Hamilton Jacobi Bellman
Dynamic Programming &
RL notation to HJB natives

e CostTo Go

* Hamilton Jacobi Bellman equation
* Dynamic Programing

* DP - RL notation switch

Cost To Go

® (onsider a system that obeys x(t) = f(x(¢),u(?),?)
starting from xo and ending when condition 1(x,?¢) = 0 is met.

® The cost of the system’s path (and control signal) 1s

tf
J(x(to), w, to) = G(x(t), /) +/ L(x,u, 7)dr
to
® The Cost To Go at time ¢ along the path 1s

J(x(t),u, 1) :¢(x<tf),tf)+/tfL(x,u,T)dT

® (Consider neighboring optimal paths (starting from different xo)

Terminal curve

Y(x,)=0

Optimal paths

Contours of
constant u°

\\)t

Figure 4.1.1. A family of optimal paths and contours of constant
optimal control we.

Finding these paths may be important for knowing the optimal control
when the system is perturbed.

r

e Define by J°the cost-to-go along an optimal path:

JO(x(t),t) = m&n {gb(x(tf),tf) —I—/t f L(x, u,T)dT}
Q,L'(Xj tf) =0

x(t)

1
1
I
1
|
I
[
1
1
1
|
i
|
i
1
|
i

X(tf) | J(x(tg),ty) = d(x(ty), ty)
R J(x,t) = J(x(t3),13)
x(tp) JO(X(tD)atD‘)H“*u,*H: ‘‘‘‘‘‘‘ - ﬁ%x,g = J{;’Exgzgizg
-------- x,t) = J(x(t1), 11

Contours of optimal cost-to-go along an optimal path

e At any point along the path - the rest of the path is optimal.

® Minimum time ship path in linearly varying current - single trajectory

Ty P . =
Current Final Current h
point Resultant
=2 : V velocity
Ship’s
velocity |
relative Initial
. to water poi‘nt

Figure 2.7.2. A minimum-time path through a region of linearly
increasing current.

e Optimal paths and contours of constant u

Figure 4.1.3. Minimum-time ship paths with linear variation in
current and contours of constant heading angle.

® Optimal paths and contours of constant cost-to-go

Figure 4.1.4. Minimum-time ship paths with linear variation in

current and contours of constant time-to-go.

x/h

-2-10 12

H|B equation derivation

® Suppose that at time ¢ a possibly non-optimal control, u(?) is applied for
a short time A¢ and from then on optimal control is applied. Define the
cost of this to be
t+At t
Jl(x,u(t),t) = / L (x(7),u(r), 1) d7'—|—min{¢(x(tf),tf)—l—/ L (x(7),u(r), 1) dT}
t u t

+At

\ . 7

JO(x(t+At),t+At)

t+At
_ JO(x(t+ AL+ AL) + / L (x(r),u(r), 7) dr

t

e Conversely, we can now define J° recursively

JO(x,t) = Il’l(lr)l JH(x,u(t),t)
u(t

| ; t+At
= Ili’l(ltr)l{J (X(t+At),t—|—At)—|—/t L (x(7),u(r),7) dT}

t+At
J%(x,t) = min {Jo(x(t + At), t + At) + /

u(t) t

® Under most conditions, for small Af we can make the following (1st
degree) approximation:

t+At
/t L (x(7),u(r),7)dr = L (x(7),u(r), 7) At

® Plugging them into the recursive definition of J° we get

()

JO(x,t) ~ min<{ JY (x(t + At),t+ At) +L(x,u(t),t) At »

u(t) |~ o

\ (:S /

e Next we take a first order approximation of (*)

0

J (x,t) = m(1tr)1 {JO (x,t) + %At + L(x,u(t), t)At}

~N
L (x(7),u(7),7) dT}

9/

0)

d
J (x,1) = m(il;l{JO(X,t)—F%At—l—L(X,u(t),t)At}
u(t

® Rewriting as sum of partial derivatives:

0 0
~ J%(x,4) + min {aiﬁ—xm O A+ Lx u), t)At}

ut) | Ox Ot ot

= Jx,t) + a—J()At—kmin a—Jof(x u(t),t)At + L(x,u(t), t)At
’ ot ut) | O0x ’ ’ ’

e Finally, omit JO(x,t) from both sides and get

0 0
- = min{ Lox u(0),0) + -t u(e). o) |
with border conditions JY(x,t) = ¢(x, t)

at end

Y(x,t) =0

known as the HJB equations

2J0 0.J°
5 =i {L(x, u(t),t) + 5 —f(x, Ul(?f),t)}

® This 1s a first order non-linear partial differential equation.

