
Quadratic forms

a function f : Rn → R of the form

f(x) = xTAx =
n

∑

i,j=1

Aijxixj

is called a quadratic form

in a quadratic form we may as well assume A = AT since

xTAx = xT ((A + AT )/2)x

((A + AT )/2 is called the symmetric part of A)

uniqueness: if xTAx = xTBx for all x ∈ Rn and A = AT , B = BT , then
A = B
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Examples

• ‖Bx‖2 = xTBTBx

•
∑n−1

i=1
(xi+1 − xi)2

• ‖Fx‖2 − ‖Gx‖2

sets defined by quadratic forms:

• { x | f(x) = a } is called a quadratic surface

• { x | f(x) ≤ a } is called a quadratic region
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Inequalities for quadratic forms

suppose A = AT , A = QΛQT with eigenvalues sorted so λ1 ≥ · · · ≥ λn

xTAx = xTQΛQTx

= (QTx)TΛ(QTx)

=
n

∑

i=1

λi(q
T
i x)2

≤ λ1

n
∑

i=1

(qT
i x)2

= λ1‖x‖2

i.e., we have xTAx ≤ λ1xTx
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similar argument shows xTAx ≥ λn‖x‖2, so we have

λnxTx ≤ xTAx ≤ λ1x
Tx

sometimes λ1 is called λmax, λn is called λmin

note also that

qT
1 Aq1 = λ1‖q1‖2, qT

n Aqn = λn‖qn‖2,

so the inequalities are tight
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Positive semidefinite and positive definite matrices

suppose A = AT ∈ Rn×n

we say A is positive semidefinite if xTAx ≥ 0 for all x

• denoted A ≥ 0 (and sometimes A ' 0)

• A ≥ 0 if and only if λmin(A) ≥ 0, i.e., all eigenvalues are nonnegative

• not the same as Aij ≥ 0 for all i, j

we say A is positive definite if xTAx > 0 for all x (= 0

• denoted A > 0

• A > 0 if and only if λmin(A) > 0, i.e., all eigenvalues are positive

Symmetric matrices, quadratic forms, matrix norm, and SVD 15–14



Matrix inequalities

• we say A is negative semidefinite if −A ≥ 0

• we say A is negative definite if −A > 0

• otherwise, we say A is indefinite

matrix inequality: if B = BT ∈ Rn we say A ≥ B if A − B ≥ 0, A < B
if B − A > 0, etc.

for example:

• A ≥ 0 means A is positive semidefinite

• A > B means xTAx > xTBx for all x (= 0
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many properties that you’d guess hold actually do, e.g.,

• if A ≥ B and C ≥ D, then A + C ≥ B + D

• if B ≤ 0 then A + B ≤ A

• if A ≥ 0 and α ≥ 0, then αA ≥ 0

• if A ≥ 0, then A2 > 0

• if A > 0, then A−1 > 0

matrix inequality is only a partial order : we can have

A (≥ B, B (≥ A

(such matrices are called incomparable)
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Ellipsoids

if A = AT > 0, the set

E = { x | xTAx ≤ 1 }

is an ellipsoid in Rn, centered at 0

s1 s2

E
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semi-axes are given by si = λ−1/2

i qi, i.e.:

• eigenvectors determine directions of semiaxes

• eigenvalues determine lengths of semiaxes

note:

• in direction q1, xTAx is large, hence ellipsoid is thin in direction q1

• in direction qn, xTAx is small, hence ellipsoid is fat in direction qn

•
√

λmax/λmin gives maximum eccentricity

if Ẽ = { x | xTBx ≤ 1 }, where B > 0, then E ⊆ Ẽ ⇐⇒ A ≥ B
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Gain of a matrix in a direction

suppose A ∈ Rm×n (not necessarily square or symmetric)

for x ∈ Rn, ‖Ax‖/‖x‖ gives the amplification factor or gain of A in the
direction x

obviously, gain varies with direction of input x

questions:

• what is maximum gain of A
(and corresponding maximum gain direction)?

• what is minimum gain of A
(and corresponding minimum gain direction)?

