
W.(t) = / eA"BB'e " dr = / eAt=T) BB A (t=T) 47
0 0

1s non-singular (invertible) for all 7.
1.e. for every Xo, Xxrand #r we construct the appropriate u

e Choose u(t) = —B'e* T "OW_ (1) [eAx0 — x4]

® Plug into dynamic system solution:

]

>

x(t;) = eAtrxg —l—/tf e =T Bu(r)dr
and get ’
x(t;) = eMixg— /tf eA(tf_T)B]E’eAl(tf_T)dT W (ty) [eAthO — X
0
We(@) > u(t)
= eMixg— W, W (L) [eAthO — Xj|
= X

Will see: above u 1s minimal energy solution




Control Example
2u

|

One control signal, divided evenly to two shock absorbers.
Spring constant, k= 1

Damper constants are d1, d>

Shock absorbers’ heights, x1 and x; are the states

Can we bring the states to zero from any starting heights at finite time
using the same force on both absorbers? (i.e. 1s system controllable?)




Force equations: &4 = x; + d;X; ’ % f 4, % f “

(no mass...)
In standard form:
1 0 1
SERAS !
do

Easy to see that system must be stable (negative eigenvalues) but will
take forever to reach (0,0) with no control..

Suppose d1 =2 and d>= 1 we get system:

[ ][]

Controllability matrix is

C:[bAb]:[

—_ DN
|
N o

L 1

Obviously of rank 2 = controllable




® [ets find W¢(2),1.e.att=2
(T e-37 0 1 1 e 37
WC(Q):/O(_ 0 6—71[31[51}[ 0
- L e
o \Lge 2" e
[ 02162 0.3167
- 0.3167 0.4908
e Now, its inverse: 8401 5470
-1 . o .
W (2) [ 5479 37.39 ]
. L 10
® Suppose starting position is x(0) = [ q ]
u(t) —B'eAOW (1) [e %0 — %]
B (1o e—3(2-1) 0 84.91 —54.79
= — 13 0 e || 5479 37.39

—58.82¢3t + 27.96¢!

o1
0




As t gets short the control signal and state path become more extreme:

Phase Plane
5 T T T T T T T T

-10

-15

_20 ! ! ! ! ! ! ! !
8

control signal
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40

20
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e As di—d>the controllability matrix becomes more singular:
When di={1.25, 1.1, 1} the controllability matrices are:

1.25 —1.237 1.10 —1.089 1 —1
1.00 —1.00 |’| 1.00 1.00 11T -1

So rank goes from 2 to 1.

® For same f;, the control paths |
(of state and control signal) ~*
become more extreme:

_30 ! ! ! ! ! ! ! !
-25 -20 -15 -10 -5 0 5 10 15 20

control signal

100

‘d=2 ‘
d
. d
__d
d

=1.5

=1.25

501 =1.125

N N N N N

=0.875

o /

| I | | | | | | |
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 35
time
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Linear Time Varying (LTV) \

We define controllability in terms of time interval [7o,/]

Let ®(tf,t0) be the system’s transfer matrix,
(for LTI system® (¢ ¢, tp) = expm( A(tr- t0) ) )
then the system’s state 1s

tf
x(t7) = B(t s, t0)xo +/ B(t;, 7)B(r)u(t)dr
to
Define the controllability grammian:
t
Weltoity) = [ ®(t7. BB (1) (t7,7)dr
to

As for LTI systems, the following control will work:

u(t) = —B'(t)®'(t;, t )W (to, t7)[®'(t s, to)x0 — %]




