
Reinforcement Learning  
in Continuous Time and 

Space

• From K. Doya, Neural Computation 12,219-245, 2000

1



• Continuous time dynamical system: 

• Reward:

• Policy:

• The policy’s decaying (i.e. discounted) value function: 

• Optimal policy’s value function

Continuous Time 
Discounted Value Function
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Equations

January 27, 2006

ẋ = f (x(t),u(t))

r(t) = r (x(t),u(t))

u(t) = µ (x(t))

V µ (x(t)) =

∫
∞

t

e−
s−t

r r (x(s),u(s)) ds

V ∗ (x(t)) = max
u[t,∞)

[∫
∞

t

e−
s−t

r r (x(s),u(s)) ds

]

V ∗ (x(t)) = max
u[t,t+∆t]








∫ t+∆t∞

t

e−
s−t

r r (x(s),u(s)) ds

︸ ︷︷ ︸

≈r(x(t),u(t))∆t

+e−
∆t

r V ∗ (x(t + ∆t))








V ∗ (x(t + ∆t)) ≈ V ∗ (x(t)) +
∂V ∗

∂x(t)
f (x(t),u(t)) ∆t

(

1 − e−
∆t

r

)

V ∗ (x(t)) = max
u[t,t+∆t]

[

r (x(t),u(t)) ∆t + e−
∆t

r

∂V ∗

∂x(t)
f (x(t),u(t)) ∆t

]

1

τ
V ∗ (x(t)) = max

u(t)

[

r (x(t),u(t)) ∆t +
∂V ∗

∂x(t)
f (x(t),u(t))

]
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• Separate integral into [t,t+∆t] and [t+∆t,∞):

• Approximate V*(x(t+∆t)) by Taylor 1st degree

• Plug in and rearrange a bit 

Continuous Time HJB for 
Discounted Rewards
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• Take ∆t→0

✴ compare with original HJB

• Solution approach: GPI

• Must use function approximators!

4

∆t→ 0 J0(x, t)

−∂J0

∂t
= min

u(t)

{
L(x,u(t), t) +

∂J0

∂x
f(x,u(t), t)

}
(2)

HJB

J0(x, t) = φ(x, t)

ψ(x, t) = 0 (x, t)

H(x,λ, t) = −∂J0

∂t
(3)

λT =
∂J0

∂x
(4)

H
(
x, ∂J0

∂x ,u, t
)

= L (x,u, t)+ ∂J0

∂x f (x,u, t)
HJB

−∂J0

∂t
= H0

(
x,

∂J0

∂x
, t

)

H0

(
x,

∂J0

∂x
, t

)
= min

u
H

(
x,

∂J0

∂x
,u, t

)

HJB

x ∈ X = {1, . . . , |X |}
t ∈ {1, . . . N} u ∈ U = {1, . . . , |U|}

xt+1 = f(xt, ut, t)

cost to go

V 0(xk, k) = min
u

{
φ(xN , N) +

N−1∑

t=k

L(xt, ut, t)

}
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• Use function approximator with parameter vector w:

• by HJB:

i.e. 

• Define the inconsistency (TD error) as

• Reduce inconsistency by correcting weights:

where η is a scaling factor

• This is TD(0)

Reinforcement Learning in Continuous Time and Space 223

Reinforcement learning can be formulated as the process of bringing the
currentpolicym and itsvalue function estimate V closer to the optimal policy
m ¤ and the optimal value function V¤. It generally involves two components:

1. Estimate the value function V based on the current policym .

2. Improve the policym by making it greedy with respect to the current
estimate of the value function V.

We will consider the algorithms for these two processes in the following
two sections.

3 Learning the Value Function

For the learning of the value function in a continuous state-space, it is
mandatory to use some form of function approximator. We denote the cur-
rent estimate of the value function as

Vm (x(t)) ’ V(x(t)I w), (3.1)

where w is a parameter of the function approximator, or simply, V(t). In the
framework of TD learning, the estimate of the value function is updated
using a self-consistency condition that is local in time and space. This is
given by differentiating de!nition 2.4 by t as

PVm (x(t)) =
1
t

Vm (x(t)) ¡ r(t). (3.2)

This should hold for any policy, including the optimal policy given by equa-
tion 2.7.

