EE263 Autumn 2007-08 Stephen Boyd

Lecture 18
Controllability and state transfer

e state transfer
e reachable set, controllability matrix
e minimum norm inputs

e infinite-horizon minimum norm transfer
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State transfer

consider & = Ax + Bu (or z(t + 1) = Ax(t) + Bu(t)) over time interval
[t:, tf]

we say input w : [t;,t¢] — R"" steers or transfers state from z(t;) to x(ty)
(over time interval [t;,%])

(subscripts stand for initial and final)

questions:

e where can z(t;) be transfered to at ¢t = ¢47

e how quickly can z(t;) be transfered to some Ziarget?
e how do we find a u that transfers x(t;) to x(ts)?

e how do we find a ‘small’ or ‘efficient’ u that transfers x(¢;) to x(ts)?
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Reachability

consider state transfer from z(0) = 0 to z(t)

we say x(t) is reachable (in t seconds or epochs)

we define R; C R™ as the set of points reachable in ¢ seconds or epochs
for CT system & = Az + Bu,

t
Ry = { / e""TABu(7) dr

0

mmﬂeRm}

and for DT system z(t + 1) = Ax(t) + Bu(t),

R = { iAt_l_TBu(T) u(t) € R™ }
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e R; is a subspace of R"

e R, CR,ift<s

(i.e., can reach more points given more time)

we define the reachable set R as the set of points reachable for some ¢:

R=|JR:
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Reachability for discrete-time LDS

DT system z(t + 1) = Ax(t) + Bu(t), x(t) € R"

where C,=[ B AB --- A"!B]

so reachable set at ¢ is R; = range(C;)

by C-H theorem, we can express each AF for k > n as linear combination

of A0, ... An-1

hence for ¢ > n, range(C;) = range(C,,)
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thus we have
R range(Cy) t<mn
P71 range(C) t>n

where C = C,, is called the controllability matrix

e any state that can be reached can be reached by t =n

e the reachable set is R = range(C)
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Controllable system

system is called reachable or controllable if all states are reachable (i.e.,
R =R")

system is reachable if and only if Rank(C) =n
example: z(t+ 1) = [ (1) (1) } x(t) + { L } u(t)

controllability matrix is C = { 1 1 }

hence system is not controllable; reachable set is

R =range(C)={z|z1 =22 }
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General state transfer

with t¢ > ¢,
u(ty —1)
w(ty) = A Na(t;) + Coyy, :
u(t;)
hence can transfer x(;) to x(t) = Tdes
<~ Ldes — Atf—tia:(ti) € Rtf—ti

e general state transfer reduces to reachability problem
e if system is controllable any state transfer can be achieved in < n steps

e important special case: driving state to zero (sometimes called
regulating or controlling state)
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Least-norm input for reachability

assume system is reachable, Rank(C;) = n

to steer 2(0) = 0 to x(t) = xges, inputs u(0),...,u(t — 1) must satisfy
u(t —1)

Ldes = Ct :
u(0)

among all u that steer 2(0) = 0 to x(f) = Zdes, the one that minimizes

S u()|?
7=0
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is given by
uln(t — 1)
: =Cl(CClH) ages
uln(O)

Uy, is called least-norm or minimum energy input that effects state transfer

can express as
t—1 -1
Uln(T) _ BT(AT)(t—l—T) (Z ASBBT(AT)3> o,

s=0

forr=0,...,t—1
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t—1
Emin, the minimum value of Z |u(7)||? required to reach z(t) = Tqes, is

7=0
sometimes called minimum energy required to reach x(t) = Tges

t—1
gmin = Z HUIH(T)”Z
7=0

= (CF(CCT)  taes) ' CT(CCT) Do

= xdTes (CCl) ™ s

t—1 —1
= k. (ZATBBT(AT)T> Ldes

7=0
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® Enin(Tdes, ) gives measure of how hard it is to reach z(t) = x4es from
x(0) =0 (i.e., how large a u is required)

® Emin(Taes,t) gives practical measure of controllability /reachability (as
function of xges, t)

e ellipsoid { 2z | Emin(2,t) < 1 } shows points in state space reachable at ¢
with one unit of energy

