# Hamilton Jacobi Bellman Dynamic Programming & RL notation to HJB natives

- Cost To Go
- Hamilton Jacobi Bellman equation
- Dynamic Programing
- DP RL notation switch

## Cost To Go

- Consider a system that obeys  $\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t), t)$  starting from  $\mathbf{x}_0$  and ending when condition  $\psi(\mathbf{x}, t_f) = 0$  is met.
- The cost of the system's path (and control signal) is

$$J(\mathbf{x}(t_0), \mathbf{u}, t_0) = \phi(\mathbf{x}(t_f), t_f) + \int_{t_0}^{t_f} L(\mathbf{x}, \mathbf{u}, \tau) d\tau$$

• The Cost To Go at time t along the path is

$$J(\mathbf{x}(t), \mathbf{u}, t) = \phi(\mathbf{x}(t_f), t_f) + \int_t^{t_f} L(\mathbf{x}, \mathbf{u}, \tau) d\tau$$

• Consider neighboring optimal paths (starting from different  $\mathbf{x}_0$ )



**Figure 4.1.1.** A family of optimal paths and contours of constant optimal control  $u^{o}$ .

Finding these paths may be important for knowing the optimal control when the system is perturbed.

• Define by  $J^0$  the cost-to-go along an optimal path:

$$\mathbf{x}(t_f) = \min_{\mathbf{u}} \left\{ \phi(\mathbf{x}(t_f), t_f) + \int_t^{t_f} L(\mathbf{x}, \mathbf{u}, \tau) d\tau \right\}$$

$$\mathbf{v}(\mathbf{x}, t_f) = 0$$

$$\mathbf{x}(t_f)$$

Contours of optimal cost-to-go along an optimal path

• At any point along the path - the rest of the path is optimal.

• Minimum time ship path in linearly varying current - single trajectory



Figure 2.7.2. A minimum-time path through a region of linearly increasing current.

#### • Optimal paths and contours of constant **u**



Figure 4.1.3. Minimum-time ship paths with linear variation in current and contours of constant heading angle.

#### • Optimal paths and contours of constant cost-to-go



Figure 4.1.4. Minimum-time ship paths with linear variation in current and contours of constant time-to-go.

## HJB equation derivation

• Suppose that at time t a possibly non-optimal control,  $\mathbf{u}(t)$  is applied for a short time  $\Delta t$  and from then on optimal control is applied. Define the cost of this to be

$$J^{1}(\mathbf{x}, \mathbf{u}(t), t) = \int_{t}^{t+\Delta t} L(\mathbf{x}(\tau), \mathbf{u}(\tau), \tau) d\tau + \underbrace{\min_{\mathbf{u}} \left\{ \phi(\mathbf{x}(t_{f}), t_{f}) + \int_{t+\Delta t}^{t_{f}} L(\mathbf{x}(\tau), \mathbf{u}(\tau), \tau) d\tau \right\}}_{J^{0}(\mathbf{x}(t+\Delta t), t+\Delta t)}$$

$$= J^{0}(\mathbf{x}(t+\Delta t), t+\Delta t) + \int_{t}^{t+\Delta t} L(\mathbf{x}(\tau), \mathbf{u}(\tau), \tau) d\tau$$

• Conversely, we can now define  $J^0$  recursively

$$J^{0}(\mathbf{x}, t) = \min_{\mathbf{u}(t)} J^{1}(\mathbf{x}, \mathbf{u}(t), t)$$

$$= \min_{\mathbf{u}(t)} \left\{ J^{0}(\mathbf{x}(t + \Delta t), t + \Delta t) + \int_{t}^{t + \Delta t} L(\mathbf{x}(\tau), \mathbf{u}(\tau), \tau) d\tau \right\}$$

$$J^{0}(\mathbf{x},t) = \min_{\mathbf{u}(t)} \left\{ J^{0}(\mathbf{x}(t+\Delta t), t+\Delta t) + \int_{t}^{t+\Delta t} L(\mathbf{x}(\tau), \mathbf{u}(\tau), \tau) d\tau \right\}$$

• Under most conditions, for small  $\Delta t$  we can make the following (1st degree) approximation:

$$\int_{t}^{t+\Delta t} L(\mathbf{x}(\tau), \mathbf{u}(\tau), \tau) d\tau = L(\mathbf{x}(\tau), \mathbf{u}(\tau), \tau) \Delta t$$

