General pseudo-inverse

if AhasSVD A=UXV7T,
At =ve-lut

is the pseudo-inverse or Moore-Penrose inverse of A

if A is skinny and full rank,

Al = (ATA)71AT
gives the least-squares solution x;s = ATy
if A is fat and full rank,

At = AT(AAT)!
gives the least-norm solution zj, = A'y

SVD Applications
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Full SVD

SVD of A € R™*™ with Rank(A) = r:

0_1 Ul

A:UlElvlT:[ul ur}

o find Uy € R™*(m~") 1, ¢ R™*(""") st U = [U; U] € R™*™ and
V = [V4 V5] € R™*™ are orthogonal

e add zero rows/cols to X1 to form X € R™*™:

Y 211 | Orx(n—’r’)

O(m—T)X'r* ‘ O(m—r)x(n—r)
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then we have

2 | Orx(n—r)

T Vi
A=US VI =[ U | Uy ] i
2

O(m—r)X’r ‘ O(m—’r)x(n—r)

1.€.:
A=UxVv?’

called full SVD of A

(SVD with positive singular values only called compact SVD)
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Image of unit ball under linear transformation

full SVD:
A=Uxv?T

gives intepretation of y = Ax:

e rotate (by V?1)
e stretch along axes by o; (0; =0 for i > r)
e zero-pad (if m > n) or truncate (if m < n) to get m-vector

e rotate (by U)

SVD Applications 16-7



Image of unit ball under A

1 1

an an
\ /1 rotate by V' \ /1

stretch, > = diag(2,0.5)

U /7 rotateby U | |«
[ T

& —

{Ax | ||z|| < 1} is ellipsoid with principal axes o;u,;.
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Sensitivity of linear equations to data error

RTLXTL

consider y = Az, A € invertible; of course x = A~y
suppose we have an error or noise in y, i.e., y becomes y + dy
then z becomes x + dx with dxz = A~ 1y

hence we have ||6z|| = [|A~dy|| < || A=||6y]]

if ||A~1| is large,

e small errors in y can lead to large errors in x
e can't solve for x given y (with small errors)

e hence, A can be considered singular in practice
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a more refined analysis uses relative instead of absolute errors in z and y

since y = Ax, we also have ||y|| <

ozl _
el

|5y||

< Al A~ 1||'H |

k(A) = [A[ATH] = omax(A) /Tmin(A)

is called the condition number of A
we have:

relative error in solution z < condition number - relative error in data y
or, in terms of # bits of guaranteed accuracy:

# bits accuacy in solution ~ # bits accuracy in data —log, K
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we say

e A is well conditioned if k is small

e A is poorly conditioned if x is large

(definition of ‘small’ and ‘large’ depend on application)

same analysis holds for least-squares solutions with A nonsquare,
R = UmaX(A)/Umin(A)
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State estimation set up

we consider the discrete-time system
r(t+ 1) = Ax(t) + Bu(t) + w(t), y(t) = Cz(t) + Du(t) + v(t)

e w Is state disturbance or noise

® U IS SEeNSor Noise or error

e A B, C, and D are known

e u and y are observed over time interval [0,¢ — 1]

e w and v are not known, but can be described statistically, or assumed
small (e.g., in RMS value)

Observability and state estimation 19-2



State estimation problem

state estimation problem: estimate z(s) from

u(0),...,u(t—1), y(0),...,y(t—1)

e s = (: estimate initial state
e s =1 — 1: estimate current state

e s =t: estimate (i.e., predict) next state

an algorithm or system that yields an estimate Z(s) is called an observer or
state estimator

A

z(s) is denoted z(s|t — 1) to show what information estimate is based on
(read, “Z(s) given t — 1")
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Noiseless case

let's look at finding x(0), with no state or measurement noise:
x(t+ 1) = Az(t) + Bu(t), y(t) = Cx(t) + Du(t)

with z(¢t) € R", u(t) € R™, y(t) € RP

then we have
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where

C D 0
o~ | CA | g_| ¢P D 0
At | CA'*™2B CA*3B ... CB D |

e (J; maps initials state into resulting output over [0,¢ — 1]
e 7; maps input to output over [0,¢ — 1]

hence we have
y(0) u(0)

ot — 1) u(t— 1)