® In words: change in cost along small part of optimal path 1s the sum of
the current loss and the change in loss due to the change in state value.

® Not easily solved in general.

Discrete H|B
= Dynamic Programming

® Suppose that time, states and control signal are all discrete:

rii1 = f (T4, us, t)
reX={1.. X} weU={1. [U

® (ost-to-go on optimal path

Vo(xk, k)= m&n {gb(:{:N,N) +

® Recursively

Vo(xlﬁ k) = min {L(lek,’u,k, k) + VO (f(xk’auka k)? k+ 1)}

Uk

~N

Suppose we know f(x,u,t) ,x1, xy and N (number of time steps). We want
to find the optimal control and the cost for getting from x; to xn. We can
do so with dynamic programming as follows.

Define VERXI N guch that

Vij =V (z; =1i,5)
1s the cost-to-go from state i at time j.

Filling this matrix is done recursively

Voo — ey, N) 1=xnN
N 00 else
Vi,k — mu}fn {L(xia Ug, k) -+ Vf(ﬂcq;,Uk,k),kJrl}

Easy to see that when finished Vi 1s the cost-to-go at time & from state i
If Vik= oo then the 1s no path of length N-k+1 from state i to state x.

Cost of filling the matrix is O(N [X]| |U])

® To remember the optimal control signal, fill
U, = arg mgﬂ {L(%’, Uk, k) + Vf(a:i,uk,k),k—l—l}

e Optimal path can be remembered as X; = f(x;,U; k) or reconstructed

from U in a forward pass (hence known as a forward backward method).

e [f instead of initial and end states we know conditions that they must
obey .
Y(i, N) =0
x(2,1) =0

we simply change the initialization of V to

Vi,N:{ ¢(ZaN) w(ivN):O

00 else

and select the 1nitial state to be
r; =minV;; s.t. x(¢,1)=0

1

~N

If the run time (N) 1s not known, the depth of the recursion (width of V)
depends on L(x,u,t). For any N, if a path of length N exists (such that
initial and final conditions are met) then there is an L that would make
the optimal path to be of length N.

The 1nitial state and time are chosen as

Tinit = HilinVz',j s.t. x(4,7) =0

DP of length N ensures optimal paths of length <N
If L > 0 and 1s not a function of time (just x) then N < |X]
You can only do it if you know fand L.

Complexity can be exponential in the number of state dimensions (but
linear in the number of states).

e Still much cheaper that considering all possible controls on length N
(of which there are |U[N).

DP example -
Bicycle Navigation

® (Given a topographical map as a matrix M (M 1s the height at i,))

Topography. Cross from ket o ight.

® At each time step you can move one square (8 options, inc. diagonals).

e Find a path that start at left had side of map and ends at the right hand
side.

® The loss you pay at each step i1s
L = 0.1*step-size + height-diff*(1+0.5 sign(height-diff))

where step-size 1s 1 or sqrt(2), height-diff is the difference in heigh
(values of M).

® Going straight costs you 0.1step-size
® Going up - pay 1.5 height difference

® Going down - you gain 0.5 height difference (Loss can be negative)

e We define the state to be from 1 to the size of M (width x height).
® The end condition 1s ¥(1,N) = 0 1f i 1s a position on the rhs of the map

® The 1nitial condition (1,1) = 0 1f 1 1s on the lhs of the map

The topography an the optimal path (left to right)

FALD DPOQTEHTY BN OPOTil [Em OEUmEl BET IBnginens |

cost to go from best start point

14.8

14.7

—
-
(@]

—_
~
oy

—h
o
T

—_
=~
e

—
.
Mo

—h
=
—h

—h
.

