EE363 Winter 2003-04

# Lecture 2 LQR via Lagrange multipliers

- useful matrix identities
- linearly constrained optimization
- LQR via constrained optimization

2-1

# Some useful matrix identities

let's start with a simple one:

$$Z(I+Z)^{-1} = I - (I+Z)^{-1}$$

(provided I+Z is invertible)

to verify this identity, we start with

$$I = (I+Z)(I+Z)^{-1} = (I+Z)^{-1} + Z(I+Z)^{-1}$$

re-arrange terms to get identity

an identity that's a bit more complicated:

$$(I + XY)^{-1} = I - X(I + YX)^{-1}Y$$

(if either inverse exists, then the other does; in fact det(I + XY) = det(I + YX))

to verify:

$$(I - X(I + YX)^{-1}Y) (I + XY) = I + XY - X(I + YX)^{-1}Y(I + XY)$$
$$= I + XY - X(I + YX)^{-1}(I + YX)Y$$
$$= I + XY - XY = I$$

LQR via Lagrange multipliers

2–3

another identity:

$$Y(I + XY)^{-1} = (I + YX)^{-1}Y$$

to verify this one, start with Y(I+XY)=(I+YX)Y then multiply on left by  $(I+YX)^{-1}$ , on right by  $(I+XY)^{-1}$ 

- note dimensions of inverses not necessarily the same
- ullet mnemonic: lefthand Y moves into inverse, pushes righthand Y out . . .

and one more:

$$(I + XZ^{-1}Y)^{-1} = I - X(Z + YX)^{-1}Y$$

let's check:

$$(I + X(Z^{-1}Y))^{-1} = I - X (I + Z^{-1}YX)^{-1} Z^{-1}Y$$
$$= I - X(Z(I + Z^{-1}YX))^{-1}Y$$
$$= I - X(Z + YX)^{-1}Y$$

LQR via Lagrange multipliers

2-5

# Example: rank one update

- ullet suppose we've already calculated or know  $A^{-1}$ , where  $A \in \mathbf{R}^{n \times n}$
- we need to calculate  $(A+bc^T)^{-1}$ , where  $b,\ c\in \mathbf{R}^n$   $(A+bc^T)$  is called a rank one update of A)

we'll use another identity, called matrix inversion lemma:

$$(A + bc^{T})^{-1} = A^{-1} - \frac{1}{1 + c^{T}A^{-1}b}(A^{-1}b)(c^{T}A^{-1})$$

note that RHS is easy to calculate since we know  ${\cal A}^{-1}$ 

more general form of matrix inversion lemma:

$$(A+BC)^{-1} = A^{-1} - A^{-1}B (I + CA^{-1}B)^{-1} CA^{-1}$$

let's verify it:

$$(A + BC)^{-1} = (A(I + A^{-1}BC))^{-1}$$

$$= (I + (A^{-1}B)C)^{-1}A^{-1}$$

$$= (I - (A^{-1}B)(I + C(A^{-1}B))^{-1}C)A^{-1}$$

$$= A^{-1} - A^{-1}B(I + CA^{-1}B)^{-1}CA^{-1}$$

LQR via Lagrange multipliers

#### 2-7

### Another formula for the Riccati recursion

$$P_{t-1} = Q + A^{T} P_{t} A - A^{T} P_{t} B (R + B^{T} P_{t} B)^{-1} B^{T} P_{t} A$$

$$= Q + A^{T} P_{t} (I - B (R + B^{T} P_{t} B)^{-1} B^{T} P_{t}) A$$

$$= Q + A^{T} P_{t} (I - B ((I + B^{T} P_{t} B R^{-1}) R)^{-1} B^{T} P_{t}) A$$

$$= Q + A^{T} P_{t} (I - B R^{-1} (I + B^{T} P_{t} B R^{-1})^{-1} B^{T} P_{t}) A$$

$$= Q + A^{T} P_{t} (I + B R^{-1} B^{T} P_{t})^{-1} A$$

$$= Q + A^{T} (I + P_{t} B R^{-1} B^{T})^{-1} P_{t} A$$

or, in pretty, symmetric form:

$$P_{t-1} = Q + A^T P_t^{1/2} \left( I + P_t^{1/2} B R^{-1} B^T P_t^{1/2} \right)^{-1} P_t^{1/2} A$$