OtCI?(O) =

RHS is known, z(0) is to be determined
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hence:

e can uniquely determine x(0) if and only if N'(O;) = {0}

o N(O;) gives ambiguity in determining z(0)

o if 2(0) € N(O;) and u = 0, output is zero over interval [0,¢ — 1]

e input u does not affect ability to determine z(0);
Its effect can be subtracted out
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Observability matrix

by C-H theorem, each A is linear combination of AY, ..., A"~!

hence for t > n, N(O;) = N(O) where
- o -

O=0, = CA

I CAn—l

is called the observability matrix

if (0) can be deduced from u and y over [0,t — 1] for any ¢, then x(0)
can be deduced from u and y over [0,n — 1]

N(O) is called unobservable subspace; describes ambiguity in determining
state from input and output

system is called observable if N'(O) = {0}, i.e., Rank(O) =n
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Observers for noiseless case

suppose Rank(O;) = n (i.e., system is observable) and let I’ be any left
inverse of Oy, t.e., FO;, =1

then we have the observer

r(0) = F

y(_O)

y(t _ 1)

-7

I u(t:—l) |

u(0)

which deduces x(0) (exactly) from u, y over [0,¢ — 1]

in fact we have

r(r—t+1)=F

Observability and state estimation




7.€e., our observer estimates what state was ¢ — 1 epochs ago, given past
t — 1 inputs & outputs

observer is (multi-input, multi-output) finite impulse response (FIR) filter,
with inputs u and vy, and output %
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Invariance of unobservable set

fact: the unobservable subspace NV (O) is invariant, i.e., if z € N(O),
then Az € N(O)
proof: suppose z € N (0), i.e., CA*z =0fork=0,...,n—1
evidently CA*(Az) =0 fork=0,...,n — 2;
n—1 .
CA" Y(Az) =CA"z2=-) oCAz=0

1=0

(by C-H) where

det(sI —A) = 5" +ap_15" 1+ + g
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Continuous-time observability

continuous-time system with no sensor or state noise:

t=Ax+ Bu, y=Cx+ Du

can we deduce state x from u and y?

let's look at derivatives of y:

y = Cx+ Du
y = Czt+ Du=CAx + CBu+ Du
ij = CA*x+ CABu+ CBu+ Dii

and so on

Observability and state estimation
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hence we have

?_J =0zx+7T u
y<n:—1> 2 (n—1)
where O is the observability matrix and
_ N 0 i,
T _ C’.B D 0
| CA"?B CA"SB ... CB D

(same matrices we encountered in discrete-time case!)
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rewrite as

_ ’ - _ ” -
Oz = y — T u
] y(n—l) | ] u(n—l) |

RHS is known: x is to be determined

hence if N (O) = {0} we can deduce z(t) from derivatives of u(t), y(t) up
to order n — 1

in this case we say system is observable

can construct an observer using any left inverse F' of O:

Y U
r=F y — 7T u
] y(n—l) | ] u(n—l) |
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e reconstructs x(t) (exactly and instantaneously) from

w(t), ..., u™ V@), y),...,y" D)

e derivative-based state reconstruction is dual of state transfer using
impulsive inputs

Observability and state estimation 19-16



A converse

suppose z € N(O) (the unobservable subspace), and w« is any input, with
x, y the corresponding state and output, i.e.,

t=Ax+ Bu, y=Cx+ Du

then state trajectory & = = + ez satisfies

T =A%+ Bu, y=C%+ Du

i.e., input/output signals u, y consistent with both state trajectories z,

hence if system is unobservable, no signal processing of any kind applied to
u and y can deduce x

unobservable subspace N (O) gives fundamental ambiguity in deducing x
from u, y
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Least-squares observers

discrete-time system, with sensor noise:

z(t+1) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t) + v(t)

we assume Rank(O;) = n (hence, system is observable)

least-squares observer uses pseudo-inverse:

#(0) = O] e - T

where Of = (0T0,) " OF
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interpretation: 21,(0) minimizes discrepancy between

e output y that would be observed, with input u and initial state z(0)
(and no sensor noise), and

e output y that was observed,

t—1

measured as Z 19(7) — y(7)]|)?