13.9

13.8

" The cost as a function of the number of steps

40
step number

20

(" topography as contours and optimal path, laid on cost at optimal step)
number(right to left)

Path and topography kaid out on cost values at optimal siep

— {14

- 12

= 10

r

® Greedy partial DP

y [km]

Trial: 1 Time: 5 s
1 p 3
X [km]

N
RL Motivation
1 2 3 a b F .ﬂ ;.-'.l-'l:.l“:'\'l__xﬁ
o ey ® TD-Gammon
g | e Created in early 90’s
® Did not have any prior knowledge
other than the rules of the game
® Used RL (and neural network design)
to become world champion
-lli.'l-ﬁ 2 21 20 19 8 17 _]_I!f- 1!:!.“:|."1;. 1:}. _____l.n'l
Program | Hidden | Training Opponents Results
Units Games
TD-(zam .0 40 300,000 Other Programa Tied for Beat
TD-(Gam 1.0 &0 300,000 | Robertie, Magriel, ... | —13 pts / 5] games
TD-(zam 2.0 40 800,000 Var. Grandmasters | —7 pta / 38 games
TD-(GGam 2.1 80 1,500,000 Robertie —1 pta / 40 games
TD-(zam 3.0 &0 1,500,000 Kazaros +6 pta / 20 games
23

Heli-control
High dimensional
Continuous

Expensive
(uses robust
control)

e Air Hockey ® Robot arm
ATR, Japan movement
optimization

DP & RL

Reinforcement Learning (RL) 1s a set of algorithms for learning optimal
control.

Classic RL 1s for discrete worlds (state, action, time step).

While in DP - you need to know L and f (loss function and dynamics),
RL lets you learn them.

While in DP, we update the value function for every state at each step (at
a cost of O(|X] |U|), imn RL we usually do partial updates (at lower cost).

The cost 1s usually not over a finite number of step but over infinite
(discounted) steps.

Control < RL notation change

RL control
name notation notation name
state sES X state
action a€A(s) u control sig.
stochastic ,
(:) 7(s,a)=Pr(als) u(x,?) control function
policy
stochastic a .
(. .) P s/ f(x,u,z,w) state dynamics
state transition
(stochastic) , 7 instantaneous
reward loss
cumulative V -J, -V cost-to-go
expected reward

P&, = Pr{s;y1 = s'|s; = s,a; = a}

Perception - Action loop

Agent performs action — environment changes — new state 1s seen by

agent (as sensory input i) and a reward r 1s generated. The agent’s
behavior (B / policy) might change — next action is performed..

Reward model

® The agent is (usually) concerned with maximizing the cumulative
discounted reward:

Ry = 71 +9Teae + 7m0 + ..
= Tip1 + YR

where y < 1. This 1s a stochastic variable, dependent on policy, reward
and state transition distributions

® Suppose that at time ¢ the state 1s s, action a 1s performed, the new state
1s s~ and reward s+ 1s given. The expected reward E {r:+;} 1s denoted

a L L . !
Ry =Er Ari+1lst =5, ar =a, S441 =5}

® The expected R; is the expected discounted sum of future rewards. R;at
state s under a policy 7t is called the value of s (under)

VT (s) = FE;{R:|s; = s}

V7™(s) E.{R:|sy = s}
Er{rit1 +9V (se41) [se = s}

=) w(s,a) > Pl [Rey +V7 ()]

J™(s) 1s equivalent to J(x,?) in control notation.

Note that 1n classic RL reward, state transition probability and policy
(1.e. all the distributions) are assumed to be time independent, which 1s
why we denote V(s), not V(s,z).

As 1s control, RL learns a policy that maximizes V(s).

The value of s under optimal control, (previously J°(x,?)) is denoted
V*(s) = max V7 (s)

Because the value 1s time independent a DP solution looks for a “vector”

not a “matrix” (the t axis 1s gone).

The optimal policy is denoted by T (s).

Q function

® Recall that in control notation J'(x,u,?) is the cost of performing
possibly non-optimal u and then performing optimally. In RL we define
the O function to mean the same thing

Q" (s,a) = E{repn +9V (s141)}
— E{rtH —|—7ma;XQ*(8’,a’)}
— Z P2, [RZS, + ymax Q" (s, a’)]
(a.k.a the bellman optimality condition)

® The optimal policy 1s easy to derive from Q:

T (s) = arg aglgé)Q (s,a)

® We will see later why Q 1s sometimes necessary (rather than V). E.g. 1f
dynamics function (P%s’) 1s not known.

_

