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Lecture 2
LQR via Lagrange multipliers

e useful matrix identities
e linearly constrained optimization

e LQR via constrained optimization

Some useful matrix identities

let's start with a simple one:
ZU+2) ' =1—-I+2)1

(provided I 4 Z is invertible)
to verify this identity, we start with

I=(I+2)I+2) ' =U+2) ' +2(I+2)"

re-arrange terms to get identity
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an identity that's a bit more complicated:
I+XY)'=T-XI+YX)'Y

(if either inverse exists, then the other does; in fact
det(I + XY) =det(I + Y X))

to verify:

I-XI+YX)'Y)I+XY) = I+XY-X(I+YX)'Y(I+XY)
= I+XY-X({I+YX)'I+YX)Y
= I+XY-XY=1I
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another identity:
YI+XY) ' '=I+YX)lY

to verify this one, start with Y (I + XY) = (I +YX)Y

then multiply on left by (I + Y X)™!, on right by (I + XY)~!

e note dimensions of inverses not necessarily the same

e mnemonic: lefthand Y moves into inverse, pushes righthand Y out . . .
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and one more:

I+XZ ') '=I-X(Z+YX)"'Y

let's check:
I+X(ZWV) = I-X(I+2'YX) ' z'v
= I-X(Z(I+Z'YX))'Y
= I-X(Z+YX)'Y
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Example: rank one update

e suppose we've already calculated or know A~!, where A € R™*"

e we need to calculate (A + bcT)~t, where b, ¢ € R"
(A + bcT is called a rank one update of A)

we'll use another identity, called matrix inversion lemma:

1

Atb") T =A" - —————
(4 +bc7) 1+cTA-1b

(A7) (A

note that RHS is easy to calculate since we know A~1!
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more general form of matrix inversion lemma:

(A+BC) ' = A '—A'B(I+CA'B) ' cA™!

let's verify it:
(A+BC)™' = (A( I+A 'BC))
= U+ ( 'B)C)~tAT
= (I-A'B)I+CcA'B)~'C)A™!

= A'-A'BU+cA'B) oAt
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Another formula for the Riccati recursion

P = Q+A"PA—-ATP,B(R+BTP,B)"'BTP,A
= Q+A"P,(I-B(R+B"P,B)"'B"P,) A
= Q+A"P,(I-B(I+B"PBR"Y)R)"'B'"P) A
= Q+A"P,(I-BR '(I+B"PBR ") "'B"P)A
= Q+A"P,(I+BR'B"P) ' A

— Q+AT(I+PBR'BT) ' PA

or, in pretty, symmetric form:

-1
L =Q+ATR (14 P/?BRTBTRY) P4
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Linearly constrained optimization

minimize  f(x)
subjectto Fx =g

e f:R" — R is smooth objective function

e FF e R™ " is fat

form Lagrangian L(z,\) = f(x) + AT (g — Fz) (X is Lagrange multiplier)

if = is optimal, then
VoL =Vf(x)—F'A=0, Val=g—Fz=0

i.e., Vf(x) = FT) for some A € R™

(generalizes optimality condition V f(z) = 0 for unconstrained
minimization problem)
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Picture

f(x) = constant {z| Fz =g}

Vf(z) = FTX for some A < Vf(z) € R(FT) < Vf(z) L N(F)
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Feasible descent direction

suppose x is current, feasible point (i.e., Fx = g)

consider a small step in direction v, to « 4+ hv (h small, positive)
when is x + hv better than z7?

need x + hv feasible: F(x + hv) =g+ hFv =g, so Fv =10

v € N(F) is called a feasible direction

we need x + hv to have smaller objective than z:

flz+ ho) & f(z) + bV f(2)Tv < f(z)

so we need Vf(x)Tv < 0 (called a descent direction)
(if Vf(x)Tv > 0, —v is a descent direction, so we need only V f(z)Tv # 0)
x is not optimal if there exists a feasible descent direction
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if  is optimal, every feasible direction satisfies V f(x)Tv = 0

Fo=0 = Via)Tv=0 N(F) CN(Vf(x)T)

R(FT) 2 R(V f(x))

Vf(z) e R(FT)

f(x) = FTX for some XA € R™
(

f(x) LN(F)

[

<
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LQR as constrained minimization problem

minimize  J =1V N (2(0)TQx(t) + u(t)T Ru(t)) + 1z(N)TQx(N)
subject to x(t+ 1) = Az(t) + Bu(t), t=0,...,N—1

e variables are u(0),...,u(N —1) and z(1),...,z(N)
(z(0) = x¢ is given)

e objective is (convex) quadratic
(factor 1/2 in objective is for convenience)

introduce Lagrange multipliers A(1),...,A(N) € R" and form Lagrangian

N—-1
L=J+Y Mt+1)7T (Azx(t) + Bu(t) — x(t + 1))
t=0
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Optimality conditions

we have z(t + 1) = Az(t) + Bu(t) fort =0,...,N — 1, (0) = xg
fort=0,...,N—1, V,yL = Ru(t) + BTA(t+1) =0

hence, u(t) = —R7IBTA(t +1)

fort=1,...,N—1, VoL = Qu(t) + ATA(t+1) = A(t) =0
hence, A(t) = ATA(t + 1) + Qz(t)

VL = Qsa(N) = A(N) = 0, 50 A(N) = Qs(V)

these are a set of linear equations in the variables

w(0), .. u(N = 1), x(1),...,2(N), AL),..., A(N)
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Co-state equations

optimality conditions break into two parts:
x(t+ 1) = Az(t) + Bu(t), z(0) = xo

this recursion for state = runs forward in time, with initial condition

A(t) = ATA(+1) +Qa(t),  AN) = Qga(N)
this recursion for A runs backwards in time, with final condition

e )\ is called co-state

e recursion for A sometimes called adjoint system
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Solution via Riccati recursion
we will see that \(t) = P,x(t), where P; is the min-cost-to-go matrix
defined by the Riccati recursion
thus, Riccati recursion gives clever way to solve this set of linear equations
it holds for t = N, since Py = Q¢ and A(IV) = Qx(N)
now suppose it holds for t + 1, i.e., A(t + 1) = Pryjx(t + 1)
let's show it holds for ¢, i.e., A(t) = Pyx(t)

using z(t + 1) = Ax(t) + Bu(t) and u(t) = —R7!BTA(t + 1),
At +1) = Pry1(Az(t) + Bu(t)) = Py (Az(t) — BRT'BTA(t + 1))

SO
At +1)= I+ Py 1BR'BT)"IP 1 Ax(t)

LQR via Lagrange multipliers 2-16



using A(t) = ATA(t + 1) + Qx(t), we get
Mt) = AT(I + Py BR™'BT) " Py Ax(t) + Qx(t) = Pa(t)
since by the Riccati recursion

Po=Q+AT(I+ P BR'BT)"'P, 1A

this proves \(t) = P,z (t)
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let's check that our two formulas for u(t) are consistent:

u(t) = —R'BTAt+1)
= —R'BT(I+ P 1BR'BT)" 1P Ax(t)
= R 'I+B'P1BRY) 'BTPAx(t)
= —(I+B"P.BRYR)™'BTP,Ax(t)
= —(R+BTP, 1B 'BTP 1 Ax(t)

which is what we had before
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