=0

can express least-squares initial state estimate as

1

#15(0) = i(AT)TCTCAT i(AT)TCTg(T)

where ¢ is observed output with portion due to input subtracted:
y =y — h *u where h is impulse response
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Least-squares observer uncertainty ellipsoid

since (’)IOt = I, we have

7(0) = 215(0) — 2(0) = O]

v(0)

I v(t:—l) |

where Z(0) is the estimation error of the initial state

in particular, Z15(0) = x(0) if sensor noise is zero

(i.e., observer recovers exact state in noiseless case)

now assume sensor noise is unknown, but has RMS value < ¢,

1 t—1
=S ) < o?
7=0

Observability and state estimation
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set of possible estimation errors is ellipsoid
Cw(0)

t—1
- 1
Z(0) € Eunc = OZ N E lo(1)]I* < o
7=0

_v(t:—l) ]

Eunc 1S ‘uncertainty ellipsoid’ for x(0) (least-square gives best &)

shape of uncertainty ellipsoid determined by matrix

(0T0,) " = (tz:(AT)TCTCAT>

7=0

maximum norm of error is

[#15(0) = 2(0)]| < aV/t]| O}
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Infinite horizon uncertainty ellipsoid

the matrix
t—1 —1
I K TNT T T
P—th_glo g_O(A )7C*CA

always exists, and gives the limiting uncertainty in estimating x(0) from w,
y over longer and longer periods:

o if Ais stable, P >0
i.e., can't estimate initial state perfectly even with infinite number of
measurements u(t), y(t), t =0,... (since memory of x(0) fades . . .)

e if A is not stable, then P can have nonzero nullspace
i.e., initial state estimation error gets arbitrarily small (at least in some
directions) as more and more of signals u and y are observed
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Continuous-time least-squares state estimation

assume © = Ax + Bu, y = Cx + Du + v is observable

least-squares estimate of initial state x(0), given u(7), y(7), 0 <7 <t
choose Z15(0) to minimize integral square residual

t
J :/ g() — CGTASB(O)HZ dr
0

where y = y — h * u is observed output minus part due to input

let's expand as J = x(0)1Qxz(0) + 2rx(0) + s,

¢ ¢
Q = / eTATC'TCeTA dr, r = / eTATCT;&(T) dr,
0 0

0= [ 9)75(r) dr
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setting V,(0)J to zero, we obtain the least-squares observer

—1

t t
21s(0) = Qr = ( / e CTCe™ dT) / A TOT (1) dr
0 0

estimation error iIs
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System ldentification™

*partial, discreet time, as LTI

e Given examples {Xi, Yi}ie, we want to model the relation between x;
and y; as y; = Ax;. Define the estimation problem as:

N N
j — Ax;||2 = ‘A Ax; — 2y Ax; + Yy
argmin;l\yz X || Z;Xz Xi — 2y AX; + Y
1= 1=

® we differentiate w.r.t. A and setto O

5 N

8_AZHyfi—AXiH2 = 0
i=1

N

ZQAX,L-X;—Qin; = 0

i=1

N
/ /
Ag X;X;, = g ViX;
i=1 ‘




N N
/ /
A g XX, = E ViX;
i—=1 i—1

e Ifrank of Y1, x;%} is full rank (requires N > 1) then

N N —1
NI
i=1 i=1

e E.g. we’d like to estimate A 1n system: X1 = AX;+ ® (® 1S noise).
To solve, simply replace y; with x;+1 in above solution .

e Note that this would also be the most likely A if ® were Gaussian noise
with zero mean and unit variance.
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number. error = > ; (A;-Aj)?* is called the Frobenius norm.




