Quadratic forms

a function $f: \mathbf{R}^n \to \mathbf{R}$ of the form

$$f(x) = x^T A x = \sum_{i,j=1}^n A_{ij} x_i x_j$$

is called a quadratic form

in a quadratic form we may as well assume ${\cal A}={\cal A}^T$ since

$$x^T A x = x^T ((A + A^T)/2) x$$

 $((A+A^T)/2$ is called the symmetric part of A)

uniqueness: if $x^TAx = x^TBx$ for all $x \in \mathbf{R}^n$ and $A = A^T$, $B = B^T$, then A = B

Examples

$$\bullet ||Bx||^2 = x^T B^T B x$$

•
$$\sum_{i=1}^{n-1} (x_{i+1} - x_i)^2$$

•
$$||Fx||^2 - ||Gx||^2$$

sets defined by quadratic forms:

- $\{ x \mid f(x) = a \}$ is called a *quadratic surface*
- $\{ x \mid f(x) \leq a \}$ is called a quadratic region

Inequalities for quadratic forms

suppose $A=A^T$, $A=Q\Lambda Q^T$ with eigenvalues sorted so $\lambda_1\geq \cdots \geq \lambda_n$

$$x^{T}Ax = x^{T}Q\Lambda Q^{T}x$$

$$= (Q^{T}x)^{T}\Lambda (Q^{T}x)$$

$$= \sum_{i=1}^{n} \lambda_{i} (q_{i}^{T}x)^{2}$$

$$\leq \lambda_{1} \sum_{i=1}^{n} (q_{i}^{T}x)^{2}$$

$$= \lambda_{1} ||x||^{2}$$

i.e., we have $x^T A x \leq \lambda_1 x^T x$

similar argument shows $x^T A x \ge \lambda_n ||x||^2$, so we have

$$\lambda_n x^T x \le x^T A x \le \lambda_1 x^T x$$

sometimes λ_1 is called λ_{\max} , λ_n is called λ_{\min}

note also that

$$q_1^T A q_1 = \lambda_1 ||q_1||^2, \qquad q_n^T A q_n = \lambda_n ||q_n||^2,$$

so the inequalities are tight

Positive semidefinite and positive definite matrices

suppose
$$A = A^T \in \mathbf{R}^{n \times n}$$

we say A is *positive semidefinite* if $x^TAx \ge 0$ for all x

- denoted $A \ge 0$ (and sometimes $A \succeq 0$)
- $A \ge 0$ if and only if $\lambda_{\min}(A) \ge 0$, *i.e.*, all eigenvalues are nonnegative
- **not** the same as $A_{ij} \geq 0$ for all i, j

we say A is *positive definite* if $x^TAx > 0$ for all $x \neq 0$

- denoted A > 0
- A>0 if and only if $\lambda_{\min}(A)>0$, *i.e.*, all eigenvalues are positive

Matrix inequalities

- \bullet we say A is negative semidefinite if $-A \geq 0$
- we say A is negative definite if -A > 0
- otherwise, we say A is *indefinite*

matrix inequality: if $B=B^T\in \mathbf{R}^n$ we say $A\geq B$ if $A-B\geq 0$, A< B if B-A>0, etc.

for example:

- $A \ge 0$ means A is positive semidefinite
- ullet A>B means $x^TAx>x^TBx$ for all $x\neq 0$

many properties that you'd guess hold actually do, e.g.,

- if $A \geq B$ and $C \geq D$, then $A + C \geq B + D$
- if $B \leq 0$ then $A + B \leq A$
- if $A \geq 0$ and $\alpha \geq 0$, then $\alpha A \geq 0$
- if $A \ge 0$, then $A^2 > 0$
- if A > 0, then $A^{-1} > 0$

matrix inequality is only a partial order: we can have

$$A \not\geq B$$
, $B \not\geq A$

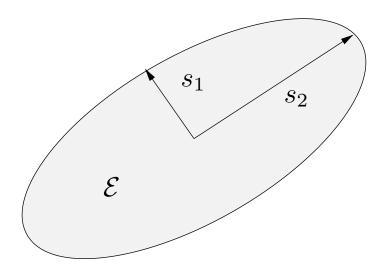
(such matrices are called *incomparable*)

