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Lecture 18

Controllability and state transfer

• state transfer

• reachable set, controllability matrix

• minimum norm inputs

• infinite-horizon minimum norm transfer

18–1

State transfer

consider ẋ = Ax + Bu (or x(t + 1) = Ax(t) + Bu(t)) over time interval
[ti, tf ]

we say input u : [ti, tf ] → Rm steers or transfers state from x(ti) to x(tf)
(over time interval [ti, tf ])

(subscripts stand for initial and final)

questions:

• where can x(ti) be transfered to at t = tf?

• how quickly can x(ti) be transfered to some xtarget?

• how do we find a u that transfers x(ti) to x(tf)?

• how do we find a ‘small’ or ‘efficient’ u that transfers x(ti) to x(tf)?
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Reachability

consider state transfer from x(0) = 0 to x(t)

we say x(t) is reachable (in t seconds or epochs)

we define Rt ⊆ Rn as the set of points reachable in t seconds or epochs

for CT system ẋ = Ax + Bu,

Rt =

{ ∫ t

0

e(t−τ)ABu(τ) dτ

∣
∣
∣
∣

u : [0, t] → Rm

}

and for DT system x(t + 1) = Ax(t) + Bu(t),

Rt =

{
t−1∑

τ=0

At−1−τBu(τ)

∣
∣
∣
∣
∣

u(t) ∈ Rm

}
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• Rt is a subspace of Rn

• Rt ⊆ Rs if t ≤ s

(i.e., can reach more points given more time)

we define the reachable set R as the set of points reachable for some t:

R =
⋃

t≥0

Rt
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Reachability for discrete-time LDS

DT system x(t + 1) = Ax(t) + Bu(t), x(t) ∈ Rn

x(t) = Ct





u(t − 1)
...

u(0)





where Ct =
[

B AB · · · At−1B
]

so reachable set at t is Rt = range(Ct)

by C-H theorem, we can express each Ak for k ≥ n as linear combination
of A0, . . . , An−1

hence for t ≥ n, range(Ct) = range(Cn)
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thus we have

Rt =

{
range(Ct) t < n
range(C) t ≥ n

where C = Cn is called the controllability matrix

• any state that can be reached can be reached by t = n

• the reachable set is R = range(C)
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Controllable system

system is called reachable or controllable if all states are reachable (i.e.,
R = Rn)

system is reachable if and only if Rank(C) = n

example: x(t + 1) =

[
0 1
1 0

]

x(t) +

[
1
1

]

u(t)

controllability matrix is C =

[
1 1
1 1

]

hence system is not controllable; reachable set is

R = range(C) = { x | x1 = x2 }
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General state transfer

with tf > ti,

x(tf) = Atf−tix(ti) + Ctf−ti





u(tf − 1)
...

u(ti)





hence can transfer x(ti) to x(tf) = xdes

⇔ xdes − Atf−tix(ti) ∈ Rtf−ti

• general state transfer reduces to reachability problem

• if system is controllable any state transfer can be achieved in ≤ n steps

• important special case: driving state to zero (sometimes called
regulating or controlling state)
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Least-norm input for reachability

assume system is reachable, Rank(Ct) = n

to steer x(0) = 0 to x(t) = xdes, inputs u(0), . . . , u(t − 1) must satisfy

xdes = Ct





u(t − 1)
...

u(0)





among all u that steer x(0) = 0 to x(t) = xdes, the one that minimizes

t−1∑

τ=0

‖u(τ)‖2
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is given by 



uln(t − 1)
...

uln(0)



 = CT
t (CtC

T
t )−1xdes

uln is called least-norm or minimum energy input that effects state transfer

can express as

uln(τ) = BT (AT )(t−1−τ)

(
t−1∑

s=0

AsBBT (AT )s

)−1

xdes,

for τ = 0, . . . , t − 1
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Emin, the minimum value of

t−1∑

τ=0

‖u(τ)‖2 required to reach x(t) = xdes, is

sometimes called minimum energy required to reach x(t) = xdes

Emin =

t−1∑

τ=0

‖uln(τ)‖2

=
(
CT

t (CtC
T
t )−1xdes

)T
CT

t (CtC
T
t )−1xdes

= xT
des(CtC

T
t )−1xdes

= xT
des

(
t−1∑

τ=0

AτBBT (AT )τ

)−1

xdes
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• Emin(xdes, t) gives measure of how hard it is to reach x(t) = xdes from
x(0) = 0 (i.e., how large a u is required)

• Emin(xdes, t) gives practical measure of controllability/reachability (as
function of xdes, t)

• ellipsoid { z | Emin(z, t) ≤ 1 } shows points in state space reachable at t
with one unit of energy

