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Continuous Time
Discounted Value Function

Continuous time dynamical system: x = f (x(¢), u(?))
Reward: r(t) = r (x(t),u(t))
Policy: u(t) = p (x(t))

The policy’s decaying (i.e. discounted) value function:
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Optimal policy’s value function
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Continuous Time HJB for
Discounted Rewards

® Scparate integral into [#,/+Af] and [+At,0):
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e Approximate V' (x(#+Af)) by Taylor 1st degree

V™ (x(t+ At)) = V™ (x(1)) + S}Z; f(x(t),u(t)) At
® Plug in and rearrange a bit
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® Take Ar—0
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% compare with original HIB
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e Solution approach: GPI
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e Must use function approximators!
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Learning the Value Function

e Use function approximator with parameter vector w: V* (x(¢)) >~ V(x(¢); w)

o by HIB: ZV¥ (x(t)) = 1 (x(t).a (x(1) + st (x(t). e (x(0)
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e VH(x(1) = %V“ (x(D) — r(8) 1
® Define the inconsistency (TD error) as o (t) =r(t) — =V(t) + V(t)
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® Reduce inconsistency by correcting weights:
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where 1 1s a scaling factor

® This i1s TD(0)




LearningVaIue Func. by TD(A;

e (Correction decays exponentially. I.e. the desired correction due to the
current discrepancy 1s
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® The weights should therefore be updated by
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eligibility, e(t)
® The eligibility can be computed as a linear (time varying) dynamical

system w = nd(t)e(t)
. 1 oV (x(t),w
é(t) = —;e(t) + (aiv) )
L where k 1s a time decay constant 6




Policy Improvement by
Value Gradient

If we know r(x(¢),u) and f(x(7),u) we can select action that maximizes
expected reward:
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This 1s not full DP because it 1s only done on visited states

Can be difficult in general. If 7 1s convex in u and f 1s linear in u the
solution 1s unique and easy to find.

If u 1s bounded (say by £1) we can either clip the result or do it more
smoothly with a sigmoid, s(u)=?/zarctan(cu) (where ¢ determines
sensitivity).

f and » can be learned on line (with function approximators) and used
here instead of the “true” pair.




Pendulum Swing-Up,
Limited Torque

State = [0, = %0/4] 0
Control u= torque = /4
Model is known: § = o and mlPé = —po + mglsin® + u

Value function approximated by a normalized Gaussian network
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Reward = cos(6)-0.1u-0.1|w|
Used eligibility trace (time constant x = 0.7)

Model simulated by Runge Kutta 4 with dt = 0.07.
Learning dynamics (eligibility trace) simulated by Euler method




Pendulum Results
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Figure 4: Comparison of the time course of learning with different control
schemes: (A) discrete actor-critic, (B) continuous actor-critic, (C) value-gradient-
based policy with an exact model, (D) value-gradient policy with a learned
model (note the different scales). t,,,: time in which the pendulum stayed up. In