• how does gain of A vary with direction?
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Matrix norm

the maximum gain

max
x#=0

‖Ax‖
‖x‖

is called the matrix norm or spectral norm of A and is denoted ‖A‖

max
x#=0

‖Ax‖2

‖x‖2
= max

x#=0

xTATAx

‖x‖2
= λmax(A

TA)

so we have ‖A‖ =
√

λmax(ATA)

similarly the minimum gain is given by

min
x#=0

‖Ax‖/‖x‖ =
√

λmin(ATA)
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note that

• ATA ∈ Rn×n is symmetric and ATA ≥ 0 so λmin, λmax ≥ 0

• ‘max gain’ input direction is x = q1, eigenvector of ATA associated
with λmax

• ‘min gain’ input direction is x = qn, eigenvector of ATA associated with
λmin
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example: A =





1 2
3 4
5 6





ATA =

[

35 44
44 56

]

=

[

0.620 0.785
0.785 −0.620

] [

90.7 0
0 0.265

] [

0.620 0.785
0.785 −0.620

]T

then ‖A‖ =
√

λmax(ATA) = 9.53:

∥

∥

∥

∥

[

0.620
0.785

]
∥

∥

∥

∥

= 1,

∥

∥

∥

∥

A

[

0.620
0.785

]
∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥





2.18
4.99
7.78





∥

∥

∥

∥

∥

∥

= 9.53
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min gain is
√

λmin(ATA) = 0.514:

∥

∥

∥

∥

[

0.785
−0.620

]
∥

∥

∥

∥

= 1,

∥

∥

∥

∥

A

[

0.785
−0.620

]
∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥





0.46
0.14

−0.18





∥

∥

∥

∥

∥

∥

= 0.514

for all x (= 0, we have

0.514 ≤ ‖Ax‖
‖x‖ ≤ 9.53
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Properties of matrix norm

• consistent with vector norm: matrix norm of a ∈ Rn×1 is
√

λmax(aTa) =
√

aTa

• for any x, ‖Ax‖ ≤ ‖A‖‖x‖

• scaling: ‖aA‖ = |a|‖A‖

• triangle inequality: ‖A + B‖ ≤ ‖A‖ + ‖B‖

• definiteness: ‖A‖ = 0 ⇔ A = 0

• norm of product: ‖AB‖ ≤ ‖A‖‖B‖
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Singular value decomposition

more complete picture of gain properties of A given by singular value
decomposition (SVD) of A:

A = UΣV T

where

• A ∈ Rm×n, Rank(A) = r

• U ∈ Rm×r, UTU = I

• V ∈ Rn×r, V TV = I

• Σ = diag(σ1, . . . ,σr), where σ1 ≥ · · · ≥ σr > 0
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with U = [u1 · · ·ur], V = [v1 · · · vr],

A = UΣV T =
r

∑

i=1

σiuiv
T
i

• σi are the (nonzero) singular values of A

• vi are the right or input singular vectors of A

• ui are the left or output singular vectors of A
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ATA = (UΣV T )T (UΣV T ) = V Σ2V T

hence:

• vi are eigenvectors of ATA (corresponding to nonzero eigenvalues)

• σi =
√

λi(ATA) (and λi(ATA) = 0 for i > r)

• ‖A‖ = σ1
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similarly,
AAT = (UΣV T )(UΣV T )T = UΣ2UT

hence:

• ui are eigenvectors of AAT (corresponding to nonzero eigenvalues)

• σi =
√

λi(AAT ) (and λi(AAT ) = 0 for i > r)

• u1, . . . ur are orthonormal basis for range(A)

• v1, . . . vr are orthonormal basis for N (A)⊥
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Interpretations

A = UΣV T =
r

∑

i=1

σiuiv
T
i

x V Tx ΣV Tx Ax
V T UΣ

linear mapping y = Ax can be decomposed as

• compute coefficients of x along input directions v1, . . . , vr

• scale coefficients by σi

• reconstitute along output directions u1, . . . , ur

difference with eigenvalue decomposition for symmetric A: input and
output directions are different
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• v1 is most sensitive (highest gain) input direction

• u1 is highest gain output direction

• Av1 = σ1u1
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SVD gives clearer picture of gain as function of input/output directions

example: consider A ∈ R4×4 with Σ = diag(10, 7, 0.1, 0.05)

