Quadratic forms

a function f : R — R of the form

f(x) =2t Az = Z Ajjxix;
ij=1

is called a quadratic form

in a quadratic form we may as well assume A = A’ since
vl Ax = 2T ((A+ AT)/2)x

((A+ A1) /2 is called the symmetric part of A)

uniqueness: if v Az = 2" Bx for all x € R” and A = A", B = B?, then

A=10B

Symmetric matrices, quadratic forms, matrix norm, and SVD
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Examples

o |Bz||? =2'B'Bx

i Z?;l(ﬂﬂz‘ﬂ - x¢)2

o [|[Fz|” - [|Gx]®

sets defined by quadratic forms:

e { | f(x) =a } is called a quadratic surface

e { x| f(x) <a }is called a quadratic region

Symmetric matrices, quadratic forms, matrix norm, and SVD
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Inequalities for quadratic forms
suppose A = AT, A = QAQ" with eigenvalues sorted so \; > --- >\,

P Ar = z1QAQTx
= (Q"2)"AQ"x)

= i ig; =)
1=1

< A Z(%TZB)2
i=1

= Adjz|®

i.e., we have x1 Az < Mzl x
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similar argument shows z1 Az > \,||z||?, so we have

Male <zl Azr < \z'zx

sometimes A1 is called Apax, A\ 1S called Apin

note also that

QfAQ1 — )‘1HQ1H27 Q;ZJAQTL — )\nHQnHQ

so the inequalities are tight

Symmetric matrices, quadratic forms, matrix norm, and SVD
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Positive semidefinite and positive definite matrices

suppose A = AT € R™*"

we say A is positive semidefinite if x¥ Az > 0 for all x

e denoted A > 0 (and sometimes A > 0)
e A>0ifandonlyif Apin(A) >0, i.e., all eigenvalues are nonnegative

e not the same as A;; > 0 for all 4, j

we say A is positive definite if x1' Ax > 0 for all z # 0

e denoted A > 0

e A >0 if and only if Apin(A) > 0, i.e., all eigenvalues are positive
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Matrix inequalities

e we say A is negative semidefinite if —A > 0
e we say A is negative definite it —A > 0

e otherwise, we say A is indefinite

matrix inequality: if B=BT ¢ R"wesay A>BifA-—B>0, A< B
if B—A > 0, etc.

for example:

e A > 0 means A is positive semidefinite

o A > B means 1’ Ax > z! Bx for all z # 0
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many properties that you'd guess hold actually do, e.g.,

o if A>Band C > D, then A+C > B+ D
o if B<0OthenA+B<A

o ifA>0and a >0, then A >0

o if A>0, then A2 >0

o if A>0, then A=t >0

matrix inequality is only a partial order: we can have
AZ? B, B> A

(such matrices are called incomparable)
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Ellipsoids

if A= AT > 0, the set
E={z|2lAxz <1}

is an ellipsoid in R", centered at 0
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: : —1/2 .
semi-axes are given by s; = A, " 7¢q;, t.e.
e eigenvectors determine directions of semiaxes

e cigenvalues determine lengths of semiaxes

note:

e in direction q1, ' Ax is large, hence ellipsoid is thin in direction ¢4

e in direction q,,, ! Az is small, hence ellipsoid is fat in direction g,

® /Amax/Amin gives maximum eccentricity

ifE={az|2TBx <1} where B>0,then CE «— A>B
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Gain of a matrix in a direction

suppose A € R™*™ (not necessarily square or symmetric)

for z € R",
direction x

|Ax||/||x|| gives the amplification factor or gain of A in the

obviously, gain varies with direction of input x

guestions:

e what is maximum gain of A
(and corresponding maximum gain direction)?

e what is minimum gain of A
(and corresponding minimum gain direction)?

