EE363 Winter 2005-06

Lecture 6
Estimation

Gaussian random vectors

e minimum mean-square estimation (MMSE)

MMSE with linear measurements

relation to least-squares, pseudo-inverse
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Gaussian random vectors

random vector x € R" is Gaussian if it has density
1
palt) = (20) 2ot ) 2exp (0 - )50 - 9))

forsome X =T >0, z e R"”

e denoted z ~ N (z, )

e 7 € R" is the mean or expected value of z, i.e.,
zT=Exr= /vpm(v)dv

e X =X7 > 0is the covariance matrix of z, i.e.,

Y = E@@—-2)(z—2)"
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= Ezz' —zz7

— /(v —2)(v — ) pa(v)dv

density for x ~ N(0,1):
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e mean and variance of scalar random variable x; are

hence standard deviation of x; is \/X;;
e covariance between z; and z; is E(z; — Z;)(z; — Z;) = X

e correlation coefficient between z; and x; is p;; =

e mean (norm) square deviation of x from Z is

Elz -z =ETr(z—2)(z —2)" =TrL =) %

=1

(using Tr AB = Tr BA)

example: © ~ N(0,1) means x; are independent identically distributed
(1ID) N (0, 1) random variables
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Confidence ellipsoids

pe(v) is constant for (v — Z)TY 7 (v — ) = «, i.e., on the surface of
ellipsoid
Ea={v|(w-2)T2" (v-2)<a}

thus & and ¥ determine shape of density
can interpret £, as confidence ellipsoid for x:

the nonnegative random variable (x — Z)TX71(x — Z) has a x2
distribution, so Prob(z € &,) = F,2(a) where F,2 is the CDF

some good approximations:

e &, gives about 50% probability
® &, 12 m gives about 90% probability
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geometrically:

e mean I gives center of ellipsoid

e semiaxes are v/a\;u;, where u; are (orthonormal) eigenvectors of %
with eigenvalues \;

Estimation
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example: z ~ N (z,X) with = { ? ] Y= [ ?

1
1
x1 has mean 2, std. dev. v/2

To has mean 1, std. dev. 1

correlation coefficient between x; and x5 is p = 1/\/§
E|z—-z||?=3

90% confidence ellipsoid corresponds to o = 4.6:

€2

(here, 91 out of 100 fall in &45¢)
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Affine transformation

suppose = ~ N (T, 3,;)
consider affine transformation of z:
z=Ax+0b,

where A € R™*", h € R™

then z is Gaussian, with mean
Ez=E(Ax+b)=AEx+b=AZ+b

and covariance

¥, = E(z-2)(z-2)7
= EA(x—2)(xz—z2)TAT
= AX A"
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examples:
o if w~ N(0,I) then z = =V 2w + 7 is N (Z, )
useful for simulating vectors with given mean and covariance

e conversely, if z ~ N (Z,%) then z = X7V2(x — z) is N(0, 1)

(normalizes & decorrelates)
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suppose x ~ N (Z,X) and ¢ € R"

T

scalar ¢I'z has mean ¢Z'Z and variance ¢f'Y¢

thus (unit length) direction of minimum variability for x is u, where

Yu = Amint, |ull=1

standard deviation of uZx is v/ Amin

(similarly for maximum variability)
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Degenerate Gaussian vectors

it is convenient to allow X to be singular (but still ¥ = X7 > 0)
(in this case density formula obviously does not hold)
meaning: in some directions = is not random at all

write X as . 0
EZ[Q—I—QO][ O+ 0

where Q) = [Q+ Qo] is orthogonal, ¥, >0

[Q+ Qo)"

e columns of @ are orthonormal basis for N/ (X)

e columns of @) are orthonormal basis for range(>)
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then QTz = [2T w!]T, where

e 2~ N(Q¥z, %) is (nondegenerate) Gaussian (hence, density formula
holds)

e w= Q%7 € R" is not random

(QF'x is called deterministic component of x)
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Linear measurements

l[inear measurements with noise:
y=Ar+v

e r € R" is what we want to measure or estimate

€ R™ is measurement
Yy

A € R"™*™ characterizes sensors or measurements

® U IS Sensor noise

Estimation

common assumptions:

x ~N(Z,%,)
v~ N(0,%,)

e x and v are independent

N(z,X,) is the prior distribution of = (describes initial uncertainty
about x)

v is noise bias or offset (and is usually 0)

>, IS noise covariance

Estimation
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using

we can write

and
E Tr— I r—x r _ I 0 e 0
Y-y Y=y AT 0 3,
B hI EwAT
o AY, A AT+ %
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covariance of measurement y is AX, AT + 3,

o AX, AT is 'signal covariance’

e >, is ‘noise covariance'’
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Minimum mean-square estimation

suppose = € R™ and y € R™ are random vectors (not necessarily Gaussian)
we seek to estimate x given y
thus we seek a function ¢ : R™ — R" such that & = ¢(y) is near z

one common measure of nearness: mean-square error,

E [|6(y) — ||’

minimum mean-square estimator (MMSE) ¢mse minimizes this quantity

general solution: ¢mmse(y) = E(z]y), i.e., the conditional expectation of x
given y
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MMSE for Gaussian vectors

now suppose = € R"™ and y € R™ are jointly Gaussian:
x > b
~ ./\/’ ” , X Ty
ly} ({y} lEfy Ey”