• Plugging them into the recursive definition of  $J^0$  we get

$$J^{0}(\mathbf{x},t) \approx \min_{\mathbf{u}(t)} \left\{ \underbrace{J^{0}(\mathbf{x}(t+\Delta t),t+\Delta t)}_{(\star)} + L(\mathbf{x},\mathbf{u}(t),t)\Delta t \right\}$$

Next we take a first order approximation of (\*)

$$J^{0}(\mathbf{x},t) = \min_{\mathbf{u}(t)} \left\{ J^{0}(\mathbf{x},t) + \frac{dJ^{0}}{dt} \Delta t + L(\mathbf{x},\mathbf{u}(t),t) \Delta t \right\}$$

$$J^{0}(\mathbf{x},t) = \min_{\mathbf{u}(t)} \left\{ J^{0}(\mathbf{x},t) + \frac{dJ^{0}}{dt} \Delta t + L(\mathbf{x},\mathbf{u}(t),t) \Delta t \right\}$$

• Rewriting as sum of partial derivatives:

$$= J^{0}(\mathbf{x}, t) + \min_{\mathbf{u}(t)} \left\{ \frac{\partial J^{0}}{\partial \mathbf{x}} \frac{\partial \mathbf{x}}{\partial t} \Delta t + \frac{\partial J^{0}}{\partial t} \Delta t + L(\mathbf{x}, \mathbf{u}(t), t) \Delta t \right\}$$

$$= J^{0}(\mathbf{x}, t) + \frac{\partial J^{0}}{\partial t} \Delta t + \min_{\mathbf{u}(t)} \left\{ \frac{\partial J^{0}}{\partial \mathbf{x}} \mathbf{f}(\mathbf{x}, \mathbf{u}(t), t) \Delta t + L(\mathbf{x}, \mathbf{u}(t), t) \Delta t \right\}$$

• Finally, omit JO(x,t) from both sides and get

$$-\frac{\partial J^{0}}{\partial t} = \min_{\mathbf{u}(t)} \left\{ L(\mathbf{x}, \mathbf{u}(t), t) + \frac{\partial J^{0}}{\partial \mathbf{x}} \mathbf{f}(\mathbf{x}, \mathbf{u}(t), t) \right\}$$

with border conditions  $J^0(\mathbf{x},t) = \phi(\mathbf{x},t)$  at end  $\psi(\mathbf{x},t) = 0$ 

known as the HJB equations

$$-\frac{\partial J^{0}}{\partial t} = \min_{\mathbf{u}(t)} \left\{ L(\mathbf{x}, \mathbf{u}(t), t) + \frac{\partial J^{0}}{\partial \mathbf{x}} \mathbf{f}(\mathbf{x}, \mathbf{u}(t), t) \right\}$$

- This is a first order non-linear partial differential equation.
- In words: change in cost along small part of optimal path is the sum of the current loss and the change in loss due to the change in state value.
- Not easily solved in general.

## Discrete HJB = Dynamic Programming

• Suppose that time, states and control signal are all discrete:

$$x_{t+1} = f(x_t, u_t, t)$$
$$x \in \mathcal{X} = \{1, \dots, |\mathcal{X}|\} \qquad u \in \mathcal{U} = \{1, \dots, |\mathcal{U}|\}$$

Cost-to-go on optimal path

$$V^{0}(x_{k}, k) = \min_{\mathbf{u}} \left\{ \phi(x_{N}, N) + \sum_{t=k}^{N-1} L(x_{t}, u_{t}, t) \right\}$$

Recursively

$$V^{0}(x_{k}, k) = \min_{u_{k}} \left\{ L(x_{k}, u_{k}, k) + V^{0} \left( f(x_{k}, u_{k}, k), k + 1 \right) \right\}$$

- Suppose we know f(x,u,t),  $x_1$ ,  $x_N$  and N (number of time steps). We want to find the optimal control and the cost for getting from  $x_1$  to  $x_N$ . We can do so with *dynamic programming* as follows.
- Define  $V \in \mathbb{R}^{|X| \times N}$  such that

$$\mathbf{V}_{ij} = V^0(x_j = i, j)$$
 is the cost-to-go from state  $i$  at time  $j$ .