(shows directions that can be reached with small inputs, and directions
that can be reached only with large inputs)
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Emin as function of ¢:

if t > s then
t—1 s—1
ZATBBT(AT)T Z ZATBBT(AT)T
7=0 7=0

hence

<tz: ATBBT(AT)T> < (Sz: ATBBT(AT)T>

=0 7=0

SO Emin(mdes, t) < 5min(33des, 3)

i.e.: takes less energy to get somewhere more leisurely
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example: z(t + 1) = { i 08 ]az(t) + { ; } u(t)

Emin(z,t) for z = [1 1]T:
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ellipsoids Epin < 1 fort =3 and t = 10:

Emin(a:, ‘3) <‘ 1

10
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Minimum energy over infinite horizon

the matrix
t—1 -1
1 T T T\T
P—th_glo g_OA BB (A%)

always exists, and gives the minimum energy required to reach a point xgeg
(with no limit on t):

t—1
min ¢ > [Ju(r)|I” | 2(0) =0, 2(t) = Taes p = TesPdes
T7=0
if A is stable, P > 0 (i.e., can’t get anywhere for free)

if A is not stable, then P can have nonzero nullspace
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e Pz =0, z# 0 means can get to z using u's with energy as small as you
like

(u just gives a little kick to the state; the instability carries it out to z
efficiently)

e basis of highly maneuverable, unstable aircraft
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Continuous-time reachability

consider now & = Ax + Bu with z(t) € R"

reachable set at time ¢ is

¢
R = { / e ABu(r) dr | w:[0,t] — R™ }

0

fact: for t > 0, Ry = R = range(C), where
C=[B AB ... A"'B]

is the controllability matrix of (A, B)

e same R as discrete-time system

e for continuous-time system, any reachable point can be reached as fast
as you like (with large enough )
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first let's show for any u (and z(0) = 0) we have x(t) € range(C)

A

write e as power series:

g taity
et =T+ A+ AT

by C-H, express A", A"*1 ... interms of A%, ..., A"~ and collect powers
of A:
e = ag(t) I+ o () A+ - 4+ a1 () A"

therefore

t

o(t) = / e ABu(t — 1) dr
0
t /n—1
= / (Z ai(T)A2> Bu(t — 1) dr

0 \i=0
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_ ZAZ'B/O ailm)ult — 1) dr

¢
where z; = / a;(T)u(t — 1) dr
0

hence, x(t) is always in range(C)

need to show converse: every point in range(C) can be reached
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Impulsive inputs
suppose 2(0_) = 0 and we apply input u(t) = §)(¢) f, where §() denotes
kth derivative of 6 and f € R™
then U(s) = sk f, so
X(s) = (sI—A)"'Bs"f
= (5_1] + 5 2A+ - ) BsFf

— (§k_1—|—-'-—|—8Ak_2—|—Ak_£—|—S_1Ak—|—---)Bf
impulsive terms

hence

t 2
x(t) = impulsive terms + A*Bf + AkHBfF + Ak”BfE T

in particular, z(0,) = A*Bf
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thus, input u = §(®) f transfers state from z(0_) = 0 to 2(04) = A*Bf
now consider input of form
u(t) =08(t) fo+ -+ 007D () fu

where f; € R™

by linearity we have
fo

z(04)=Bfo+ -+ A" 'Bf,_1=C :
fn—l

hence we can reach any point in range(C)
(at least, using impulse inputs)
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can also be shown that any point in range(C) can be reached for any t > 0
using nonimpulsive inputs

fact: if £(0) € R, then x(t) € R for all t (no matter what u is)

to show this, need to show e*4z(0) e R if z(0) € R . ..
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Example

e unit masses at y1, y2, connected by unit springs, dampers

e input is tension between masses

e state is v = [y? yT|T
u(t) u(t)
j
/\ﬁ
system is
0 0 1 0 0
. 0 0 0 1 0
=11 o1 |t |
1 -1 1 -1 —1

e can we maneuver state anywhere, starting from z(0) = 07

e if not, where can we maneuver state?
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controllability matrix is