Ellipsoids

if $A = A^T > 0$, the set

$$\mathcal{E} = \{ \ x \mid x^T A x \le 1 \ \}$$

is an *ellipsoid* in \mathbf{R}^n , centered at 0



semi-axes are given by $s_i = \lambda_i^{-1/2} q_i$, *i.e.*:

- eigenvectors determine directions of semiaxes
- eigenvalues determine lengths of semiaxes

note:

- in direction q_1 , x^TAx is large, hence ellipsoid is thin in direction q_1
- in direction q_n , x^TAx is *small*, hence ellipsoid is *fat* in direction q_n
- $\sqrt{\lambda_{\rm max}/\lambda_{\rm min}}$ gives maximum eccentricity

if $\tilde{\mathcal{E}} = \{ x \mid x^T B x \leq 1 \}$, where B > 0, then $\mathcal{E} \subseteq \tilde{\mathcal{E}} \iff A \geq B$

Gain of a matrix in a direction

suppose $A \in \mathbf{R}^{m \times n}$ (not necessarily square or symmetric)

for $x \in \mathbb{R}^n$, ||Ax||/||x|| gives the amplification factor or gain of A in the direction x

obviously, gain varies with direction of input x

questions:

- what is maximum gain of A
 (and corresponding maximum gain direction)?
- what is minimum gain of A
 (and corresponding minimum gain direction)?
- how does gain of A vary with direction?

Matrix norm

the maximum gain

$$\max_{x \neq 0} \frac{\|Ax\|}{\|x\|}$$

is called the *matrix norm* or *spectral norm* of A and is denoted $\|A\|$

$$\max_{x \neq 0} \frac{\|Ax\|^2}{\|x\|^2} = \max_{x \neq 0} \frac{x^T A^T A x}{\|x\|^2} = \lambda_{\max}(A^T A)$$

so we have $\|A\| = \sqrt{\lambda_{\max}(A^TA)}$

similarly the minimum gain is given by

$$\min_{x \neq 0} ||Ax|| / ||x|| = \sqrt{\lambda_{\min}(A^T A)}$$

note that

- $A^TA \in \mathbf{R}^{n \times n}$ is symmetric and $A^TA \ge 0$ so $\lambda_{\min}, \ \lambda_{\max} \ge 0$
- \bullet 'max gain' input direction is $x=q_1$, eigenvector of A^TA associated with λ_{\max}
- \bullet 'min gain' input direction is $x=q_n$, eigenvector of A^TA associated with λ_{\min}

example:
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$$

$$A^{T}A = \begin{bmatrix} 35 & 44 \\ 44 & 56 \end{bmatrix}$$

$$= \begin{bmatrix} 0.620 & 0.785 \\ 0.785 & -0.620 \end{bmatrix} \begin{bmatrix} 90.7 & 0 \\ 0 & 0.265 \end{bmatrix} \begin{bmatrix} 0.620 & 0.785 \\ 0.785 & -0.620 \end{bmatrix}^{T}$$

then
$$||A|| = \sqrt{\lambda_{\max}(A^T A)} = 9.53$$
:

$$\left\| \begin{bmatrix} 0.620 \\ 0.785 \end{bmatrix} \right\| = 1, \qquad \left\| A \begin{bmatrix} 0.620 \\ 0.785 \end{bmatrix} \right\| = \left\| \begin{bmatrix} 2.18 \\ 4.99 \\ 7.78 \end{bmatrix} \right\| = 9.53$$

min gain is $\sqrt{\lambda_{\min}(A^TA)}=0.514$:

$$\left\| \begin{bmatrix} 0.785 \\ -0.620 \end{bmatrix} \right\| = 1, \qquad \left\| A \begin{bmatrix} 0.785 \\ -0.620 \end{bmatrix} \right\| = \left\| \begin{bmatrix} 0.46 \\ 0.14 \\ -0.18 \end{bmatrix} \right\| = 0.514$$