e how does gain of A vary with direction?
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Matrix norm

the maximum gain

4g]
X
2 e

is called the matrix norm or spectral norm of A and is denoted || A||

Ax|]? AT A
max% — max ‘ 5 - )\maX(ATA)
v£0 ||z v£0 ||z

so we have ||A|| = v/ Amax(ATA)

similarly the minimum gain is given by

| e
min || Az /|2 = /Amin (AT A)
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note that

o ATA e R™™ is symmetric and AT A > 0 50 Amin, Amax > 0

e ‘max gain’ input direction is = ¢, eigenvector of AT A associated
with Apax

e ‘min gain' input direction is x = ¢,,, eigenvector of AT A associated with

)\min
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o
example: A=| 3 4
_5 6_

T, _ |35 44

A4 = | 44 56

~ [0620 0.785 ][ 90.7 070620 0.785 7"
~ | 0.785 —0.620 0 0.265 | | 0.785 —0.620

then ||A|| = \/Amax(ATA) = 9.53:

[ 218 |

0.620 ]H H [ 0.620 ]H

=1, A — 4.99 — 9.53
H[ 0.785 0.785 778
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min gain is \/)\min(ATA) = (0.514:

[ 0.46 |
0.785 0.785
Lo =1 4] oo || = ]| 014 ||| =osu

for all x # 0, we have
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Properties of matrix norm

. . . 1 -
e consistent with vector norm: matrix norm of a € R™"™ " is

\/)\maX(aTa) = VaTa

o forany z, [[Az| < [[Allf]]

e scaling: |[aA| = |al||A||

e triangle inequality: |A+ BJ| < ||A|l + || B
e definiteness: ||A|| =0 < A=0

e norm of product: ||AB| < ||A]|||B]]
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Singular value decomposition

more complete picture of gain properties of A given by singular value

decomposition (SVD) of A:

A=Uxv"
where
e Ac R™" Rank(A)=r
e Uc R UTU=1
o VER™ VIV =1
e > =diag(oy,...,0,), Where g1 > -+ >0, >0

Symmetric matrices, quadratic forms, matrix norm, and SVD
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with U = [uy---u,|, V = [v1-- v,

A=UsVT =) o]
1=1

e 0; are the (nonzero) singular values of A
e v; are the right or input singular vectors of A

e u; are the left or output singular vectors of A
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ATA = (UsvhHruzsv?h) = vev?

hence:

e v; are eigenvectors of AT A (corresponding to nonzero eigenvalues)

® 7, = \/)\Z(ATA) (and )\z(AT/U =0 for ¢ > 7“)

 [|All =01
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similarly,
AAT = (uxvhwozvhH! = ux?ut

hence:

e u; are eigenvectors of AAT (corresponding to nonzero eigenvalues)

o 0; =/ M(AAT) (and A\(AAT) = 0 for i > 1)

® uy,...u, are orthonormal basis for range(A)

e vy,...v, are orthonormal basis for A/(A)+
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Interpretations

A=USVT =) " o]
1=1

x Vi SV Ax
% ) —
linear mapping y = Ax can be decomposed as
e compute coefficients of x along input directions vq, ..., v,

e scale coefficients by o;

e reconstitute along output directions uq, ..., u,

difference with eigenvalue decomposition for symmetric A: input and

output directions are different

Symmetric matrices, quadratic forms, matrix norm, and SVD
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e v1 is most sensitive (highest gain) input direction
e wuq is highest gain output direction

[ ) A’Ul — 01U
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SVD gives clearer picture of gain as function of input/output directions

example: consider A € R*** with ¥ = diag(10, 7, 0.1, 0.05)

e input components along directions v; and vy are amplified (by about
10) and come out mostly along plane spanned by w1, us

e input components along directions vs and v, are attenuated (by about
10)

o ||Ax||/||x|| can range between 10 and 0.05
e A is nonsingular

e for some applications you might say A is effectively rank 2
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Lecture 16
SVD Applications

e general pseudo-inverse

e full SVD

e image of unit ball under linear transformation
e SVD in estimation/inversion

e sensitivity of linear equations to data error

e low rank approximation via SVD
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Min Squared Error: Over-Constrained

e Given yERY and AER?*" 5o that g > n (A is slim) and rank(A) = n
we’d like to find X&R” such that Ax =y in the minimum /> sense:

argmin ||y — Ax|’
where [|v]|? = Yiv/’ x

e If A were invertible we would simply take x=A-"ly

® This 1s a quadratic expression in X so it has a single minimum where its
gradient 1s 0.