0 1 =2 2
0 -1 2 =2
1 -2 2 0
—1 2 =2 0

C=[B AB A’B A’B]=

hence reachable set is

1 0
-1 0
R = span
P 0|’ 1
0 -1
we can reach states with y; = —yo, 1 = —¥2, i.e., precisely the
differential motions
it's obvious — internal force does not affect center of mass position or
total momentum!
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Least-norm input for reachability

(also called minimum energy input)
assume that # = Axz + Bu is reachable

we seek u that steers £(0) = 0 to x(t) = x4es and minimizes

/ (| dr

let's discretize system with interval h = t/N
(we'll let N — oo later)

thus wu is piecewise constant:

u(r) = uq(k) for kh<rt<(k+1)h, k=0,...,N—1
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> ud(N — 1)
l’(t) = [ B; AyBy --- Aév_le } :
ud(O)

where ,
Ay = ehA, B, = / ¢ drB
0
least-norm wuy that yields x(t) = Tqes is
N-1 —1
Ugm (k) = BT (ATY(N=1=k) (Z ALB;BT (AdTY’) Tdes
i=0
let’s express in terms of A:
BC:lr’(Ad:r’)(N—1—k:) _ Bge(t—T)AT
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where 7 =t(k+1)/N

for N large, By~ (t/N)B, so this is approximately

(t/N)BTe(t_T)AT

similarly
N-1 N-1 i
=0 i=0
b AT
~ @) [ et
0
for large N
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hence least-norm discretized input is approximately

t B —1
u(7) = BT (t-m)A" </ ABRBT A" df) Tdes, 0<7<t
0

for large N

hence, this is the least-norm continuous input

e can make t small, but get larger u

e cf. DT solution: sum becomes integral
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min energy is
luin (T)]I? d7 = 2GesQ(8) ™ Taes

where

can show

(A, B) controllable < Q(t) >0 forallt >0
< Q(s) > 0 for some s > 0

in fact, range(Q(t)) = R for any t > 0
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Minimum energy over infinite horizon

the matrix .

t
P = tlim (/ eTABBTeTAT dT)
— 0 O

always exists, and gives minimum energy required to reach a point zqes
(with no limit on t):

min { /Ot lu(r)||? dr

e if Aisstable, P > 0 (i.e., can't get anywhere for free)

x(o) = 07 :C(t) - xdeS } — x,(];espxdes

e if A is not stable, then P can have nonzero nullspace

e Pz =0, z# 0 means can get to z using u's with energy as small as you
like (u just gives a little kick to the state; the instability carries it out to
z efficiently)
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General state transfer

consider state transfer from z(t;) to z(tf) = Tdes, t5 > t;

since 4
z(ty) = e(tf_ti)A:c(ti) +/ e(tf_T)ABu(T) dr
¢

u steers x(t;) to 2(tf) = ges ©

u (shifted by t;) steers z(0) = 0 to x(t; — t;) = Tges — e 1A (1))

e general state transfer reduces to reachability problem

e if system is controllable, any state transfer can be effected

— in ‘zero’ time with impulsive inputs
— in any positive time with non-impulsive inputs
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Example

Ui Ui Uz U2
B by
e unit masses, springs, dampers
e u; is force between 1st & 2nd masses
® Uy is force between 2nd & 3rd masses
e y € R? is displacement of masses 1,2,3
b
Y
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system is:
0 0 0 1 0 0] 0 0]
0 0 0 0 1 0 0 0
. 0 0 0 0 0 1 o4 0 0 uq
| =2 1 0 —2 1 0 1 0 Us
1 -2 1 1 -2 1 -1 1
0 1 -2 0 I -2 | 0 -1
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steer state from 2(0) = e; to x(tf) =0

i.e., control initial state e; to zero at t = ¢y

ty
Emin = / |1 (7)]|* dT vs. t:
0
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forty =3, u= 1wy is:
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and for t; = 4:

|
4 45
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output y; for u = 0:

14

12

10
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output y; for u = wy, with ¢y = 3:

0.8 8l

06F : : : : il

0.4F : : : : 4

y1(t)

0.2 8

0.5 1 15 2 2.5 3 35 4 4.5
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output y; for u = wy, with ¢y = 4:

0.5 1 15 2 2.5 3 35 4 4.5
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