for all $x \neq 0$, we have

$$0.514 \le \frac{\|Ax\|}{\|x\|} \le 9.53$$

Properties of matrix norm

- consistent with vector norm: matrix norm of $a \in \mathbf{R}^{n \times 1}$ is $\sqrt{\lambda_{\max}(a^T a)} = \sqrt{a^T a}$
- for any x, $||Ax|| \le ||A|| ||x||$
- scaling: ||aA|| = |a|||A||
- triangle inequality: $||A + B|| \le ||A|| + ||B||$
- definiteness: $||A|| = 0 \Leftrightarrow A = 0$
- norm of product: $||AB|| \le ||A|| ||B||$

Singular value decomposition

more complete picture of gain properties of A given by singular value decomposition (SVD) of A:

$$A = U\Sigma V^T$$

where

- $A \in \mathbf{R}^{m \times n}$, $\mathbf{Rank}(A) = r$
- $U \in \mathbf{R}^{m \times r}$, $U^T U = I$
- $V \in \mathbf{R}^{n \times r}$, $V^T V = I$
- $\Sigma = \mathbf{diag}(\sigma_1, \dots, \sigma_r)$, where $\sigma_1 \ge \dots \ge \sigma_r > 0$

with $U = [u_1 \cdots u_r]$, $V = [v_1 \cdots v_r]$,

$$A = U\Sigma V^T = \sum_{i=1}^r \sigma_i u_i v_i^T$$

- σ_i are the (nonzero) singular values of A
- \bullet v_i are the right or input singular vectors of A
- u_i are the *left* or *output singular vectors* of A

$$A^T A = (U \Sigma V^T)^T (U \Sigma V^T) = V \Sigma^2 V^T$$

hence:

• v_i are eigenvectors of A^TA (corresponding to nonzero eigenvalues)

•
$$\sigma_i = \sqrt{\lambda_i(A^TA)}$$
 (and $\lambda_i(A^TA) = 0$ for $i > r$)

$$\bullet ||A|| = \sigma_1$$

similarly,

$$AA^T = (U\Sigma V^T)(U\Sigma V^T)^T = U\Sigma^2 U^T$$

hence:

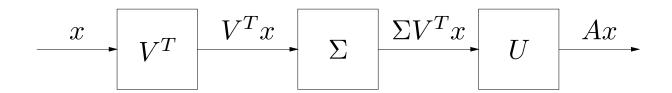
• u_i are eigenvectors of AA^T (corresponding to nonzero eigenvalues)

•
$$\sigma_i = \sqrt{\lambda_i(AA^T)}$$
 (and $\lambda_i(AA^T) = 0$ for $i > r$)

- $u_1, \ldots u_r$ are orthonormal basis for range(A)
- $v_1, \ldots v_r$ are orthonormal basis for $\mathcal{N}(A)^{\perp}$

Interpretations

$$A = U\Sigma V^T = \sum_{i=1}^r \sigma_i u_i v_i^T$$



linear mapping y = Ax can be decomposed as

- ullet compute coefficients of x along input directions v_1,\ldots,v_r
- scale coefficients by σ_i
- reconstitute along output directions u_1, \ldots, u_r

difference with eigenvalue decomposition for symmetric A: input and output directions are different

- ullet v_1 is most sensitive (highest gain) input direction
- ullet u_1 is highest gain output direction
- $\bullet \ Av_1 = \sigma_1 u_1$

SVD gives clearer picture of gain as function of input/output directions

example: consider $A \in \mathbb{R}^{4 \times 4}$ with $\Sigma = \operatorname{diag}(10, 7, 0.1, 0.05)$

- input components along directions v_1 and v_2 are amplified (by about 10) and come out mostly along plane spanned by u_1 , u_2
- input components along directions v_3 and v_4 are attenuated (by about 10)
- ||Ax||/||x|| can range between 10 and 0.05
- \bullet A is nonsingular
- ullet for some applications you might say A is effectively rank 2

EE263 Autumn 2007-08 Stephen Boyd

Lecture 16 SVD Applications

- general pseudo-inverse
- full SVD
- image of unit ball under linear transformation
- SVD in estimation/inversion
- sensitivity of linear equations to data error
- low rank approximation via SVD

