Reinforcement Learning
in Continuous Time and

Space

* From K. Doya, Neural Computation 12,219-245,2000

Continuous Time
Discounted Value Function

Continuous time dynamical system: x = f (x(¢), u(?))
Reward: r(t) = r (x(t),u(t))
Policy: u(t) = p (x(t))

The policy’s decaying (i.e. discounted) value function:

s—t

oo
Vi) = [e (x(s).u(s) ds
t
Optimal policy’s value function

V* (x(t)) = max [/t et (x(s), u(s)) ds

ulft,00)

~N

Continuous Time HJB for
Discounted Rewards

® Scparate integral into [#,/+Af] and [+At,0):

t+Atoo At
Ve (x() = max /t e T r(x(s),u(s))ds+e” T VT (x(t + At))

\ . J/

-~

~r(x(t),u(t)) At

e Approximate V' (x(#+Af)) by Taylor 1st degree

V™ (x(t+ At)) = V™ (x(1)) + S}Z; f(x(t),u(t)) At
® Plug in and rearrange a bit
ALY B _ae OV
(1 _e 5) V() = x| (x(t), u(0) At + e 3 2 (x(0), u(0) At

® Take Ar—0

1

2 (x(0) = max |1 (x(),u(e) +
T u(t)

% compare with original HIB

0J"

Lo {L(x, u(t),) +

ot u(t)

e Solution approach: GPI

evaluation

0.JY
ox

m

JU
n—>greedy(V)
improvement

e Must use function approximators!

|4

~N

Learning the Value Function

e Use function approximator with parameter vector w: V* (x(¢)) >~ V(x(¢); w)

o by HIB: ZV¥ (x(t)) = 1 (x(t).a (x(1) + st (x(t). e (x(0)

~"

—Vk (t)

e VH(x(1) = %V“ (x(D) — r(8) 1
® Define the inconsistency (TD error) as o (t) =r(t) — =V(t) + V(t)

T
® Reduce inconsistency by correcting weights:

_ oV (x(t), w)

w =no({) ow

where 1 1s a scaling factor

® This i1s TD(0)

LearningVaIue Func. by TD(A;

e (Correction decays exponentially. I.e. the desired correction due to the
current discrepancy 1s

tQ—t

V() = {5(t0)€ -t =<t
0 t> to

® The weights should therefore be updated by
P e OV (x(t
W — 775(150)/ o (x(t), w) At

oo ow

\ - >4

eligibility, e(t)
® The eligibility can be computed as a linear (time varying) dynamical

system w = nd(t)e(t)
. 1 oV (x(t),w
é(t) = —;e(t) + (aiv))
L where k 1s a time decay constant 6

Policy Improvement by
Value Gradient

If we know r(x(¢),u) and f(x(7),u) we can select action that maximizes
expected reward:

o0V (x)
0X

alt) = 1 (x(0) = argmax | rx(0), w) + 52 fx(0), w)

This 1s not full DP because it 1s only done on visited states

Can be difficult in general. If 7 1s convex in u and f 1s linear in u the
solution 1s unique and easy to find.

If u 1s bounded (say by £1) we can either clip the result or do it more
smoothly with a sigmoid, s(u)=?/zarctan(cu) (where ¢ determines
sensitivity).

f and » can be learned on line (with function approximators) and used
here instead of the “true” pair.

Pendulum Swing-Up,
Limited Torque

State = [0, = %0/4] 0
Control u= torque = /4
Model is known: § = o and mlPé = —po + mglsin® + u

Value function approximated by a normalized Gaussian network

el

_ Z?:l W€ 7k

BERAE
K o2
zk:1 € k

Vi(x, w)

Reward = cos(6)-0.1u-0.1|w|
Used eligibility trace (time constant x = 0.7)

Model simulated by Runge Kutta 4 with dt = 0.07.
Learning dynamics (eligibility trace) simulated by Euler method

Pendulum Results

l|l 'u

||" 'f‘u]‘1 |

) !ﬂ ,mh V‘.] w uF ”,l

500 1000 1500 (2000 0 50 100 150 200

trials trials
C 2.7 D
20
A AT ,l;mw.« i TR IR
Ml T Rl
15 |)
>, 10
5 L
0 s X . , |._: .:a) , .
20 40 60 80 100 0 20 40 60 80 100
trials trials

Figure 4: Comparison of the time course of learning with different control
schemes: (A) discrete actor-critic, (B) continuous actor-critic, (C) value-gradient-
based policy with an exact model, (D) value-gradient policy with a learned
model (note the different scales). t,,,: time in which the pendulum stayed up. In