(shows directions that can be reached with small inputs, and directions
that can be reached only with large inputs)
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Emin as function of t:

if t ≥ s then
t−1∑

τ=0

AτBBT (AT )τ ≥

s−1∑

τ=0

AτBBT (AT )τ

hence
(

t−1∑

τ=0

AτBBT (AT )τ

)−1

≤

(
s−1∑

τ=0

AτBBT (AT )τ

)−1

so Emin(xdes, t) ≤ Emin(xdes, s)

i.e.: takes less energy to get somewhere more leisurely
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example: x(t + 1) =

[
1.75 0.8
−0.95 0

]

x(t) +

[
1
0

]

u(t)

Emin(z, t) for z = [1 1]T :
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ellipsoids Emin ≤ 1 for t = 3 and t = 10:
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Emin(x, 3) ≤ 1

Emin(x, 10) ≤ 1

Controllability and state transfer 18–15

Minimum energy over infinite horizon

the matrix

P = lim
t→∞

(
t−1∑

τ=0

AτBBT (AT )τ

)−1

always exists, and gives the minimum energy required to reach a point xdes

(with no limit on t):

min

{
t−1∑

τ=0

‖u(τ)‖2

∣
∣
∣
∣
∣

x(0) = 0, x(t) = xdes

}

= xT
desPxdes

if A is stable, P > 0 (i.e., can’t get anywhere for free)

if A is not stable, then P can have nonzero nullspace
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• Pz = 0, z 6= 0 means can get to z using u’s with energy as small as you
like

(u just gives a little kick to the state; the instability carries it out to z
efficiently)

• basis of highly maneuverable, unstable aircraft
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Continuous-time reachability

consider now ẋ = Ax + Bu with x(t) ∈ Rn

reachable set at time t is

Rt =

{ ∫ t

0

e(t−τ)ABu(τ) dτ

∣
∣
∣
∣

u : [0, t] → Rm

}

fact: for t > 0, Rt = R = range(C), where

C =
[

B AB · · · An−1B
]

is the controllability matrix of (A,B)

• same R as discrete-time system

• for continuous-time system, any reachable point can be reached as fast
as you like (with large enough u)
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first let’s show for any u (and x(0) = 0) we have x(t) ∈ range(C)

write etA as power series:

etA = I +
t

1!
A +

t2

2!
A2 + · · ·

by C-H, express An, An+1, . . . in terms of A0, . . . , An−1 and collect powers
of A:

etA = α0(t)I + α1(t)A + · · · + αn−1(t)A
n−1

therefore

x(t) =

∫ t

0

eτABu(t − τ) dτ

=

∫ t

0

(
n−1∑

i=0

αi(τ)Ai

)

Bu(t − τ) dτ
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=

n−1∑

i=0

AiB

∫ t

0

αi(τ)u(t − τ) dτ

= Cz

where zi =

∫ t

0

αi(τ)u(t − τ) dτ

hence, x(t) is always in range(C)

need to show converse: every point in range(C) can be reached
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Impulsive inputs

suppose x(0−) = 0 and we apply input u(t) = δ(k)(t)f , where δ(k) denotes
kth derivative of δ and f ∈ Rm

then U(s) = skf , so

X(s) = (sI − A)−1Bskf

=
(
s−1I + s−2A + · · ·

)
Bskf

= ( sk−1 + · · · + sAk−2 + Ak−1
︸ ︷︷ ︸

impulsive terms

+s−1Ak + · · · )Bf

hence

x(t) = impulsive terms + AkBf + Ak+1Bf
t

1!
+ Ak+2Bf

t2

2!
+ · · ·

in particular, x(0+) = AkBf
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thus, input u = δ(k)f transfers state from x(0−) = 0 to x(0+) = AkBf

now consider input of form

u(t) = δ(t)f0 + · · · + δ(n−1)(t)fn−1

where fi ∈ Rm

by linearity we have

x(0+) = Bf0 + · · · + An−1Bfn−1 = C





f0
...

fn−1





hence we can reach any point in range(C)

(at least, using impulse inputs)
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can also be shown that any point in range(C) can be reached for any t > 0
using nonimpulsive inputs

fact: if x(0) ∈ R, then x(t) ∈ R for all t (no matter what u is)

to show this, need to show etAx(0) ∈ R if x(0) ∈ R . . .
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Example

• unit masses at y1, y2, connected by unit springs, dampers

• input is tension between masses

• state is x = [yT ẏT ]T

u(t)u(t)

system is

ẋ =







0 0 1 0
0 0 0 1

−1 1 −1 1
1 −1 1 −1







x +







0
0
1

−1







u

• can we maneuver state anywhere, starting from x(0) = 0?