Min Squared Error: Over-Constrained

• Given $\mathbf{y} \in \mathbf{R}^q$ and $\mathbf{A} \in \mathbf{R}^{q \times n}$ so that q > n (A is slim) and $rank(\mathbf{A}) = n$ we'd like to find $\mathbf{x} \in \mathbf{R}^n$ such that $\mathbf{A}\mathbf{x} \approx \mathbf{y}$ in the minimum l_2 sense:

where
$$\|\mathbf{v}\|^2 = \sum_i v_i^2$$
 $\underset{\mathbf{x}}{\operatorname{arg min}} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|^2$

- If **A** were invertible we would simply take $x=A^{-1}y$
- This is a quadratic expression in \mathbf{x} so it has a single minimum where its gradient is 0.

$$J = \|\mathbf{y} - \mathbf{A}\mathbf{x}\|^2 = (\mathbf{y} - \mathbf{A}\mathbf{x})'(\mathbf{y} - \mathbf{A}\mathbf{x}) = \mathbf{y}'\mathbf{y} - 2\mathbf{y}'\mathbf{A}\mathbf{x} + \mathbf{x}'\mathbf{A}'\mathbf{A}\mathbf{x}$$

$$\frac{\partial J}{\partial \mathbf{x}} = -2\mathbf{y}'\mathbf{A} + 2\mathbf{x}'\mathbf{A}'\mathbf{A} = 0$$
$$\mathbf{A}'\mathbf{y} = \mathbf{A}'\mathbf{A}\mathbf{x}$$

- $(\mathbf{A'A})^{-1}$ exists $(\operatorname{rank} = n)$ so $\mathbf{x} = (\mathbf{A'A})^{-1}\mathbf{A'y}$
- Plug in SVD and get $x = V\Sigma^{-2}V'V\Sigma U'y = V\Sigma^{-1}U'y$
- $V\Sigma^{-1}U'$ is denoted by A^{\dagger} and is called A's pseudo inverse since $A^{\dagger}A = I$

Under-Constrained

• Given $\mathbf{y} \in \mathbb{R}^q$ and $\mathbf{A} \in \mathbb{R}^{q \times n}$ so that q < n (**A** is **fat**) and $rank(\mathbf{A}) = n$ we'd like to find $\mathbf{x} \in \mathbb{R}^n$ such that $\mathbf{A}\mathbf{x} = \mathbf{y}$ (easy). Of all possible $\mathbf{x}\mathbf{s}$ we want the smallest \mathbf{x} , i.e.

$$\arg\min_{x} ||\mathbf{x}||^2 \qquad s.t. \, \mathbf{A}\mathbf{x} = \mathbf{y}$$

• This is a constrained optimization problem, so we solve with Lagrange multipliers

$$J = \mathbf{x}'\mathbf{x} + \lambda'(\mathbf{A}\mathbf{x} - \mathbf{y})$$

$$\frac{\partial J}{\partial x} = 2\mathbf{x}' + \lambda'\mathbf{A} = 0$$

$$\mathbf{x} = \frac{1}{2}\mathbf{A}'\lambda$$

• Plug into constraint Ax = y

$$\mathbf{A}(\frac{1}{2}\mathbf{A}'\lambda) = \mathbf{y}$$

• $(\mathbf{A}\mathbf{A})^{-1}$ exists, so $\lambda = 2(\mathbf{A}\mathbf{A}')^{-1}\mathbf{y} \qquad \mathbf{x} = \mathbf{A}'(\mathbf{A}\mathbf{A}')^{-1}\mathbf{y} = \mathbf{A}^{\dagger}\mathbf{y}$

where, as before $A^{\dagger} = V \Sigma^{-1} U'$

Optimal Control*

*Of noiseless, open loop, discrete time, LTI system

- Given system $\mathbf{x}_{n+1} = \mathbf{A}\mathbf{x}_n + \mathbf{B}\mathbf{u}_n$ with $\mathbf{x}_0 = 0$ bring the system to specified \mathbf{x}_n (with a minimum energy control signal)
- We can expand the recursive definition and get