If the current estimate V of the value function is perfect, it should satisfy
the consistency condition PV(t) = 1

t V(t)¡r(t). If this condition is not satis!ed,
the prediction should be adjusted to decrease the inconsistency,

d (t) ´ r(t) ¡ 1
t

V(t) C PV(t). (3.3)

This is the continuous-time counterpart of the TD error (Barto, Sutton, &
Anderson, 1983; Sutton, 1988).

3.1 Updating the Level and the Slope. In order to bring the TD er-
ror (3.3) to zero, we can tune the level of the value function V(t), its time
derivative PV(t), or both, as illustrated in Figures 1A–C. Now we consider
the objective function (Baird, 1993),

E(t) =
1
2

|d (t)|2. (3.4)

5

Learning the Value Function
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1

τ
V µ (x(t)) = r (x(t), µ (x(t))) +
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∂x(t)
f (x(t), µ (x(t)))

︸ ︷︷ ︸

=V̇ µ(t)

1
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≈r(x(t),u(t))∆t

+e−
∆t
r V ∗ (x(t + ∆t))








V ∗ (x(t + ∆t)) ≈ V ∗ (x(t)) +
∂V ∗

∂x(t)
f (x(t),u(t)) ∆t

(

1 − e−
∆t
r

)

V ∗ (x(t)) = max
u[t,t+∆t]

[

r (x(t),u(t)) ∆t + e−
∆t
r

∂V ∗

∂x(t)
f (x(t),u(t)) ∆t

]

1

τ
V ∗ (x(t)) = max

u(t)

[

r (x(t),u(t)) +
∂V ∗

∂x(t)
f (x(t),u(t))

]

1

τ
V µ (x(t)) = r (x(t), µ (x(t))) +

∂V µ

∂x(t)
f (x(t), µ (x(t)))

︸ ︷︷ ︸

=V̇ µ(t)

ẇ = ηδ(t)
∂V (x(t),w)

∂w

1



• Correction decays exponentially. I.e. the desired correction due to the 
current discrepancy is

• The weights should therefore be updated by

• The eligibility can be computed as a linear (time varying) dynamical 
system

where κ is a time decay constant

Learning Value Func. by TD(λ)
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approximation of time derivative PV(t). By substituting PV(t) = (V(t) ¡ V(t ¡
D t))/ D t into equation 3.3, we have

d (t) = r(t) C 1
D t

µ¡
1 ¡ D t

t

¢
V(t) ¡ V(t ¡ D t)

¶
. (3.6)

Then the gradient of the squared TD error (see equation 3.4) with respect to
the parameter wi is given by

@E(t)
@wi

= d (t)
1

D t

µ¡
1 ¡ D t

t

¢ @V(x(t)I w)
@wi

¡ @V(x(t ¡ D t)I w)
@wi

¶
.

A straightforward gradient descent algorithm is given by

Pwi = gd (t)
µ

¡
¡

1 ¡ D t
t

¢ @V(x(t)I w)
@wi

C @V(x(t ¡ D t)I w)
@wi

¶
. (3.7)

An alternative way is to update only V(t ¡ D t) without explicitly changing
V(t) by

Pwi = gd (t)
@V(x(t ¡ D t)I w)

@wi
. (3.8)

The Euler discretized TD error, equation 3.6, coincides with the conven-
tional TD error,

dt = rt Cc Vt ¡ Vt¡1,

by taking the discount factor c = 1 ¡ D t
t ’ e¡ D t

t and rescaling the values
as Vt = 1

D t V(t). The update schemes, equations 3.7 and 3.8, correspond to
the residual-gradient (Baird, 1995; Harmon, Baird, & Klopf, 1996) and TD(0)
algorithms, respectively. Note that time step D t of the Euler differentiation
does not have to be equal to the control cycle of the physical system.

3.3 Exponential Eligibility Trace: TD(l). Now let us consider how an
instantaneous TD error should be corrected by a change in the value V as
a function of time. Suppose an impulse of reward is given at time t = t0.
Then, from de!nition 2.4, the corresponding temporal pro!le of the value
function is

Vm (t) =

(
e¡ t0¡t

t t · t0,
0 t > t0.