# Linearly constrained optimization

minimize 
$$f(x)$$
  
subject to  $Fx = g$ 

- $f: \mathbf{R}^n \to \mathbf{R}$  is smooth *objective function*
- $F \in \mathbf{R}^{m \times n}$  is fat

form Lagrangian  $L(x,\lambda)=f(x)+\lambda^T(g-Fx)$  ( $\lambda$  is Lagrange multiplier) if x is optimal, then

$$\nabla_x L = \nabla f(x) - F^T \lambda = 0, \qquad \nabla_\lambda L = g - Fx = 0$$

$$i.e.,\ \nabla f(x) = F^T \lambda \ \text{for some}\ \lambda \in \mathbf{R}^m$$

(generalizes optimality condition  $\nabla f(x) = 0$  for unconstrained minimization problem)

LQR via Lagrange multipliers

2-9

#### **Picture**



$$\nabla f(x) = F^T \lambda$$
 for some  $\lambda \Longleftrightarrow \nabla f(x) \in \mathcal{R}(F^T) \Longleftrightarrow \nabla f(x) \perp \mathcal{N}(F)$ 

#### Feasible descent direction

suppose x is current, feasible point (i.e., Fx = g)

consider a small step in direction v, to x + hv (h small, positive)

when is x + hv better than x?

need x + hv feasible: F(x + hv) = g + hFv = g, so Fv = 0

 $v \in \mathcal{N}(F)$  is called a *feasible direction* 

we need x + hv to have smaller objective than x:

$$f(x + hv) \approx f(x) + h\nabla f(x)^T v < f(x)$$

so we need  $\nabla f(x)^T v < 0$  (called a *descent direction*)

(if  $\nabla f(x)^T v > 0$ , -v is a descent direction, so we need only  $\nabla f(x)^T v \neq 0$ )

 $\boldsymbol{x}$  is not optimal if there exists a feasible descent direction

LQR via Lagrange multipliers

if x is optimal, every feasible direction satisfies  $\nabla f(x)^T v = 0$ 

$$Fv = 0 \implies \nabla f(x)^T v = 0 \iff \mathcal{N}(F) \subseteq \mathcal{N}(\nabla f(x)^T)$$

$$\iff \mathcal{R}(F^T) \supseteq \mathcal{R}(\nabla f(x))$$

$$\iff \nabla f(x) \in \mathcal{R}(F^T)$$

$$\iff \nabla f(x) = F^T \lambda \text{ for some } \lambda \in \mathbf{R}^m$$

$$\iff \nabla f(x) \perp \mathcal{N}(F)$$

LQR via Lagrange multipliers

2-11

# LQR as constrained minimization problem

minimize 
$$J = \frac{1}{2} \sum_{t=0}^{N-1} \left( x(t)^T Q x(t) + u(t)^T R u(t) \right) + \frac{1}{2} x(N)^T Q_f x(N)$$
 subject to  $x(t+1) = A x(t) + B u(t), \quad t = 0, \dots, N-1$ 

- variables are  $u(0), \ldots, u(N-1)$  and  $x(1), \ldots, x(N)$   $(x(0) = x_0 \text{ is given})$
- objective is (convex) quadratic (factor 1/2 in objective is for convenience)

introduce Lagrange multipliers  $\lambda(1),\ldots,\lambda(N)\in\mathbf{R}^n$  and form Lagrangian

$$L = J + \sum_{t=0}^{N-1} \lambda(t+1)^{T} \left( Ax(t) + Bu(t) - x(t+1) \right)$$