J=ly — Ax||” = (y — Ax)'(y — Ax) = y'y — 2y’ Ax + x'A’Ax

y = 2y’ A +2x'A’A

0x 0

Aly = A'Ax
® (A’A)!lexists (rank =n) so x = (A’A) 'A%

® Plugin SVD and get x = VX2V’ VXU’y = VXU

® VX-'U’is denoted by ATand is called A’s pseudo inverse since ATA =1




Under-Constrained

e Given yERY and AER?" so that g < n (A is fat) and rank(A) =n
we’d like to find X&R” such that Ax =y (easy).
Of all possible xs we want the smallest x, 1.e.

arg min ||x||* st.Ax =y
T

® This is a constrained optimization problem, so we solve with Lagrange
multipliers

0J

B / I'A
J:X’X—|—)\’(AX—Y) 5 = 2Xx' + AN A =0
1
x = A\
2
® Plug into constraint Ax =y 1
® (AA)!exists,so
A= 2AA07ly x=AY(AA) Ty = Aly

where, as before AT= VXU’




Optimal Control*

*Of noiseless, open loop, discrete time, LTI system

Given system X,+1 = AX,+Bu, with xo=0
bring the system to specified x» (with a minimum energy control signal)

We can expand the recursive definition and get

n—1
Xn = E AZBILL'
1=0

or, In matrix form ug
x, = [BAB --- A" 'B]

\ 7

A Upy—1

This is an under constrained problem. If A is of rank 7 (i.e. system is
controllable) then there are infinite possible solutions for u

but there is only one solution that minimizes |[i|]?: 1= A’(A A’)!x,




e Plugging in definition of A to AT = A’(A A’)! we see that

7=0

N 7
~"~

—1
n—1
u; = B'A’ (Z A'BB’ (AZ’)’) Xn

W ' (n—1)

® The minimum energy (smallest ||@i||?) control signal is the same signal used
in the proof that the system is controllable 1ff the grammian is invertible
(How did we assure that the grammian 1s invertible here?)




General pseudo-inverse

if AhasSVD A=UXV7T,
At =ve-lut

is the pseudo-inverse or Moore-Penrose inverse of A

if A is skinny and full rank,

Al = (ATA)71AT
gives the least-squares solution x;s = ATy
if A is fat and full rank,

At = AT(AAT)!
gives the least-norm solution zj, = A'y

SVD Applications
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in general case:
Xis ={ 2z | |4z —y|| = min |[Aw —y]| }

Is set of least-squares solutions

Tpiny = Ay € X5 has minimum norm on X, i.e., Tpinv 1S the
minimum-norm, least-squares solution
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Pseudo-inverse via regularization

for > 0, let z,, be (unique) minimizer of
| Az — ylI* + pfjz]|*
1.€.,

z, = (ATA+ puI) " ATy
here, A A+ uI > 0 and so is invertible

then we have lin% T, = Ay
n—

in fact, we have lim (ATA + ,u[)_l AT = AT

p—0

(check this!)

SVD Applications
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Full SVD

SVD of A € R™*™ with Rank(A) = r:

0_1 Ul

A:UlElvlT:[ul ur}

o find Uy € R™*(m~") 1, ¢ R™*(""") st U = [U; U] € R™*™ and
V = [V4 V5] € R"*™ are orthogonal

e add zero rows/cols to X1 to form ¥ € R™*":

Y 211 | Orx(n—’r’)

O(m—T)X'r* ‘ O(m—r)x(n—r)
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then we have

2 | Orx(n—r)

T Vi
A=US VI =[ U | Uy ] i
2

O(m—r)X’r ‘ O(m—’r)x(n—r)

1.€.:
A=UxVv?’

