EE263 Autumn 2005-06

Lecture 10

Solution via Laplace transform and matrix
exponential

e Laplace transform

e solving & = Ax via Laplace transform
e state transition matrix

e matrix exponential

e qualitative behavior and stability

10-1

Laplace transform of matrix valued function

suppose z : Ry — RP*Y

Laplace transform: Z = £(z), where Z : D C C — CP*? is defined by

Z@y:Aweﬂ%uyﬁ

e integral of matrix is done term-by-term
e convention: upper case denotes Laplace transform
e D is the domain or region of convergence of Z

e D includes at least {s | Rs > a}, where a satisfies |z;;(t)| < ae® for
t>0,1=1,....p,7=1,....,¢q
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Derivative property

L(2) =sZ(s) — z(0)

to derive, integrate by parts:

L)(s) = /0 TSt dt

= e "zt z:ooo + s/ e 2(t) dt
0

= sZ(s)— z(0)
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Laplace transform solution of = = Ax

consider continuous-time time-invariant (T1) LDS
T = Ax

for t > 0, where z(t) € R"

e take Laplace transform: sX(s) — z(0) = AX(s)

e rewrite as (s] — A)X(s) = z(0)

e hence X (s) = (sI — A)~1xz(0)

e take inverse transform

z(t) =L ((sI — A)~") z(0)
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Resolvent and state transition matrix

o (sI — A)~!is called the resolvent of A

e resolvent defined for s € C except eigenvalues of A, i.e., s such that
det(sI — A) =0

o &(t) =L ((sI — A)71) is called the state-transition matrix; it maps
the initial state to the state at time ¢:

2(t) = ®(t)z(0)

(in particular, state z(t) is a linear function of initial state x(0))

Solution via Laplace transform and matrix exponential 10-5

Example 1: Harmonic oscillator
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s —1

sI—A:l1

], so resolvent is

s 1
— 2 2
(sI — A) 1:[5;31 s;l]
5241 5241

(eigenvalues are £7)

state transition matrix is

s 1 .
(1) — 1 (l 32_4i1 @ ]) _ l C(?Si smi ]
211 5241 —sint cos

a rotation matrix (—t radians)

cost sint
—sint cost] (O)

so we have z(t) = [
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Example 2: Double integrator

Solution via Laplace transform and matrix exponential 10-8



s —1

sI—A:lO

], so resolvent is

(s — A" = l

Sw -
V)
mle|>—l
1

(eigenvalues are 0, 0)

state transition matrix is

so we have z(t)

I
| —

Solution via Laplace transform and matrix exponential

Characteristic polynomial

X (s) = det(sI — A) is called the characteristic polynomial of A

e X(s) is a polynomial of degree n, with leading (i.e., s™) coefficient one

e roots of X" are the eigenvalues of A

e X has real coefficients, so eigenvalues are either real or occur in
conjugate pairs

e there are n eigenvalues (if we count multiplicity as roots of X))
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Eigenvalues of A and poles of resolvent

i,j entry of resolvent can be expressed via Cramer's rule as

det Azg

(_1)i+jdet(sl —A)

where A;; is sI — A with jth row and 7th column deleted

e det A;; is a polynomial of degree less than n, so ¢, j entry of resolvent
has form f;;(s)/X(s) where f;; is polynomial with degree less than n

e poles of entries of resolvent must be eigenvalues of A

e but not all eigenvalues of A show up as poles of each entry

(when there are cancellations between det A;; and X(s))

Solution via Laplace transform and matrix exponential 10-11

Matrix exponential

(I-C)'=1+C+C?*+C3+ - (if series converges)

e series expansion of resolvent:

(ST—A) = (1/s)(I - Afs) =+ G+ 2n s

(valid for |s| large enough) so

B1) = £ (s - A)) = T+ e+ L

Solution via Laplace transform and matrix exponential 10-12



e looks like ordinary power series

t 2
eatzl_i_ta_i_%_}_...

with square matrices instead of scalars . . .

e define matrix exponential as

2

M
eM:I—i—M—i—T—i—...

for M € R™™" (which in fact converges for all M)

e with this definition, state-transition matrix is

Oty =L ((sI—A)7) = eth

Solution via Laplace transform and matrix exponential 10-13

Matrix exponential solution of autonomous LDS

solution of & = Az, with A € R™*"™ and constant, is

z(t) = e2(0)

generalizes scalar case: solution of & = ax, with a € R and constant, is

z(t) = ez(0)
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e matrix exponential is meant to look like scalar exponential

e some things you'd guess hold for the matrix exponential (by analogy
with the scalar exponential) do in fact hold

e but many things you'd guess are wrong

example: you might guess that eAT5 = e4eB| but it's false (in general)