• input components along directions v1 and v2 are amplified (by about
10) and come out mostly along plane spanned by u1, u2

• input components along directions v3 and v4 are attenuated (by about
10)

• ‖Ax‖/‖x‖ can range between 10 and 0.05

• A is nonsingular

• for some applications you might say A is effectively rank 2
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Lecture 16
SVD Applications

• general pseudo-inverse

• full SVD

• image of unit ball under linear transformation

• SVD in estimation/inversion

• sensitivity of linear equations to data error

• low rank approximation via SVD
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Min Squared Error: Over-Constrained 
• Given y!Rq  and A!Rq!n so that q > n (A is slim) and rank(A) = n

we’d like to find x!Rn such that Ax " y in the minimum l2 sense:

where ||v||2 = #ivi
2

• If A were invertible we would simply take x=A-1y

• This is a quadratic expression in x so it has a single minimum where its 

gradient is 0.

• (A’A)-1 exists (rank = n) so x = (A’A)-1A’y

• Plug in SVD and get x = V!-2V’ V!U’y = V!-1U’y

• V!-1U’ is denoted by A! and is called A’s pseudo inverse since A!A = I
3

over constrained

Rank(A) = n A q > n A ∈ Rq×n y ∈ Rq

y Ax x ∈ Rn

arg min
x
‖y −Ax‖2

x

J = ‖y −Ax‖2 = (y −Ax)′(y −Ax) = y′y − 2y′Ax + x′A′Ax

x

∂J

∂x
= −2y′A + 2x′A′A = 0

A′y = A′Ax

(A′A)−1 A′A Rank(A) = n

x = (A′A)−1A′y

(A′A)−1A = VΣ−1U′ x = VΣ−1U′y A = UΣV′

I A A
A†
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Rank(A) = n A q < n A ∈ Rq×n y ∈ Rq

x Ax = y x ∈ Rn

arg min
x

||x||2 s.t.Ax = y

J = x′x + λ′(Ax− y)

x

∂J

∂x
= 2x′ + λ′A = 0

x =
1
2
A′λ

λ

A(
1
2
A′λ) = y

2
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A(
1
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A′λ) = y

2
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y Ax x ∈ Rn
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x
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Under-Constrained 

• Given y!Rq  and A!Rq!n so that q < n (A is fat) and rank(A) = n

we’d like to find x!Rn such that Ax = y (easy). 

Of all possible xs we want the smallest x, i.e.

• This is a constrained optimization problem, so we solve with Lagrange 

multipliers

• Plug into constraint Ax = y

• (AA)-1 exists, so 

where, as before A!= V!-1U’
4
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over constrained

Rank(A) = n A q > n A ∈ Rq×n y ∈ Rq

y Ax x ∈ Rn

arg min
x
‖y −Ax‖2

x
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(AA′)−1

λ = 2(AA′)−1y

x

x = A′(AA′)−1y = A†y

A = UΣV′ pseudo inverse
A† = VΣ−1U

LTI

xn+1 = Axn + Bun ,x0 = 0 , u0 = 0

xn n

xn =
n−1∑

i=0

AiBui

xn =
[
B AB · · · An−1B

]
︸ ︷︷ ︸

Ã




u0
...

un−1





︸ ︷︷ ︸
ũ

Ã under constrained
ũ

ũ = Ã′(ÃÃ′)−1xn ‖ũ‖2 ũ
Ã

ui = B′Ai




n−1∑

j=0

AiBB
(
Ai

)′



−1

︸ ︷︷ ︸
W−1

c (n−1)

xn

controllability grammian

3

(AA′)−1

λ = 2(AA′)−1y

x

x = A′(AA′)−1y = A†y

A = UΣV′ pseudo inverse
A† = VΣ−1U

LTI

xn+1 = Axn + Bun ,x0 = 0 , u0 = 0

xn n

xn =
n−1∑

i=0

AiBui

xn =
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B AB · · · An−1B
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︸ ︷︷ ︸