• Filling this matrix is done recursively

$$\mathbf{V}_{iN} = \begin{cases} \phi(x_N, N) & i = x_N \\ \infty & else \end{cases}$$

$$\mathbf{V}_{i,k} = \min_{u_k} \{ L(x_i, u_k, k) + \mathbf{V}_{f(x_i, u_k, k), k+1} \}$$

- Easy to see that when finished  $V_{i,k}$  is the cost-to-go at time k from state i
- If  $V_{i,k} = \infty$  then the is no path of length N-k+1 from state i to state  $x_N$ .
- Cost of filling the matrix is O(N |X| |U|)

• To remember the optimal control signal, fill

$$\mathbf{U}_{i,k} = \arg\min_{u} \left\{ L(x_i, u_k, k) + \mathbf{V}_{f(x_i, u_k, k), k+1} \right\}$$

- Optimal path can be remembered as  $\mathbf{X}_{i,k} = \mathbf{f}(x_i, \mathbf{U}_{i,k}, k)$  or reconstructed from  $\mathbf{U}$  in a forward pass (hence known as a forward backward method).
- If, instead of initial and end states we know conditions that they must obey  $\psi(i,N)=0$

$$\chi(i,1) = 0$$

we simply change the initialization of V to

$$\mathbf{V}_{i,N} = \begin{cases} \phi(i,N) & \psi(i,N) = 0\\ \infty & else \end{cases}$$

and select the initial state to be

$$x_1 = \min_{i} \mathbf{V}_{i,1}$$
 s.t.  $\chi(i,1) = 0$ 

- If the run time (N) is not known, the depth of the recursion (width of V) depends on L(x,u,t). For any N, if a path of length N exists (such that initial and final conditions are met) then there is an L that would make the optimal path to be of length N.
- The initial state and time are chosen as

$$x_{init} = \min_{i,j} \mathbf{V}_{i,j}$$
 s.t.  $\chi(i,j) = 0$ 

- DP of length N ensures optimal paths of length  $\leq$  N
- If L > 0 and is not a function of time (just x) then  $N \le |X|$
- You can only do it if you know f and L.
- Complexity can be exponential in the number of state dimensions (but linear in the number of states).
  - Still much cheaper that considering all possible controls on length N (of which there are  $|U|^N$ ).

## DP example - Bicycle Navigation

• Given a topographical map as a matrix M ( $M_{ij}$  is the height at i,j)



- At each time step you can move one square (8 options, inc. diagonals).
- Find a path that start at left had side of map and ends at the right hand side.
- The loss you pay at each step is

```
L = 0.1*step-size + height-diff*(1+0.5 sign(height-diff))
```

where step-size is 1 or sqrt(2), height-diff is the difference in heigh (values of M).

- Going straight costs you 0.1step-size
- Going up pay 1.5 height difference
- Going down you gain 0.5 height difference (Loss can be negative)

- We define the state to be from 1 to the size of M (width x height).
- The end condition is  $\psi(i,N) = 0$  if i is a position on the rhs of the map
- The initial condition  $\chi(i,1) = 0$  if i is on the lhs of the map







#### • Greedy partial DP



## RL Motivation



- TD-Gammon
- Created in early 90's
- Did not have any prior knowledge other than the rules of the game
- Used RL (and neural network design) to become world champion

| Program    | Hidden | Training  | Opponents          | Results              |
|------------|--------|-----------|--------------------|----------------------|
|            | Units  | Games     |                    |                      |
| TD-Gam 0.0 | 40     | 300,000   | Other Programs     | Tied for Best        |
| TD-Gam 1.0 | 80     | 300,000   | Robertie, Magriel, | -13 pts $/$ 51 games |
| TD-Gam 2.0 | 40     | 800,000   | Var. Grandmasters  | -7  pts / 38  games  |
| TD-Gam 2.1 | 80     | 1,500,000 | Robertie           | -1 pts $/$ 40 games  |
| TD-Gam 3.0 | 80     | 1,500,000 | Kazaros            | +6  pts / 20  games  |



• Air Hockey ATR, Japan

Robot arm movement optimization





## DP & RL

- Reinforcement Learning (RL) is a set of algorithms for learning optimal control.
- Classic RL is for discrete worlds (state, action, time step).
- While in DP you need to know L and f (loss function and dynamics), RL lets you learn them.
- While in DP, we update the value function for every state at each step (at a cost of O(|X||U|), in RL we usually do partial updates (at lower cost).
- The cost is usually not over a finite number of step but over infinite (discounted) steps.