• if not, where can we maneuver state?
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controllability matrix is

C =
[

B AB A2B A3B
]

=







0 1 −2 2
0 −1 2 −2
1 −2 2 0

−1 2 −2 0







hence reachable set is

R = span













1
−1

0
0







,







0
0
1

−1













we can reach states with y1 = −y2, ẏ1 = −ẏ2, i.e., precisely the
differential motions

it’s obvious — internal force does not affect center of mass position or
total momentum!
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Least-norm input for reachability

(also called minimum energy input)

assume that ẋ = Ax + Bu is reachable

we seek u that steers x(0) = 0 to x(t) = xdes and minimizes

∫ t

0

‖u(τ)‖2 dτ

let’s discretize system with interval h = t/N

(we’ll let N → ∞ later)

thus u is piecewise constant:

u(τ) = ud(k) for kh ≤ τ < (k + 1)h, k = 0, . . . , N − 1
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so

x(t) =
[

Bd AdBd · · · AN−1
d Bd

]





ud(N − 1)
...

ud(0)





where

Ad = ehA, Bd =

∫ h

0

eτA dτB

least-norm ud that yields x(t) = xdes is

udln(k) = BT
d (AT

d )(N−1−k)

(
N−1∑

i=0

Ai
dBdB

T
d (AT

d )i

)−1

xdes

let’s express in terms of A:

BT
d (AT

d )(N−1−k) = BT
d e(t−τ)AT
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where τ = t(k + 1)/N

for N large, Bd ≈ (t/N)B, so this is approximately

(t/N)BTe(t−τ)AT

similarly

N−1∑

i=0

Ai
dBdB

T
d (AT

d )i =

N−1∑

i=0

e(ti/N)ABdB
T
d e(ti/N)AT

≈ (t/N)

∫ t

0

et̄ABBTet̄AT
dt̄

for large N
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hence least-norm discretized input is approximately

uln(τ) = BTe(t−τ)AT
(∫ t

0

et̄ABBTet̄AT
dt̄

)−1

xdes, 0 ≤ τ ≤ t

for large N

hence, this is the least-norm continuous input

• can make t small, but get larger u

• cf. DT solution: sum becomes integral
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min energy is
∫ t

0

‖uln(τ)‖2 dτ = xT
desQ(t)−1xdes

where

Q(t) =

∫ t

0

eτABBTeτAT
dτ

can show

(A,B) controllable ⇔ Q(t) > 0 for all t > 0

⇔ Q(s) > 0 for some s > 0

in fact, range(Q(t)) = R for any t > 0
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Minimum energy over infinite horizon

the matrix

P = lim
t→∞

(∫ t

0

eτABBTeτAT
dτ

)−1

always exists, and gives minimum energy required to reach a point xdes

(with no limit on t):

min

{ ∫ t

0

‖u(τ)‖2 dτ

∣
∣
∣
∣

x(0) = 0, x(t) = xdes

}

= xT
desPxdes

• if A is stable, P > 0 (i.e., can’t get anywhere for free)

• if A is not stable, then P can have nonzero nullspace

• Pz = 0, z 6= 0 means can get to z using u’s with energy as small as you
like (u just gives a little kick to the state; the instability carries it out to
z efficiently)
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General state transfer

consider state transfer from x(ti) to x(tf) = xdes, tf > ti

since

x(tf) = e(tf−ti)Ax(ti) +

∫ tf

ti

e(tf−τ)ABu(τ) dτ

u steers x(ti) to x(tf) = xdes ⇔

u (shifted by ti) steers x(0) = 0 to x(tf − ti) = xdes − e(tf−ti)Ax(ti)

• general state transfer reduces to reachability problem

• if system is controllable, any state transfer can be effected

– in ‘zero’ time with impulsive inputs
– in any positive time with non-impulsive inputs
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Example

u1 u1 u2 u2

• unit masses, springs, dampers

• u1 is force between 1st & 2nd masses

• u2 is force between 2nd & 3rd masses

• y ∈ R3 is displacement of masses 1,2,3

• x =

[
y
ẏ

]
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system is:

ẋ =











0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−2 1 0 −2 1 0
1 −2 1 1 −2 1
0 1 −2 0 1 −2











x +











0 0
0 0
0 0
1 0

−1 1
0 −1











[
u1

u2

]
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steer state from x(0) = e1 to x(tf) = 0

i.e., control initial state e1 to zero at t = tf

Emin =

∫ tf

0

‖uln(τ)‖2 dτ vs. tf :
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for tf = 3, u = uln is:
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and for tf = 4:
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output y1 for u = 0:
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output y1 for u = uln with tf = 3:
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output y1 for u = uln with tf = 4:
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