called full SVD of A

(SVD with positive singular values only called compact SVD)
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Image of unit ball under linear transformation

full SVD:
A=Uxv?T

gives intepretation of y = Ax:

e rotate (by V?1)
e stretch along axes by o; (0; =0 for i > r)
e zero-pad (if m > n) or truncate (if m < n) to get m-vector

e rotate (by U)
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Image of unit ball under A

1 1

an an
\ /1 rotate by V' \ /1

stretch, > = diag(2,0.5)

U /7 rotateby U | |«
[ T

& —

{Azx | ||z|| < 1} is ellipsoid with principal axes o;u,;.
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SVD in estimation/inversion

suppose y = Ax + v, where

e y € R™ is measurement
e r € R" is vector to be estimated

® ¥ IS a measurement noise or error

‘norm-bound’ model of noise: we assume ||v|| < a but otherwise know
nothing about v (« gives max norm of noise)
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e consider estimator & = By, with BA = I (i.e., unbiased)
e estimation or inversion erroris x = & — x = Bv
e set of possible estimation errors is ellipsoid
T€Eme={Bv||v||<a}
e r =0 —2€T—Eunc =2+ Eyne, 1.6
true x lies in uncertainty ellipsoid &£,,c, centered at estimate &

e ‘good’ estimator has ‘small’ &, (with BA = I, of course)
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semiaxes of Eune are ao;u; (singular values & vectors of B)

1.6,

e.g., maximum norm of error is «|| B 1z — x| < B

optimality of least-squares: suppose BA = I is any estimator, and
Bis = AT is the least-squares estimator

then:

e BBl < BBT

o gls C &

e in particular ||Bys|| < || B||

i.e., the least-squares estimator gives the smallest uncertainty ellipsoid
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Proof of optimality property

RmXTL

suppose A € m > n, is full rank

SVD: A =UXV?', with V orthogonal

B, = AT =VX~UT, and B satisfies BA =1

define Z = B — By, so B= B+ 2

then ZA = ZUXV? =0, so ZU = 0 (multiply by V™! on right)

therefore

BBT

(Bis + Z)(Bis + Z)"

BB + B Z" + ZBL + 227
BB + 27"

BB,

1V

using ZBlL = (ZU)X" VT =0
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Sensitivity of linear equations to data error

RTLXTL

consider y = Az, A € invertible; of course x = A~y
suppose we have an error or noise in y, i.e., y becomes y + dy
then z becomes x + dx with dxz = A~ 1y

hence we have ||6z|| = [|A~dy|| < || A=||6y]]

if ||A1]] is large,

e small errors in y can lead to large errors in x
e can't solve for x given y (with small errors)

e hence, A can be considered singular in practice
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a more refined analysis uses relative instead of absolute errors in z and y

since y = Ax, we also have ||y|| <

ozl _
el

|5y||

< Al A~ 1||'H |

k(A) = [A[ATH] = omax(A) /Tmin(A)

is called the condition number of A
we have:

relative error in solution = < condition number - relative error in data y
or, in terms of # bits of guaranteed accuracy:

# bits accuacy in solution ~ # bits accuracy in data —log, K
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we say

e A is well conditioned if k is small

e A is poorly conditioned if x is large

(definition of ‘small’ and ‘large’ depend on application)

same analysis holds for least-squares solutions with A nonsquare,
R = UmaX(A)/Umin(A)
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Distance to singularity

another interpretation of o;:
o, =min{ |A— B|| | Rank(B) <i—1}

i.e., the distance (measured by matrix norm) to the nearest rank i — 1
matrix

R?’LXTL

for example, if A € On = Omin IS distance to nearest singular matrix

hence, small o.,;, means A is near to a singular matrix
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application: model simplification

suppose y = Ax + v, where
o A e R0 has Svs

10, 7, 2, 0.5, 0.01, ...,0.0001

e ||x|| is on the order of 1

e unknown error or noise v has norm on the order of 0.1

then the terms o;u;v} =, for i = 5,...,30, are substantially smaller than
the noise term v

simplified model:

4
_ T
Y = g oiU;U; T+ U
i=1
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