Because the value function is linear with respect to the reward, the desired
correction of the value function for an instantaneous TD errord (t0) is

OV(t) =

(
d (t0)e¡ t0¡t

t t · t0,
0 t > t0,

ẇ = ηδ(t)
∂V (x(t),w)

∂w

ẇ = ηδ(t0)

∫ t0

−∞

e−
t0−t

τ
∂V (x(t),w)

∂w
dt

︸ ︷︷ ︸

eligibility

ẇ = ηδ(t)e(t)

ėi(t) = −
1

κ
e(t) +

∂V (x(t),w)

∂w

2

ẇ = ηδ(t)
∂V (x(t),w)

∂w

ẇ = ηδ(t0)

∫ t0

−∞

e−
t0−t

τ
∂V (x(t),w)

∂w
dt

︸ ︷︷ ︸

eligibility, e(t)

ẇ = ηδ(t)e(t)

ėi(t) = −
1

κ
e(t) +

∂V (x(t),w)

∂w

2



Policy Improvement by 
Value Gradient

• If we know r(x(t),u) and f(x(i),u) we can select action that maximizes 
expected reward:

• This is not full DP because it is only done on visited states

• Can be difficult in general. If r is convex in u and f is linear in u the 
solution is unique and easy to find.

• If u is bounded (say by ±1)  we can either clip the result or do it more 
smoothly with a sigmoid, s(u)=2/πarctan(cu) (where c determines 
sensitivity).

• f and r can be learned on line (with function approximators) and used 
here instead of the “true” pair.

7
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as illustrated in Figure 1D. Therefore, the update of wi given d (t0) should
be made as

Pwi = g

Z t0

¡1
OV(t)

@V(x(t)I w)
@wi

dt = gd (t0)
Z t0

¡1
e¡ t0 ¡t

t
@V(x(t)I w)

@wi
dt. (3.9)

Wecan consider the exponentially weighted integral of the derivatives as the
eligibility trace ei for the parameter wi. Then a class of learning algorithms
is derived as

Pwi = gd (t)ei(t),

Pei(t) = ¡ 1
k

ei(t) C @V(x(t)I w)
@wi

, (3.10)

where 0 < k · t is the time constant of the eligibility trace.
If we discretize equation 3.10 with time step D t, it coincides with the

eligibility trace update in TD(l ) (see, e.g., Sutton & Barto, 1998),

ei(t C D t) = lc ei(t) C @Vt

@wi
,

with l = 1¡D t/k
1¡D t/ t .

4 Improving the Policy

Now we consider ways for improving the policy u(t) = m (x(t)) using its
associated value function V(x). One way is to improve the policy stochas-
tically using the actor-critic method, in which the TD error is used as the
effective reinforcement signal. Another way is to take a greedy policy with
respect to the current value function,

u(t) = m (x(t)) = arg max
u2U

µ
r(x(t), u) C @V(x)

@x
f (x(t), u)

¶
, (4.1)

using knowledge about the reward and the system dynamics.

4.1 Continuous Actor-Critic. First, we derive a continuous version of
the actor-critic method (Barto et al., 1983). By comparing equations 3.3 and
4.1, we can see that the TD error is maximized by the greedy action u(t).
Accordingly, in the actor-critic method, the TD error is used as the reinforce-
ment signal for policy improvement.

We consider the policy implemented by the actor as

u(t) = s
!

A(x(t)I wA) C sn(t)
´

, (4.2)



Pendulum Swing-Up, 
Limited Torque

• State = [θ,ω = dθ/dt]

• Control u= torque =  dω/dt 

• Model is known:

• Value function approximated by a normalized Gaussian network 

• Reward = cos(θ)-0.1u-0.1|ω|

• Used eligibility trace (time constant κ = 0.7)

• Model simulated by Runge Kutta 4 with dt = 0.07. 
Learning dynamics (eligibility trace) simulated by Euler method 8
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Figure 2: Control of a pendulum with limited torque. The dynamics were given
by Ph = v and ml2 Pv = ¡m v C mgl sinh C u. The physical parameters were
m = l = 1, g = 9.8, m = 0.01, and umax = 5.0. The learning parameters were
t = 1.0, k = 0.1, c = 0.1, tn = 1.0, s0 = 0.5, V0 = 0, V1 = 1, g = 1.0, gA = 5.0,
and gM = 10.0, in the following simulations unless otherwise speci!ed.

s = s0 min[1, max[0, V1¡V(t)
V1¡V0

]], where V0 and V1 are the minimal and max-
imal levels of the expected reward.

The physical systems were simulated by a fourth-order Runge-Kutta
method, and the learning dynamics was simulated by a Euler method, both
with the time step of 0.02 sec.