$$\mathbf{x}_n = \sum_{i=0}^{n-1} \mathbf{A}^i \mathbf{B} \mathbf{u}_i$$

• or, in matrix form $\mathbf{x}_n = \underbrace{\begin{bmatrix} \mathbf{B} \ \mathbf{A} \mathbf{B} \ \cdots \mathbf{A}^{n-1} \mathbf{B} \end{bmatrix}}_{\tilde{\mathbf{A}}} \underbrace{\begin{bmatrix} \mathbf{u}_0 \\ \vdots \\ \mathbf{u}_{n-1} \end{bmatrix}}_{\tilde{\mathbf{a}}}$

- This is an under constrained problem. If $\tilde{\mathbf{A}}$ is of rank n (i.e. system is controllable) then there are infinite possible solutions for $\tilde{\mathbf{u}}$
- but there is only one solution that minimizes $||\tilde{\mathbf{u}}||^2$: $\tilde{\mathbf{u}} = \tilde{\mathbf{A}}'(\tilde{\mathbf{A}} \tilde{\mathbf{A}}')^{-1}\mathbf{x}_n$

• Plugging in definition of $\tilde{\mathbf{A}}$ to $\tilde{\mathbf{A}}^{\dagger} = \tilde{\mathbf{A}}'(\tilde{\mathbf{A}} \tilde{\mathbf{A}}')^{-1}$ we see that

$$\mathbf{u}_{i} = \mathbf{B}'\mathbf{A}^{i} \underbrace{\left(\sum_{j=0}^{n-1} \mathbf{A}^{i} \mathbf{B} \mathbf{B}' \left(\mathbf{A}^{i}\right)'\right)^{-1}}_{\mathbf{W}_{c}^{-1}(n-1)} \mathbf{x}_{n}$$

• The minimum energy (smallest $||\tilde{\mathbf{u}}||^2$) control signal is the same signal used in the proof that the system is controllable iff the grammian is invertible (How did we assure that the grammian is invertible here?)

General pseudo-inverse

if A has SVD $A = U\Sigma V^T$,

$$A^{\dagger} = V \Sigma^{-1} U^T$$

is the *pseudo-inverse* or *Moore-Penrose inverse* of A if A is skinny and full rank,

$$A^{\dagger} = (A^T A)^{-1} A^T$$

gives the least-squares solution $x_{\rm ls}=A^\dagger y$ if A is fat and full rank,

$$A^{\dagger} = A^T (AA^T)^{-1}$$

gives the least-norm solution $x_{\rm ln}=A^\dagger y$

in general case:

$$X_{ls} = \{ z \mid ||Az - y|| = \min_{w} ||Aw - y|| \}$$

is set of least-squares solutions

 $x_{\rm pinv}=A^{\dagger}y\in X_{\rm ls}$ has minimum norm on $X_{\rm ls}$, i.e., $x_{\rm pinv}$ is the minimum-norm, least-squares solution

Pseudo-inverse via regularization

for $\mu > 0$, let x_{μ} be (unique) minimizer of

$$||Ax - y||^2 + \mu ||x||^2$$

i.e.,

$$x_{\mu} = \left(A^T A + \mu I\right)^{-1} A^T y$$

here, $A^TA + \mu I > 0$ and so is invertible

then we have $\lim_{\mu \to 0} x_{\mu} = A^{\dagger} y$

in fact, we have $\lim_{\mu \to 0} \left(A^T A + \mu I\right)^{-1} A^T = A^\dagger$

(check this!)

