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Lecture 7
The Kalman filter

Linear system driven by stochastic process

Statistical steady-state

Linear Gauss-Markov model

Kalman filter

Steady-state Kalman filter
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Linear system driven by stochastic process

we consider linear dynamical system x(t + 1) = Ax(t) + Bu(t), with z(0)
and u(0), u(1),... random variables

we'll use notation
) =Ex(t),  T.(t)=E(x(t) - (1) (=) —2(1)"

and similarly for @(t), 3,(t)

taking expectation of x(t + 1) = Ax(t) + Bu(t) we have
z(t+1) = Az(t) + Bu(t)

i.e., the means propagate by the same linear dynamical system
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now let's consider the covariance

z(t+1)—z(t+1)=A(z(t) — z(t)) + Bu(t) — u(t))

and so
Yot +1) = E(A(z(t) —2(t)) + B(u(t) —u(t))) -
(A(x(t) — 2()) + B(u(t) — (1))
= AN, (H)AT + BY,(t)BT + AX,,(t) BT + BY,.(t) AT
where

Zou(t) = Bua(t)” = B(a(t) — 2(t)) (ult) — alt)”

thus, the covariance X, (t) satisfies another, Lyapunov-like linear dynamical
system, driven by >, and >,
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consider special case ¥,,(t) = 0, i.e., x and u are uncorrelated, so we
have Lyapunov iteration

Y.(t+1) = A, (t) AT + BX,(t)BT,

which is stable if and only if A is stable

if A is stable and X, (¢) is constant, ¥, (t) converges to X, called the
steady-state covariance, which satisfies Lyapunov equation

Yy, =AY, A" + BY, BT

thus, we can calculate the steady-state covariance of x exactly, by solving
a Lyapunov equation

(useful for starting simulations in statistical steady-state)
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Example

we consider z(t + 1) = Ax(t) + w(t), with

0.6 —0.8
A= l 0.7 0.6 ] !

where w(t) are 11D NV(0, 1)

eigenvalues of A are 0.6 +0.757, with magnitude 0.96, so A is stable

we solve Lyapunov equation to find steady-state covariance

v _ [ 1335 —0.03
*= | —0.03 11.75

covariance of x(t) converges to ¥, no matter its initial value
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two initial state distributions: ¥,(0) =0, ¥,(0) = 1021

plot shows 11 (t) for the two cases
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x1(t) for

one realization from each case:
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Linear Gauss-Markov model

we consider linear dynamical system

z(t+1) = Ax(t) + w(t), y(t) = Cx(t) + v(t)

e z(t) € R" is the state; y(t) € R? is the observed output

e w(t) € R™ is called process noise or state noise

e v(t) € R? is called measurement noise

The Kalman filter
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Statistical assumptions

e z(0), w(0),w(1l),..., and v(0),v(1),... are jointly Gaussian and
independent

e w(t) are IID with Ew(t) =0, Ew(t)w(t)T =W
e v(t) are IID with Ev(t) = 0, Ev(t)v(t)T =V
® EZIZ(O) == If'o, E(ZU(O) - fo)(aﬁ(O) - Ll_fo)T = EO

(it's not hard to extend to case where w(t), v(t) are not zero mean)
we'll denote X (t) = (2(0),...,x(t)), etc.

since X (t) and Y'(t) are linear functions of x(0), W (t), and V (), we
conclude they are all jointly Gaussian (i.e., the process x, w, v, y is
Gaussian)
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Statistical properties

e sensor noise v independent of =

e w(t) is independent of x(0),...,z(t) and y(0),...,y(t)

e Markov property: the process x is Markov, i.e.,
z(t)|z(0),...,z(t — 1) = z(t)|z(t — 1)

roughly speaking: if you know z(t — 1), then knowledge of
x(t —2),...,2(0) doesn't give any more information about z(t)

The Kalman filter
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Mean and covariance of Gauss-Markov process

mean satisfies Z(t + 1) = Az(t), £(0) = Zo, so Z(t) = Az

covariance satisfies

Ye(t4+1) = A (AT + W

if A is stable, 3,(f) converges to steady-state covariance X, which
satisfies Lyapunov equation

Y, =AY AT + W
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Conditioning on observed output

we use the notation

w(tls) = E(@@)]y(0),...y(s)),
Sie = B(a(t) - 2(t]s))(z(t) — @(t]s))"
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e the random variable z(t)|y(0),...,y(s) is Gaussian, with mean Z(t|s)

and covariance Y.y,

e (t|s) is the minimum mean-square error estimate of x(¢), based on

y(0); .-, y(s)

® Y5 is the covariance of the error of the estimate Z(t|s)

The Kalman filter
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State estimation

we focus on two state estimation problems:

e finding Z(t|t), i.e., estimating the current state, based on the current
and past observed outputs

e finding Z(t + 1|t), i.e., predicting the next state, based on the current
and past observed outputs

since z(t), Y (t) are jointly Gaussian, we can use the standard formula to
find z(t|t) (and similarly for (¢t + 1t))

2(11E) = () + Saovin Syl (Y (1) — V(1)

the inverse in the formula, E;%t), is size pt X pt, which grows with ¢

the Kalman filter is a clever method for computing Z(t|t) and Z(t + 1|¢)
recursively
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Measurement update
let's find 2(t[t) and X, in terms of Z(¢[t — 1) and X,
start with y(¢) = Cz(t) + v(t), and condition on Y (¢ — 1):
y )Yt —1)=Czx(t)|[Y(t—1)+v@)|Y(t—1)=Cz(t)|Y(t — 1)+ v(t)

since v(t) and Y (¢t — 1) are independent

so z(t)|Y(t — 1) and y(¢)|Y (t — 1) are jointly Gaussian with mean and
covariance

i'(ﬂt - 1) z]t\t—l Et|t—1CT
C.’,i'(ﬂt - 1) ’ Czﬂt_l CZﬂt_lCT + V
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now use standard formula to get mean and covariance of