LQR via Lagrange multipliers

2-13

# **Optimality conditions**

we have 
$$x(t+1) = Ax(t) + Bu(t)$$
 for  $t = 0, ..., N-1$ ,  $x(0) = x_0$ 

for 
$$t = 0, \dots, N-1$$
,  $\nabla_{u(t)}L = Ru(t) + B^T\lambda(t+1) = 0$ 

hence, 
$$u(t) = -R^{-1}B^T\lambda(t+1)$$

for 
$$t=1,\ldots,N-1$$
,  $\nabla_{x(t)}L=Qx(t)+A^T\lambda(t+1)-\lambda(t)=0$ 

hence, 
$$\lambda(t) = A^T \lambda(t+1) + Qx(t)$$

$$abla_{x(N)}L=Q_fx(N)-\lambda(N)=0$$
, so  $\lambda(N)=Q_fx(N)$ 

these are a set of linear equations in the variables

$$u(0),\ldots,u(N-1),\quad x(1),\ldots,x(N),\quad \lambda(1),\ldots,\lambda(N)$$

# **Co-state equations**

optimality conditions break into two parts:

$$x(t+1) = Ax(t) + Bu(t),$$
  $x(0) = x_0$ 

this recursion for state x runs forward in time, with initial condition

$$\lambda(t) = A^T \lambda(t+1) + Qx(t), \qquad \lambda(N) = Q_f x(N)$$

this recursion for  $\lambda$  runs backwards in time, with final condition

- $\lambda$  is called *co-state*
- $\bullet$  recursion for  $\lambda$  sometimes called *adjoint system*

LQR via Lagrange multipliers

2-15

#### Solution via Riccati recursion

we will see that  $\lambda(t)=P_tx(t)$ , where  $P_t$  is the min-cost-to-go matrix defined by the Riccati recursion

thus, Riccati recursion gives clever way to solve this set of linear equations

it holds for 
$$t = N$$
, since  $P_N = Q_f$  and  $\lambda(N) = Q_f x(N)$ 

now suppose it holds for t+1, i.e.,  $\lambda(t+1)=P_{t+1}x(t+1)$ 

let's show it holds for t, i.e.,  $\lambda(t) = P_t x(t)$ 

using 
$$x(t+1) = Ax(t) + Bu(t)$$
 and  $u(t) = -R^{-1}B^T\lambda(t+1)$ ,

$$\lambda(t+1) = P_{t+1}(Ax(t) + Bu(t)) = P_{t+1}(Ax(t) - BR^{-1}B^{T}\lambda(t+1))$$

SO

$$\lambda(t+1) = (I + P_{t+1}BR^{-1}B^T)^{-1}P_{t+1}Ax(t)$$

using  $\lambda(t) = A^T \lambda(t+1) + Qx(t)$ , we get

$$\lambda(t) = A^{T} (I + P_{t+1}BR^{-1}B^{T})^{-1} P_{t+1} Ax(t) + Qx(t) = P_{t}x(t)$$

since by the Riccati recursion

$$P_t = Q + A^T (I + P_{t+1}BR^{-1}B^T)^{-1}P_{t+1}A$$

this proves  $\lambda(t) = P_t x(t)$ 

LQR via Lagrange multipliers

2-17

let's check that our two formulas for u(t) are consistent:

$$u(t) = -R^{-1}B^{T}\lambda(t+1)$$

$$= -R^{-1}B^{T}(I + P_{t+1}BR^{-1}B^{T})^{-1}P_{t+1}Ax(t)$$

$$= -R^{-1}(I + B^{T}P_{t+1}BR^{-1})^{-1}B^{T}P_{t+1}Ax(t)$$

$$= -((I + B^{T}P_{t+1}BR^{-1})R)^{-1}B^{T}P_{t+1}Ax(t)$$

$$= -(R + B^{T}P_{t+1}B)^{-1}B^{T}P_{t+1}Ax(t)$$

which is what we had before