Ã




u0
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un−1





︸ ︷︷ ︸
ũ

Ã under constrained
ũ

ũ = Ã′(ÃÃ′)−1xn ‖ũ‖2 ũ
Ã

ui = B′Ai




n−1∑

j=0

AiBB
(
Ai

)′



−1

︸ ︷︷ ︸
W−1

c (n−1)

xn

controllability grammian

3



Optimal Control*
*Of noiseless, open loop, discrete time, LTI system

• Given system xn+1 = Axn+Bun with x0 = 0 
bring the system to specified xn (with a minimum energy control signal)

• We can expand the recursive definition and get 

• or, in matrix form

• This is an under constrained problem. If Ã is of rank n (i.e. system is 

controllable) then there are infinite possible solutions for ! 

• but there is only one solution that minimizes ||!||2:   != Ã’(Ã Ã’)-1xn

5
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• Plugging in definition of Ã to Ã! = Ã’(Ã Ã’)-1  we see that 

• The minimum energy (smallest ||!||2 ) control signal is the same signal used 

in the proof that the system is controllable iff the grammian is invertible
(How did we assure that the grammian is invertible here?)

6

(AA′)−1

λ = 2(AA′)−1y

x

x = A′(AA′)−1y = A†y

A = UΣV′

A† = VΣ−1U

xn+1 = Axn + Bun ,x0 = 0 , u0 = 0

xn n

xn =
n−1∑

i=0

AiBui
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[
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]
︸ ︷︷ ︸

Ã





u0

un−1


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ũ

Ã
ũ

ũ = Ã′(ÃÃ′)−1xn ‖ũ‖2
ũ

Ã

ui = B′Ai




n−1∑

j=0

AiBB′
(
Ai

)′



−1

︸ ︷︷ ︸
W−1

c (n−1)

xn



General pseudo-inverse

if A has SVD A = UΣV T ,

A† = V Σ−1UT

is the pseudo-inverse or Moore-Penrose inverse of A

if A is skinny and full rank,

A† = (ATA)−1AT

gives the least-squares solution xls = A†y

if A is fat and full rank,

A† = AT (AAT )−1

gives the least-norm solution xln = A†y
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in general case:

Xls = { z | ‖Az − y‖ = min
w

‖Aw − y‖ }

is set of least-squares solutions

xpinv = A†y ∈ Xls has minimum norm on Xls, i.e., xpinv is the
minimum-norm, least-squares solution
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Pseudo-inverse via regularization

for µ > 0, let xµ be (unique) minimizer of

‖Ax − y‖2 + µ‖x‖2

i.e.,
xµ =

(

ATA + µI
)−1

ATy

here, ATA + µI > 0 and so is invertible

then we have lim
µ→0

xµ = A†y

in fact, we have lim
µ→0

(

ATA + µI
)−1

AT = A†

(check this!)
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Full SVD

SVD of A ∈ Rm×n with Rank(A) = r:

A = U1Σ1V
T
1 =

[

u1 · · · ur

]





σ1
. . .

σr









vT
1
...

vT
r





• find U2 ∈ Rm×(m−r), V2 ∈ Rn×(n−r) s.t. U = [U1 U2] ∈ Rm×m and
V = [V1 V2] ∈ Rn×n are orthogonal

• add zero rows/cols to Σ1 to form Σ ∈ Rm×n:

Σ =

[

Σ1 0r×(n − r)
0(m − r)×r 0(m − r)×(n − r)

]
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then we have

A = U1Σ1V
T
1 =

[

U1 U2

]

[

Σ1 0r×(n − r)
0(m − r)×r 0(m − r)×(n − r)

]

[

V T
1

V T
2

]

i.e.:
A = UΣV T

called full SVD of A

(SVD with positive singular values only called compact SVD)
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Image of unit ball under linear transformation

full SVD:
A = UΣV T

gives intepretation of y = Ax:

• rotate (by V T )

• stretch along axes by σi (σi = 0 for i > r)