(@Y (= ))I@O]Y (¢ - 1)),

which is exactly the same as x(t)|Y (¢):

” n -1 “
B(t) = 2t — 1)+ Sy rCT (OB a € 4 V) (1) — Cifelt — 1)
1
Y = -1 — Zt|t—1CT (Czﬂt—lCT + V) CYiji—1

this gives us &(t|t) and Xy, in terms of Z(¢[t — 1) and X4,

this is called the measurement update since it gives our updated estimate
of x(t) based on the measurement y(t) becoming available

The Kalman filter 7-15

Time update
now let's increment time, using x(t + 1) = Ax(t) + w(t)
condition on Y (t) to get

z(t+1)|Y () = Az@t)|Y(t) +w(@t)|Y(¢)
= Az(t)|Y () +w(t)

since w(t) is independent of Y ()

therefore we have &(t + 1|t) = Az(t|t) and

Sip1e = E@E+1E) —z(t+ 1))@+ 1) —zt+1)"
= E(A#(t|t) — Az(t) — w(t))(AZ(¢t[t) — Az(t) — w(t)T
= A% AT+ W
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Kalman filter

measurement and time updates together give a recursive solution
start with prior mean and covariance, (0| — 1) = Zg, X(0]| — 1) = X9

apply the measurement update

A N -1 N
Hilt) = a1~ 1)+ SO (CEeaCT 4 V) (o) - Cilele— 1)
—1
Ype = -1 — 2t|t—1CT (C’Zt|t_1CT + V) CYyje—1

to get £(0|0) and Xgo; then apply time update
E(t+1)t) = Az(tlt),  Spap = AS AT+ W

to get 2(1/0) and Xy)o

now, repeat measurement and time updates . . .
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Riccati recursion

to lighten notation, we'll use &(t) = &(t|t — 1) and 3, = Yife—1

we can express measurement and time updates for S as
S = A AT 4+ W — AT (C,CT + V)T, AT

which is a Riccati recursion, with initial condition f)o = >

e >, can be computed before any observations are made

e thus, we can calculate the estimation error covariance before we get any
observed data
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Comparison with LQR

in LQR,

e Riccati recursion for P(t) (which determines the minimum cost to go
from a point at time t) runs backward in time

e we can compute cost-to-go before knowing x(t)
in Kalman filter,

e Riccati recursion for 3 (which is the state prediction error covariance
at time t) runs forward in time

e we can compute 3, before we actually get any observations
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Observer form

we can express KF as

Ft+1) = Ai(t)+ ASCT(CS,CT + V) L (y(t) — Ci(t))
= AZ(t) + Le(y(t) — 9(¢))

where Ly = AS,CT(CE,CT + V)1 is the observer gain, and §(t) is
g(tlt —1)

e y(t) is our output prediction, i.e., our estimate of y(t) based on
y(0),...,y(t—1)

) e(t) y(t) — y(t) is our output prediction error

e AZ(t) is our prediction of z(t 4+ 1) based on y(0),...,y(t — 1)

e our estimate of x(t + 1) is the prediction based on y(0),...,y(t — 1),
plus a linear function of the output prediction error
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Kalman filter block diagram

v(t)
w(t) B () y(t)
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Steady-state Kalman filter

as in LQR, Riccati recursion for f]t converges to steady-state value fl,
provided (C, A) is observable and (A, W) is controllable

3 gives steady-state error covariance for estimating (¢t + 1) given
y(0),...,y(t)

note that state prediction error covariance converges, even if system is
unstable

S satisfies ARE
> =ASAT + W — AncT(cse” + v)~tosAT

(which can be solved directly)
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steady-state filter is a time-invariant observer:
E(t+1) = Az(t) + L(y(t) —g(t)),  9(t) = Ci(t)

where L = ASCT(C2CT + V)1

define state estimation error Z(t) = x(t) — z(t), so
y(t) —g(t) = Cx(t) +v(t) — Cz(t) = Cx(t) + v(t)
and

Ft+1) = at+1)—2(+1)
= Ax(t) +w(t) — Az(t) — L(CE(t) + v(t))
= (A—LC)&(t) +w(t) — Lo(t)

The Kalman filter

thus, the estimation error propagates according to a linear system, with
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closed-loop dynamics A — LC, driven by the process w(t) — LCv(t), which

is 11D zero mean and covariance W + LV LT

provided A, W is controllable and C, A is observable, A — LC' is stable

The Kalman filter
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Example

system is
z(t+1) = Ax(t) + w(t), y(t) = Cx(t) + v(t)

with z(t) € R®, y(t) € R
we'll take Ez(0) =0, Ex(0)z(0)T = X = 52I; W = (1.5)%I, V =1

eigenvalues of A:

0.9973 +0.07307,  0.9995 +0.0324j,  0.9941 - 0.1081;

(which have magnitude one)

goal: predict y(t + 1) based on y(0),...,y(t)

The Kalman filter

first let's find variance of y(t) versus t, using Lyapunov recursion

Ey(t)> = CE,.(t)CT+V, Ye(t+1) = AL, (t) AT+ W, ¥.(0) =
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now, let's plot the prediction error variance versus t,

Ee(t)’ = E(j(t) - y(1))* = C%,CT +V,

where ¥, satisfies Riccati recursion

Sip1 = AS AT + W — A 0T (s eT + V) Ton AT

prediction error variance converges to steady-state value 18.7

The Kalman filter
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now let’s try the Kalman filter on a realization y(t)

top plot shows y(t); bottom plot shows e(t) (on different vertical scale)
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