(after alot of algebra) the conditional density is

I

pa(ely) = (20) "/ 2(det )2 exp (30 = w4 - ).

where
A=%, -5, 58T | w= 2+ 5,5 (y - 9)

Ty

hence MMSE estimator (i.e., conditional expectation) is

& = bmmse(y) = B(aly) = 7 + 30y T, (y — )
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Ommse 1S an affine function

MMSE estimation error, & — x, is a Gaussian random vector

T—x ~ N(0,5; — X3, ' 27

note that
1T
Y — EmyZy Zwy <X,

i.e., covariance of estimation error is always less than prior covariance of x
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Best linear unbiased estimator

estimator
T = gbblu(y) =+ Zmyzyjl(y - y)
makes sense when x, y aren't jointly Gaussian

this estimator

is unbiased, i.e., Ex =Ex

often works well

is widely used

has minimum mean square error among all affine estimators

sometimes called best linear unbiased estimator
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MMSE with linear measurements
consider specific case
y=Ar+v, z=~N(ZX;), v~N(©%,),

x, v independent

MMSE of x given y is affine function
=%+ By —7)
where B = 2, AT(AS, AT +32,)7 Y g = Az + 0
intepretation:
e I is our best prior guess of x (before measurement)

e y — g is the discrepancy between what we actually measure (y) and the
expected value of what we measure (%)
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estimator modifies prior guess by B times this discrepancy

estimator blends prior information with measurement

B gives gain from observed discrepancy to estimate

B is small if noise term 2, in ‘denominator’ is large
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MMSE error with linear measurements

MMSE estimation error, £ = & — x, is Gaussian with zero mean and

covariance
Vet = Ly — D AT (AT, AT +%,))71A%,

o Y.t <X, i.e., measurement always decreases uncertainty about x
e difference X, — Yt gives value of measurement y in estimating x

o e.g., (Zestii/Sw i)'/ gives fractional decrease in uncertainty of z; due
to measurement

note: error covariance Y. can be determined before measurement y is
made!
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to evaluate X, only need to know

e A (which characterizes sensors)
e prior covariance of z (i.e., ¥;)

e noise covariance (i.e., ¥,)

you do not need to know the measurement y (or the means z, 0)

useful for experiment design or sensor selection
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Information matrix formulas

we can write estimator gain matrix as

B = 2, AT(Ax, AT +3,)7!
= (ATs;'A+x;Y) ATy

e 1 X mn inverse instead of m x m

e X1 ¥—1 sometimes called information matrices

corresponding formula for estimator error covariance:

Yest = Yo — S AT(AL, AT +3,))71A%,

— (ATS7A YT

Estimation

can interpret X { = X1 + ATY 1A as:

est

posterior information matrix (X_.)

= prior information matrix (3, 1)

+ information added by measurement (AT 1A)
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proof: multiply
S AT(AS,AT +5,)7 L (ATS T A+ 27) T AT
on left by (ATY1A 4+ ¥-1) and on right by (AX, AT +%,) to get
(ATSTA + 2705, AT £ AT 1 (A5, AT 4+ 5,)

which is true

Estimation

Relation to regularized least-squares
suppose T =0, v =0, ¥, = a?I, ¥, = 3%1
estimator is £ = By where

B = (ATs;'A+3;0) ATy
= (ATA+ (B/a)]) AT

.. which corresponds to regularized least-squares

MMSE estimate Z minimizes
Az — y|I* + (8/2)?||z||?

over z
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Example

navigation using range measurements to distant beacons

y=Ax+v

x € R? is location

e y; is range measurement to ¢th beacon
e v; is range measurement error, 11D N(0,1)

7th row of A is unit vector in direction of ith beacon

prior distribution:

1 220
x~N(Z,%,), 93:[1], Eleo 0.52]

x1 has std. dev. 2;: x5 has std. dev. 0.5
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90% confidence ellipsoid for prior distribution
{z]|(xz—2)TS Yz —7) <46 }:

T2
°

2k

3

—4-

5Lt
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Case 1: one measurement, with beacon at angle 30°

fewer measurements than variables, so combining prior information with
measurement is critical

resulting estimation error covariance:

1.046 —0.107

Yest = | 0107 0.246
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90% confidence ellipsoid for estimate #: (and 90% confidence ellipsoid for

z)
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interpretation: measurement

e yields essentially no reduction in uncertainty in xo

e reduces uncertainty in x1 by a factor about two
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Case 2: 4 measurements, with beacon angles 80°, 85°, 90°, 95°

resulting estimation error covariance:

3.429 —-0.074

Yest = | 0074  0.127
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90% confidence ellipsoid for estimate #: (and 90% confidence ellipsoid for

z)

|

T2

% ” ) $ﬁ 2 . 6
interpretation: measurement yields

e little reduction in uncertainty in x;

e small reduction in uncertainty in x5
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