• zero-pad (if m > n) or truncate (if m < n) to get m-vector

• rotate (by U)
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Image of unit ball under A

rotate by V T

stretch, Σ = diag(2, 0.5)

u1u2 rotate by U

1

1

1

1

2

0.5

{Ax | ‖x‖ ≤ 1} is ellipsoid with principal axes σiui.
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SVD in estimation/inversion

suppose y = Ax + v, where

• y ∈ Rm is measurement

• x ∈ Rn is vector to be estimated

• v is a measurement noise or error

‘norm-bound’ model of noise: we assume ‖v‖ ≤ α but otherwise know
nothing about v (α gives max norm of noise)
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• consider estimator x̂ = By, with BA = I (i.e., unbiased)

• estimation or inversion error is x̃ = x̂ − x = Bv

• set of possible estimation errors is ellipsoid

x̃ ∈ Eunc = { Bv | ‖v‖ ≤ α }

• x = x̂ − x̃ ∈ x̂ − Eunc = x̂ + Eunc, i.e.:

true x lies in uncertainty ellipsoid Eunc, centered at estimate x̂

• ‘good’ estimator has ‘small’ Eunc (with BA = I, of course)
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semiaxes of Eunc are ασiui (singular values & vectors of B)

e.g., maximum norm of error is α‖B‖, i.e., ‖x̂ − x‖ ≤ α‖B‖

optimality of least-squares: suppose BA = I is any estimator, and
Bls = A† is the least-squares estimator

then:

• BlsBT
ls ≤ BBT

• Els ⊆ E

• in particular ‖Bls‖ ≤ ‖B‖

i.e., the least-squares estimator gives the smallest uncertainty ellipsoid
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Proof of optimality property

suppose A ∈ Rm×n, m > n, is full rank

SVD: A = UΣV T , with V orthogonal

Bls = A† = V Σ−1UT , and B satisfies BA = I

define Z = B − Bls, so B = Bls + Z

then ZA = ZUΣV T = 0, so ZU = 0 (multiply by V Σ−1 on right)

therefore

BBT = (Bls + Z)(Bls + Z)T

= BlsB
T
ls + BlsZ

T + ZBT
ls + ZZT

= BlsB
T
ls + ZZT

≥ BlsB
T
ls

using ZBT
ls = (ZU)Σ−1V T = 0
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Sensitivity of linear equations to data error

consider y = Ax, A ∈ Rn×n invertible; of course x = A−1y

suppose we have an error or noise in y, i.e., y becomes y + δy

then x becomes x + δx with δx = A−1δy

hence we have ‖δx‖ = ‖A−1δy‖ ≤ ‖A−1‖‖δy‖

if ‖A−1‖ is large,

• small errors in y can lead to large errors in x

• can’t solve for x given y (with small errors)

• hence, A can be considered singular in practice
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a more refined analysis uses relative instead of absolute errors in x and y

since y = Ax, we also have ‖y‖ ≤ ‖A‖‖x‖, hence

‖δx‖

‖x‖
≤ ‖A‖‖A−1‖

‖δy‖

‖y‖

κ(A) = ‖A‖‖A−1‖ = σmax(A)/σmin(A)

is called the condition number of A

we have:

relative error in solution x ≤ condition number · relative error in data y

or, in terms of # bits of guaranteed accuracy:

# bits accuacy in solution ≈ # bits accuracy in data − log2 κ
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we say

• A is well conditioned if κ is small

• A is poorly conditioned if κ is large

(definition of ‘small’ and ‘large’ depend on application)

same analysis holds for least-squares solutions with A nonsquare,
κ = σmax(A)/σmin(A)
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Distance to singularity

another interpretation of σi:

σi = min{ ‖A − B‖ | Rank(B) ≤ i − 1 }

i.e., the distance (measured by matrix norm) to the nearest rank i − 1
matrix

for example, if A ∈ Rn×n, σn = σmin is distance to nearest singular matrix

hence, small σmin means A is near to a singular matrix
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application: model simplification

suppose y = Ax + v, where

• A ∈ R100×30 has SVs

10, 7, 2, 0.5, 0.01, . . . , 0.0001

• ‖x‖ is on the order of 1

• unknown error or noise v has norm on the order of 0.1

then the terms σiuivT
i x, for i = 5, . . . , 30, are substantially smaller than

the noise term v

simplified model:

y =
4

∑

i=1

σiuiv
T
i x + v
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