0 1 0 1
S LRI
A [ 054 084 5 _[11
7] —084 0540 ° Tlo1
0.16 1.40 0.54 1.38
A+B __ A B _
© l ~0.70  0.16 1 7ere = l ~0.84 —0.30 1
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however, we do have ¢A18 = ¢4¢B if AB = BA, i.e., A and B commute

thus for ¢, s € R, e(tAtsA) — otAgsA

with s = —t we get

etAeftA — etAftA — e0 =71

etA

SO is nonsingular, with inverse

tA\—L A
(¢4 = o

Solution via Laplace transform and matrix exponential 10-16



example: let’s find e”, where A = [ 8 (1) 1
we already found

et = LV (s] — A)7) = l | ]

1

0
. A 1 1

so, plugging in t =1, we get e” = 0 1

let's check power series:

2

A
eA:I+A+§+---:I+A

since A2=A3=...=0

Solution via Laplace transform and matrix exponential 10-17

Time transfer property

for £ = Az we know

interpretation: the matrix e/ propagates initial condition into state at
time ¢

more generally we have, for any t and T,
z(t 4+ t) = et a(r)

(to see this, apply result above to z(t) = z(t + 7))

interpretation: the matrix e/ propagates state t seconds forward in time
(backward if t < 0)

Solution via Laplace transform and matrix exponential 10-18



e recall first order (forward Euler) approximate state update, for small ¢:

x(t+t)=x(r) +ti(r) = (I +tA)x(r)

e exact solution is

z(r+1t) =ela(r) = (I +tA+ (tA)? /20 + - a(T)

e forward Euler is just first two terms in series

Solution via Laplace transform and matrix exponential 10-19

Sampling a continuous-time system

suppose = = Ax
sample z at times t; <ty < ---: define z(k) = z(tx)

then z(k + 1) = e(trr1=t)A4(k)

for uniform sampling t;+1 —tx = h, so
2(k4 1) = e"2(k),

a discrete-time LDS (called discretized version of continuous-time system)

Solution via Laplace transform and matrix exponential 10-20



Piecewise constant system

consider time-varying LDS = = A(t)z, with

Ay 0<t<ty
A(t): Al 1 <t <ty

where 0 < t1 < ty < --- (sometimes called jump linear system)
for t € [t;,t;+1] we have

z(t) = elt7t) A e(ta—t2) A2 p(ta—t) A1 ghi Ao )

(matrix on righthand side is called state transition matrix for system, and
denoted ®(t))

Solution via Laplace transform and matrix exponential 10-21

Qualitative behavior of x(t)

suppose & = Az, z(t) € R"
then z(t) = e!2(0); X(s) = (sI — A)~'z(0)

ith component X;(s) has form

where a; is a polynomial of degree < n

thus the poles of X; are all eigenvalues of A (but not necessarily the other
way around)
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first assume eigenvalues \; are distinct, so X;(s) cannot have repeated
poles

then z;(t) has form
:L'z(t) = Zﬁijekjt
j=1

where (3;; depend on x(0) (linearly)

eigenvalues determine (possible) qualitative behavior of z:

e eigenvalues give exponents that can occur in exponentials

e real eigenvalue \ corresponds to an exponentially decaying or growing
term e in solution

e complex eigenvalue A\ = o + jw corresponds to decaying or growing
sinusoidal term e“? cos(wt + ¢) in solution
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e R\, gives exponential growth rate (if > 0), or exponential decay rate (if
< 0) of term

e )\ gives frequency of oscillatory term (if # 0)

eigenvalues 35S
F X
X
Rs
X
X
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now suppose A has repeated eigenvalues, so X; can have repeated poles

express eigenvalues as Aq,..., A\, (distinct) with multiplicities nq,...,n,,
respectively (ny + -+ 4+ n, = n)

then x;(t) has form
zi(t) = pij(t)eM’
i=1

where p;;(t) is a polynomial of degree < n; (that depends linearly on z(0))

Solution via Laplace transform and matrix exponential 10-25

Stability

we say system & = Az is stable if !4 — 0 as t — oo

meaning;:
e state x(t) converges to 0, as t — 0o, no matter what z(0) is
e all trajectories of & = Ax converge to 0 as t — o0

fact: © = Ax is stable if and only if all eigenvalues of A have negative real
part:
RX\; <0, i=1,...,n

Solution via Laplace transform and matrix exponential 10-26



the ‘if’ part is clear since

lim p(t)e* =0

t—o0

for any polynomial, if ®A < 0

we'll see the ‘only if' part next lecture

more generally, max; ®\; determines the maximum asymptotic logarithmic
growth rate of x(t) (or decay, if < 0)

Solution via Laplace transform and matrix exponential 10-27