5.1 Pendulum Swing-Up with Limited Torque. First, we tested the
continuous-time RL algorithms in the task of a pendulum swinging up-
ward with limited torque (see Figure 2) (Atkeson, 1994; Doya, 1996). The
control of this one degree of freedom system is nontrivial if the maximal
output torque umax is smaller than the maximal load torque mgl. The con-
troller has to swing the pendulum several times to build up momentum and
also has to decelerate the pendulum early enough to prevent the pendulum
from falling over.

The reward was given by the height of the tip of the pendulum, R(x) =
cosh . The policy and value functions were implemented by normalized
gaussian networks with 15£15 basis functions to cover the two-dimensional
state-space x = (h , v). In modeling the system dynamics, 15 £ 15 £ 2 bases
were used for the state-action space (h , v, u).

Each trial was started from an initial state x(0) = (h (0), 0), where h (0)
was selected randomly in [¡p , p ]. A trial lasted for 20 seconds unless the
pendulum was over-rotated (|h | > 5p ). Upon such a failure, the trial was
terminated with a reward r(t) = ¡1 for 1 second. As a measure of the
swing-up performance, we de!ned the time in which the pendulum stayed
up (|h | < p / 4) as tup. A trial was regarded as “successful” when tup > 10
seconds. We used the number of trials made before achieving 10 successful
trials as the measure of the learning speed.
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imal levels of the expected reward.

The physical systems were simulated by a fourth-order Runge-Kutta
method, and the learning dynamics was simulated by a Euler method, both
with the time step of 0.02 sec.

5.1 Pendulum Swing-Up with Limited Torque. First, we tested the
continuous-time RL algorithms in the task of a pendulum swinging up-
ward with limited torque (see Figure 2) (Atkeson, 1994; Doya, 1996). The
control of this one degree of freedom system is nontrivial if the maximal
output torque umax is smaller than the maximal load torque mgl. The con-
troller has to swing the pendulum several times to build up momentum and
also has to decelerate the pendulum early enough to prevent the pendulum
from falling over.

The reward was given by the height of the tip of the pendulum, R(x) =
cosh . The policy and value functions were implemented by normalized
gaussian networks with 15£15 basis functions to cover the two-dimensional
state-space x = (h , v). In modeling the system dynamics, 15 £ 15 £ 2 bases
were used for the state-action space (h , v, u).

Each trial was started from an initial state x(0) = (h (0), 0), where h (0)
was selected randomly in [¡p , p ]. A trial lasted for 20 seconds unless the
pendulum was over-rotated (|h | > 5p ). Upon such a failure, the trial was
terminated with a reward r(t) = ¡1 for 1 second. As a measure of the
swing-up performance, we de!ned the time in which the pendulum stayed
up (|h | < p / 4) as tup. A trial was regarded as “successful” when tup > 10
seconds. We used the number of trials made before achieving 10 successful
trials as the measure of the learning speed.

ẇ = ηδ(t)
∂V (x(t),w)

∂w

ẇ = ηδ(t0)

∫ t0

−∞
e−

t0−t

τ
∂V (x(t),w)

∂w
dt

︸ ︷︷ ︸

eligibility, e(t)

ẇ = ηδ(t)e(t)

ėi(t) = −
1

κ
e(t) +

∂V (x(t),w)

∂w

V (x,w) =

∑K
k=1 wke

−
‖x−ck‖

2

σ2
k

∑K
k=1 e

−
‖x−ck‖

2

σ2

k

2



Pendulum Results
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Figure 4: Comparison of the time course of learning with different control
schemes: (A) discrete actor-critic, (B) continuous actor-critic, (C) value-gradient-
based policy with an exact model, (D) value-gradient policy with a learned
model (note the different scales). tup: time in which the pendulum stayed up. In
the discrete actor-critic, the state-space was evenly discretized into 30£30 boxes
and the action was binary (u = § umax). The learning parameters were c = 0.98,
l = 0.8,g = 1.0, and gA = 0.1.
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Figure 5: Comparison of learning speeds with discrete and continuous actor-
critic and value-gradient-based policies with anexact and learned physical mod-
els. The ordinate is the number of trials made until 10 successful swing-ups.
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and the action was binary (u = § umax). The learning parameters were c = 0.98,
l = 0.8,g = 1.0, and gA = 0.1.
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Figure 5: Comparison of learning speeds with discrete and continuous actor-
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