Optimization with constraints
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Optimization With Constraints

® [ ctf(x): R"™R (a cost function)
® [ctg(x): R"™R”

® Solve

® fcan be the optimization criterion and g(x) = 0 can define the dynamics
of the system, 1.e. what possible values x can take within the physical
system constraints.




® Without constraints:
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® With constraints:

N

= cost

constraint

cost along the constraint




® Note that gi(x) = 0 defines a specific height line of the function

® Therefore, Ogi/Ox must be perpendicular to the line

e Claim: If x¢ 1s an extremum of f(x) under scalar constraint g(x) =0
then there exists a constant A€R such that

® A small movement along the
constraint line 1s perpendicular to
the cost function gradient and

therefore will not decrease f o~ L L
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® Claim: If xo 1s an extremum of f(x) under constraint g(x) =0
then there exists a constant vector A" € R” such that

1s the Jacobian.

® So at the constrained extremum, 1f there 1s any possible direction of change
in X that obeys the constraints, it is in the null-space of the Jacobian and,
therefore, will not change the value of 1.




® Define the Lagrangian to be

L= 700~
® (Clearly
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— () then for this pair

® So, given a pair (x,A) such that aL — g and ¢ Y
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gi A1 gi and g(x) = 0 which means that x 1s a constrained

extremum of f




Example:
moving in minimal time + energy

® Mass on a frictionless track. Rests at position O at time O.
® Apply constant force, £ on the mass till it reaches a given position s.
® [ ct ¢ be the time 1t takes the mass to reach s.

® Find the force £ and time #rthat minimize the cost:

f(k,t) =ks+rt

where 7 1s a constant that defines the tradeoff between minimal time and
minimal energy

® Note that x = (£,k) 1s a solution vector whose variables are constrained by
system’s physics:







cart on track r=1,s=1,m=1
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