## Control ↔ RL notation change

| R                                | L                   | control                             |                       |
|----------------------------------|---------------------|-------------------------------------|-----------------------|
| name                             | notation            | notation                            | name                  |
| state                            | $s \in S$           | X                                   | state                 |
| action                           | $a \in A(s)$        | u                                   | control sig.          |
| (stochastic)<br>policy           | $\pi(s,a)=\Pr(a s)$ | $\mathbf{u}(\mathbf{x},t)$          | control function      |
| (stochastic)<br>state transition | $P^a_{ss'}$         | $f(\mathbf{x},\mathbf{u},t,\omega)$ | state dynamics        |
| (stochastic)<br>reward           | r                   | -L                                  | instantaneous<br>loss |
| cumulative expected reward       | V                   | -J, -V                              | cost-to-go            |

$$P_{ss'}^a = Pr\{s_{t+1} = s' | s_t = s, a_t = a\}$$

## Perception - Action loop



Agent performs action  $\rightarrow$  environment changes  $\rightarrow$  new state is seen by agent (as sensory input *i*) and a reward *r* is generated. The agent's behavior (*B* / policy) might change  $\rightarrow$  next action is performed..

## Reward model

• The agent is (usually) concerned with maximizing the cumulative discounted reward:

$$R_{t} = r_{t+1} + \gamma r_{t+2} + \gamma^{3} r_{t+1} + \dots$$
$$= r_{t+1} + \gamma R_{t+1}$$

where  $\gamma$  < 1. This is a stochastic variable, dependent on policy, reward and state transition distributions

• Suppose that at time t the state is s, action a is performed, the new state is s and reward  $r_{t+1}$  is given. The expected reward  $E\{r_{t+1}\}$  is denoted

$$R_{ss'}^a = E_{r_{t+1}} \left\{ r_{t+1} | s_t = s , \ a_t = a , \ s_{t+1} = s' \right\}$$

• The expected  $R_t$  is the expected discounted sum of future rewards.  $R_t$  at state s under a policy  $\pi$  is called the *value* of s (under  $\pi$ )

$$V^{\pi}(s) = E_{\pi} \left\{ R_t | s_t = s \right\}$$

$$V^{\pi}(s) = E_{\pi} \{R_{t} | s_{t} = s\}$$

$$= E_{\pi} \{r_{t+1} + \gamma V(s_{t+1}) | s_{t} = s\}$$

$$= \sum_{a} \pi(s, a) \sum_{s'} P_{ss'}^{a} [R_{ss'}^{a} + \gamma V^{\pi}(s')]$$

- $V^{\pi}(s)$  is equivalent to  $J(\mathbf{x},t)$  in control notation.
- Note that in classic RL reward, state transition probability and policy (i.e. all the distributions) are assumed to be time independent, which is why we denote V(s), not V(s,t).
- As is control, RL learns a policy that maximizes V(s).
- The value of s under optimal control, (previously  $J^0(\mathbf{x},t)$ ) is denoted

$$V^*(s) = \max_{\pi} V^{\pi}(s)$$

- Because the value is time independent a DP solution looks for a "vector" not a "matrix" (the t axis is gone).
- The optimal policy is denoted by  $\pi^*(s)$ .

## Q function

• Recall that in control notation  $J^1(\mathbf{x}, \mathbf{u}, t)$  is the cost of performing possibly non-optimal  $\mathbf{u}$  and then performing optimally. In RL we define the Q function to mean the same thing

$$Q^{*}(s,a) = E\{r_{t+1} + \gamma V^{*}(s_{t+1})\}$$

$$= E\{r_{t+1} + \gamma \max_{a'} Q^{*}(s',a')\}$$

$$= \sum_{s'} P_{ss'}^{a} \left[R_{ss'}^{a} + \gamma \max_{a'} Q^{*}(s',a')\right]$$

(a.k.a the bellman optimality condition)

• The optimal policy is easy to derive from Q:

$$\pi^*(s) = \arg\max_{a \in A(s)} Q^*(s, a)$$

• We will see later why Q is sometimes necessary (rather than V). E.g. if dynamics function ( $P^{a}_{ss}$ ) is not known.