Full SVD

SVD of $A \in \mathbf{R}^{m \times n}$ with $\mathbf{Rank}(A) = r$:

$$A = U_1 \Sigma_1 V_1^T = \begin{bmatrix} u_1 & \cdots & u_r \end{bmatrix} \begin{bmatrix} \sigma_1 & & & \\ & \ddots & & \\ & & \sigma_r \end{bmatrix} \begin{bmatrix} v_1^T \\ \vdots \\ v_r^T \end{bmatrix}$$

- find $U_2 \in \mathbf{R}^{m \times (m-r)}$, $V_2 \in \mathbf{R}^{n \times (n-r)}$ s.t. $U = [U_1 \ U_2] \in \mathbf{R}^{m \times m}$ and $V = [V_1 \ V_2] \in \mathbf{R}^{n \times n}$ are orthogonal
- add zero rows/cols to Σ_1 to form $\Sigma \in \mathbf{R}^{m \times n}$:

$$\Sigma = \begin{bmatrix} \Sigma_1 & 0_{r \times (n-r)} \\ \hline 0_{(m-r) \times r} & 0_{(m-r) \times (n-r)} \end{bmatrix}$$

then we have

$$A = U_1 \Sigma_1 V_1^T = \begin{bmatrix} U_1 & D_1 & 0_{r \times (n-r)} \\ \hline 0_{(m-r) \times r} & 0_{(m-r) \times (n-r)} \end{bmatrix} \begin{bmatrix} V_1^T \\ \hline V_2^T \end{bmatrix}$$

i.e.:

$$A = U\Sigma V^T$$

called *full SVD* of A

(SVD with positive singular values only called *compact SVD*)

Image of unit ball under linear transformation

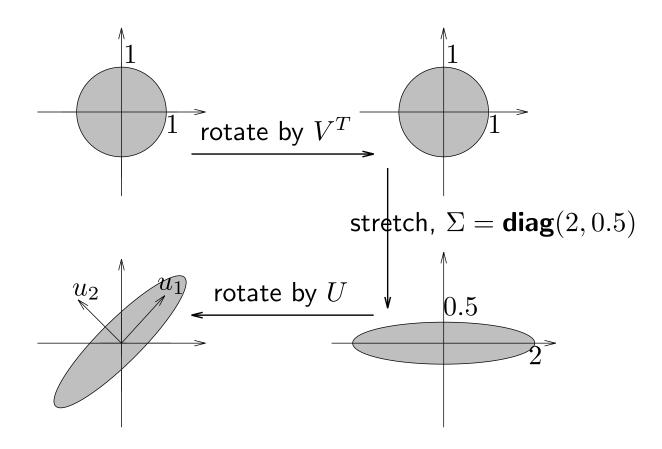
full SVD:

$$A = U\Sigma V^T$$

gives interretation of y = Ax:

- rotate (by V^T)
- stretch along axes by σ_i ($\sigma_i = 0$ for i > r)
- zero-pad (if m > n) or truncate (if m < n) to get m-vector
- rotate (by U)

Image of unit ball under ${\cal A}$



 $\{Ax \mid ||x|| \leq 1\}$ is *ellipsoid* with principal axes $\sigma_i u_i$.

SVD in estimation/inversion

suppose y = Ax + v, where

- $y \in \mathbf{R}^m$ is measurement
- $x \in \mathbb{R}^n$ is vector to be estimated
- ullet v is a measurement noise or error

'norm-bound' model of noise: we assume $||v|| \le \alpha$ but otherwise know nothing about v (α gives max norm of noise)

- consider estimator $\hat{x} = By$, with BA = I (i.e., unbiased)
- ullet estimation or inversion error is $\tilde{x} = \hat{x} x = Bv$
- set of possible estimation errors is ellipsoid

$$\tilde{x} \in \mathcal{E}_{\text{unc}} = \{ Bv \mid ||v|| \le \alpha \}$$

- $x = \hat{x} \tilde{x} \in \hat{x} \mathcal{E}_{unc} = \hat{x} + \mathcal{E}_{unc}$, i.e.: true x lies in uncertainty ellipsoid \mathcal{E}_{unc} , centered at estimate \hat{x}
- ullet 'good' estimator has 'small' $\mathcal{E}_{\mathrm{unc}}$ (with BA=I, of course)

semiaxes of \mathcal{E}_{unc} are $\alpha \sigma_i u_i$ (singular values & vectors of B)

e.g., maximum norm of error is $\alpha \|B\|$, i.e., $\|\hat{x} - x\| \leq \alpha \|B\|$

optimality of least-squares: suppose BA=I is any estimator, and $B_{\rm ls}=A^\dagger$ is the least-squares estimator

then:

