Solving autonomous LT

Systems in Matrix Form
(& all their possible behaviors)

Laplace transform of n |5t order linear ODEs in matrix form
The inverse transform and matrix exponential
Possible system behaviors

Discrete-time LTI system (sampling at constant intervals)




Solving n |5t order linear
ODEs in matrix form

® An autonomous (undriven, no #) LTI system with an n dimensional state:
X = Ax
® [ts Laplace transform is:
sX(s) —x(0) = AX(s)
® Rearranging:
(sT— A)X(s) = x(0)

X(s) = (sI —A) 'x(0)

* (sI — A) — s known as the resolvent.

® To solve: simply find the inverse transform of the resolvent:

x(t) = L7 [(sI—A)""]x(0)



x(t) = L7"[(sI—A)"'x(0)
x(t) = P(t)x(0)

e The inverse transform of the resolvent, ®(¢)is known as the state transition
matrix because the system i1s linearly transformed by it from its state at time

0 (either forwards or backwards 1n time)

® Note the dependence on A’s characteristic polynomial: [sI-Al
J,i entry of resolvent (ji row, 1t column) can be expressed via Crammer’s

rule as: (—1)i+i det A;;
det(sl — A)
where A;; is sI — A with jth row and ith column deleted

® So each of the entries 1n the resolvent matrix 1s a polynomial fraction 1n s
whose denominator 1s A’s characteristic polynomial

e Since [sI-A| has real coefficients, its roots (the eigenvalues of A) are either
real or are complex conjugate pairs...



Example: Harmonic Oscillator
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(but we show a general solution method instead).




Matrix Exponential

® Forc<1

(1—c)t=14+cH+ct+c+...
e Similarly, for C € R"™*"™(with small enough real parts of its eigenvalues)

I-C) ' '=I4+C+C*+C?+--.
e Plugin C = 2 and (for large enough s)
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® We’ve seen that

. 1 L L tn —1
L [s”} — (n—1)!
® So (due to the linearity of Laplace tr.) we can apply the inverse transform
and get..



(tA)’
2|

® This (1nfinite series), multiplied by x(0), 1s a general solution to LTI
systems !

L7H(sT—A)7' ] =T+ tA -

® The above series looks a lot like the Tailor expansion of an exponent:

(ta)
2|

® So we will borrow the exponent symbol and define a matrix exponent as

e =14+ ta A

M2 > M
M __ _

e Using this new symbol we can write the solutiéon’

x(t) = ®(t)x(0) = L' [(sI — A)7!] x(0) = "*x(0)

e For a scalar system, & = ax the above solution is what we expect:

z(t) = e"x(0)



e matrix exponential is meant to look like scalar exponential

e some things you'd guess hold for the matrix exponential (by analogy
with the scalar exponential) do in fact hold

e but many things you'd guess are wrong

example: you might guess that e ™5 = e¢4eB, but it's false (in general)
however, we do have eAt8 = ¢4eB if AB = BA, i.e., A and B commute
® So for scalars t,5 el!™A = gUATSA) = pfAgsA

since (tA)(sA) = (sA)(tA)

This 1s useful 1n understanding the LTI system solution...



Time transfer property

for x = Ax we know

interpretation: the matrix e’ propagates initial condition into state at
time ¢

more generally we have, for any t and T,
r(1 +t) = e'a(1)

(to see this, apply result above to z(t) = z(t + 7))

interpretation: the matrix e’ propagates state ¢ seconds forward in time
(backward if ¢ < 0)



Autonomous LT1 System

Behaviors
or why are A’s eigenvalues interesting

® Given an autonomous LTI system,x = AX, if A is diagonalizable then
there exists a matrix P € C™*Whose columns are A’s eigenvectors and a
diagonal matrix D of eigenvalues

A 0
D =

0 A,
such that A = PDP-'and P-'AP=D

® Note the following useful property:

A" =PDP 'PDP!'...PDP ! =PD"P!
We will use 1t to rewrite the matrix exponential..
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® Using the definition of the matrix e;(ponential again:

D
D — | | ...
€ = I+ DA o i
2 - (Mat)! ]
= 27 -
1=0 I ()\nt)z |
_ e>‘1t _




® So we see that (using matrix eigenvalue decomposition) we can write the
solution of the system as simply

_ 6>‘1t _

x(t) = P N P~ x(0)

® Or, if we look at the coordinate system defined by P:
-t _

P 'x(t) = P~ 'x(0)

6>\”t

or, defining X,X such that x = Pxwe see that
% = Dx

® So 1n these coordinates the system decomposes into separate scalar
subsystems:

2%7; — 6>\itff,; (O)



e Ifa system’s eigenvalue is complex, A\; = 0 -+ 2w this corresponds to
an exponentially decaying/expanding sinosoid:

et = 7% (cos(wt) + isin(wt))

® In the original (real) coordinate system the solution 1s simply a linear
combination of expanding/decaying, possibly oscillating exponents:

X (t) — Z ﬁijeAjt
1=1

® Define a stable system to be one in which x(7) goes to 0 as time passes.
Then the system 1s stable only 1f all the eigenvalues of A have real parts
that are negative, 1.e for each i

%6()\1) < 0



2D examples of system
behaviors

® Real eigenvectors: no oscillation
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2D examples of system

behaviors

® Purely imaginary complex conjugate pair: permanent oscillation

saddle point

® one positive real part and one negative (must be purely real):
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behaviors

e Complex conjugate pair: either exponentially decaying (negative real part)

2D examples of system

or expanding (negative real part) oscillations.
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Sampling a Continuous LTI System
at Constant Intervals

e Given a continuous (autonomous) LTI system, X = Ax
e We’d like to sample it at constant time intervals nAt

® We’ve seen that

x(nAt) = e2"2x(0)
® So, for ntl
x((n+1)At) = eAnthA%(0)
_ AnDL AN ()
= e22ix(nAt)

® We can therefore represent the system 1n discrete time as:

x(n) Ax(n — 1)
A _  QAA



Stability in a Discrete system

o Let x(k) = Ax(k-1) = Akx(0)
® Decompose A=PDP-!, then

P_lx(kz = P~ x(0)

\ . J/

-~

% (k) i M)* ] %)

\ . J/

® So 1n the new coordinate system it 1s clear that the state goes to zero only 1f
for all eigenvalues

‘)\z‘ <1

® This, of course, holds for the original system as well.