EE363 Winter 2005-06

Lecture 0
Estimation

e Gaussian random vectors
e minimum mean-square estimation (MMSE)
e MMSE with linear measurements

e relation to least-squares, pseudo-inverse



Gaussian random vectors

random vector x € R" is Gaussian if it has density

px(v) = (27) 7 2(det £) "2 exp (—%(U —z)'e v -2

forsome X =31 >0, z € R"

e denoted z ~ N (z, )

e 7 ¢ R" is the mean or expected value of z, i.e.,
r=Exz= /va(’u)dv

e > =37 > 0is the covariance matrix of z, i.e..

¥ = E(z-2)(x—2)"

Estimation
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density for x ~ N (0, 1):

—v2/2

1

5

pz(v)

Estimation
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e mean and variance of scalar random variable z; are
_ _\2
Ex, =%;, E(z;,—2;)" =X

hence standard deviation of z; is v/2;;

e covariance between x; and z; is E(x; — Z;)(z; — Z;) = X5

e correlation coefficient between x; and z; Is p;; =

e mean (norm) square deviation of = from Z is
Ellz—z>=ETr(z - 2)(z —2)" =TrS =) %
i=1

(using Tr AB = Tr BA)

example: x ~ N(0,1) means x; are independent identically distributed
(1ID) N(0,1) random variables

Estimation



Confidence ellipsoids

pe(v) is constant for (v — jj)TE_l(v — ) = «, i.e., on the surface of
ellipsoid
Ea={v|(v-—2)'2 (v—2) <a)

thus x and X determine shape of density
can interpret &, as confidence ellipsoid for x:

the nonnegative random variable (z — Z)1X 7Y (z — Z) has a x2
distribution, so Prob(z € £,) = F,2(a) where F\: is the CDF

some good approximations:

e &, gives about 50% probability
e &, o2 /m gives about 90% probability

Estimation
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geometrically:

e mean T gives center of ellipsoid

e semiaxes are v/a\;u;, where u; are (orthonormal) eigenvectors of X
with eigenvalues \;

Estimation
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example: = ~ N (z,Y) with z = [ ? ] 2 = [ ? 1 ]
e 17 has mean 2, std. dev. /2
® I, has mean 1, std. dev. 1

e correlation coefficient between x1 and x5 is p = 1/\/5
o E|z—1z||* =3

90% confidence ellipsoid corresponds to oo = 4.6:

I

L1

(here, 91 out of 100 fall in £46)

Estimation
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Affine transformation

suppose = ~ N (Z,X,)

consider affine transformation of x:
z = Ax + b,

where A € R™*", b € R™

then z is Gaussian, with mean
Ez=E(Ax+b)=AEx+b=Ax + b

and covariance

¥, = Ez-2)(z-2)7"
= EA(x—2)(x—x2)' A"
= Ax, A"

Estimation
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examples:

o if w~N(0,I) then x = 22w + 7 is N (z, %)

useful for simulating vectors with given mean and covariance

e conversely, if x ~ N (Z,%) then z = X71/2(x — 7) is N(0, 1)

(normalizes & decorrelates)

Estimation
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suppose x ~ N (Z,3) and ¢ € R"