- $B_{ls}B_{ls}^T \leq BB^T$
- $\mathcal{E}_{ls} \subseteq \mathcal{E}$
- in particular $||B_{ls}|| \leq ||B||$

i.e., the least-squares estimator gives the smallest uncertainty ellipsoid

Proof of optimality property

suppose $A \in \mathbb{R}^{m \times n}$, m > n, is full rank

SVD: $A = U\Sigma V^T$, with V orthogonal

$$B_{\mathrm{ls}} = A^{\dagger} = V \Sigma^{-1} U^T$$
, and B satisfies $BA = I$

define
$$Z = B - B_{ls}$$
, so $B = B_{ls} + Z$

then $ZA = ZU\Sigma V^T = 0$, so ZU = 0 (multiply by $V\Sigma^{-1}$ on right)

therefore

$$BB^{T} = (B_{ls} + Z)(B_{ls} + Z)^{T}$$

$$= B_{ls}B_{ls}^{T} + B_{ls}Z^{T} + ZB_{ls}^{T} + ZZ^{T}$$

$$= B_{ls}B_{ls}^{T} + ZZ^{T}$$

$$\geq B_{ls}B_{ls}^{T}$$

using
$$ZB_{\mathrm{ls}}^T=(ZU)\Sigma^{-1}V^T=0$$

Sensitivity of linear equations to data error

consider y=Ax, $A\in \mathbf{R}^{n\times n}$ invertible; of course $x=A^{-1}y$ suppose we have an error or noise in y, i.e., y becomes $y+\delta y$ then x becomes $x+\delta x$ with $\delta x=A^{-1}\delta y$ hence we have $\|\delta x\|=\|A^{-1}\delta y\|\leq \|A^{-1}\|\|\delta y\|$ if $\|A^{-1}\|$ is large,

- ullet small errors in y can lead to large errors in x
- \bullet can't solve for x given y (with small errors)
- hence, A can be considered singular in practice

a more refined analysis uses *relative* instead of *absolute* errors in x and y since y = Ax, we also have $||y|| \le ||A|| ||x||$, hence

$$\frac{\|\delta x\|}{\|x\|} \le \|A\| \|A^{-1}\| \frac{\|\delta y\|}{\|y\|}$$

$$\kappa(A) = ||A|| ||A^{-1}|| = \sigma_{\max}(A) / \sigma_{\min}(A)$$

is called the *condition number* of A

we have:

relative error in solution $x \leq$ condition number \cdot relative error in data y or, in terms of # bits of guaranteed accuracy:

bits accuracy in solution pprox # bits accuracy in data $-\log_2 \kappa$

we say

- A is well conditioned if κ is small
- ullet A is poorly conditioned if κ is large

(definition of 'small' and 'large' depend on application)

same analysis holds for least-squares solutions with A nonsquare, $\kappa = \sigma_{\max}(A)/\sigma_{\min}(A)$

Distance to singularity

another interpretation of σ_i :

$$\sigma_i = \min\{ \|A - B\| \mid \mathbf{Rank}(B) \le i - 1 \}$$

 $\it i.e.$, the distance (measured by matrix norm) to the nearest rank $\it i-1$ matrix

for example, if $A \in \mathbf{R}^{n \times n}$, $\sigma_n = \sigma_{\min}$ is distance to nearest singular matrix

hence, small σ_{\min} means A is near to a singular matrix

application: model simplification

suppose y = Ax + v, where

• $A \in \mathbf{R}^{100 \times 30}$ has SVs

$$10, 7, 2, 0.5, 0.01, \ldots, 0.0001$$

- ||x|| is on the order of 1
- ullet unknown error or noise v has norm on the order of 0.1

then the terms $\sigma_i u_i v_i^T x$, for $i=5,\ldots,30$, are substantially smaller than the noise term v

simplified model:

$$y = \sum_{i=1}^{4} \sigma_i u_i v_i^T x + v$$