T

scalar ¢’z has mean ¢X'Z and variance ¢! ¢

thus (unit length) direction of minimum variability for x is u, where

Yu = Aminu, ||lul|=1

standard deviation of ul'z is v/ Amin
n

(similarly for maximum variability)
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Degenerate Gaussian vectors

it is convenient to allow X to be singular (but still ¥ = X% > 0)
(in this case density formula obviously does not hold)
meaning: in some directions x is not random at all

write X as s 0
¥ = [Q+ Qo [ 0 0 ] [Q+ Qo"

where QQ = [Q1 Qo] is orthogonal, ¥, > 0

e columns of @y are orthonormal basis for N (X)

e columns of () are orthonormal basis for range(3:)
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then Q12 = [z1 w!]!, where

e 2~ N(QLz,X}) is (nondegenerate) Gaussian (hence, density formula
holds)

e w= QT € R" is not random

(Ql'x is called deterministic component of x)
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Linear measurements

linear measurements with noise:
y=Ax+v
e r € R" is what we want to measure or estimate
m .
e y € R" is measurement

o Ac Ran characterizes sensors or measurements

® U IS Sensor noise
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common assumptions:

o v~ N(z,%,)
o v~ N(v,%,)

e = and v are independent

o N(z,%,) is the prior distribution of x (describes initial uncertainty
about )

e ¥ is noise bias or offset (and is usually 0)

e )., IS noise covariance
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thus

1
S R
| I |
2
N\
1
Sl K
| I |
1
o M
GMO
| I — |
N

using

we can write

and
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covariance of measurement y is AX AT + %,

o AY A’ is ‘signal covariance’

e >, is ‘noise covariance'
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Minimum mean-square estimation

suppose x € R™ and y € R" are random vectors (not necessarily Gaussian)
we seek to estimate x given y
thus we seek a function ¢ : R™ — R" such that & = ¢(y) is near x

one common measure of nearness: mean-square error,

E | ¢(y) — ||’

minimum mean-square estimator (MMSE) ¢,mse minimizes this quantity

general solution: ¢mmse(y) = E(x|y), i.e., the conditional expectation of x
given y
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MMSE for Gaussian vectors

now suppose r € R" and y € R™ are jointly Gaussian:
T T > >
() s )
[ Y ] 7 Yoy Dy

(after alot of algebra) the conditional density is

pa(vly) = (2m) /2t ) 2exp (50— w)TA o~ w) )

where
A=Y, -3, 58T w=3+%,,5 " (y—9)

hence MMSE estimator (i.e., conditional expectation) is

7 = Grmse(y) = E(zly) = T + 24,57y — 7)
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Ommse 1S an affine function

MMSE estimation error, & — x, is a Gaussian random vector

&T—x ~ N(0,2, — zxyzy—lzfy)

note that
1T

1.e., covariance of estimation error is always less than prior covariance of x
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Best linear unbiased estimator

estimator
T = belu(y) =T+ Exyzy—l(y - g)
makes sense when x, y aren't jointly Gaussian

this estimator

e is unbiased, i.e., Ex =Ex
e often works well
e is widely used

e has minimum mean square error among all affine estimators

sometimes called best linear unbiased estimator

Estimation

620



MMSE with linear measurements

consider specific case
y=Ax+v, x~N(Z,%.), v~N(1,%,),

x, v independent

MMSE of x given y is affine function
=T+ By —9)
where B = X, AT (A, AT +2,)7 Y, j= AT +

intepretation:

e T is our best prior guess of x (before measurement)

e y — 4 is the discrepancy between what we actually measure (y) and the
expected value of what we measure (%)
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e estimator modifies prior guess by B times this discrepancy
e estimator blends prior information with measurement
e B gives gain from observed discrepancy to estimate

e B is small if noise term X, in ‘denominator’ is large
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MMSE error with linear measurements

MMSE estimation error, £ = & — x, is Gaussian with zero mean and

covariance
Nest = Bp — D AT (AX AT +3,)71AY,

® .t < X, t.e., measurement always decreases uncertainty about x
o difference X, — Yot gives value of measurement y in estimating x

o e.g., (Best ii/Sx i)'/ ? gives fractional decrease in uncertainty of x; due
to measurement

note: error covariance X5 can be determined before measurement y is
madel
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to evaluate Y.s, only need to know

e A (which characterizes sensors)
e prior covariance of x (i.e., ;)

e noise covariance (i.e., 2,)

you do not need to know the measurement y (or the means z, v)

useful for experiment design or sensor selection
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